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Strengthening of feed security in the Sahel is urgently needed given the climate

change and growing human population. A prerequisite to this is sustainable use

of rangeland forage resources for livestock. Many studies have focused on the

assessment of rangeland resources during the rainy season, while only a few

have focused on the dry season which is the longest and most demanding

period for livestock in Sahelian rangelands. The objective of this study is to

develop remote sensing-based models for estimating dry season forage

vegetation mass. To that end, 29 vegetation indices calculated from each of

theMODIS-MCD43A4 (500m), Landsat-8 (30 m), and Sentinel-2 (10 m) satellite

products were used and tested against in situ data collected during three field-

measurement campaigns in 2021 at eleven monitoring sites across Senegalese

rangelands. Four statistical models were tested, namely, random forest,

gradient boosting machines, and simple linear and multiple linear

regressions. The two main vegetation mass variables modeled from remote

sensing imagery were the standing herbaceous and litter drymass (BH) and total

forage drymass (BT) with a drymass of woody plant leaves added to BH.Overall,

Sentinel-2 data provided the best performance for the assessment of BH with

multiple linear regression (R2 = 0.74; RMSE = 378 kg DM/ha) using NDI5

(Normalized Difference Index5), GRCI (Green Residue Cover Index), SRI

(Simple Ratio Index), TCARI (Transformed Chlorophyll Absorption in

Reflectance Index), and DFI (Dead Fuel Index) indices. For BT, the best

model was also obtained from Sentinel-2 data, including RVI3 (Ratio

Vegetation Index3) (R2 = 0.78; RMSE = 496 kg DM/ha). Results showed the

suitability of combining the red, green, blue, NIR, SWIR1, and SWIR2 bands in

monitoring forage availability during the dry season. Our study revealed that the

spectral richness of the optical sensor systems Sentinel-2, Landsat-8, and

MODIS-MCD43A4 allowed for accurate assessments of dry-season forage
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mass of semi-arid rangelands. Adding to this, the high spatial and temporal

resolution of Sentinel-2 satellite imagery makes this a promising data source for

timelymonitoring. These findings can support themonitoring of the animal feed

balance in Sahelian countries and contribute to enhancing the resilience of

pastoralism toward feed shortage through early warning systems.

KEYWORDS

forage dry mass, dry season, MODIS MCD43A4, Landsat-8, Sentinel-2, food security,
statistical modeling, Senegalese rangelands

1 Introduction

Livestock production is the primary livelihood strategy to

generate income for the Sahelian population, particularly inWest

Africa (Dicko et al., 2006), where many pastoral households

depend on their livestock for both milk and meat production

(Sayre et al., 2013). Livestock is, therefore, a strong guarantee for

food security in this region (Sloat et al., 2018). Livestock income

was found to be important for purchasing food, engaging in non-

farm activities, and acting as a safety net in case of crop failure

(Loison & Bignebat, 2017). However, the pastoral livelihood

system is highly dependent on forage availability from

rangelands, which is the predominant source of feed for the

livestock.

Rangelands play multiple essential roles both in relation to

the balance of the Sahelian ecosystem and in the lives of human

populations (Hiernaux et al., 2018). Rangelands are fundamental

for food security (ISRA, 2003) and play an important ecological

role in allowing for improved soil fixation, carbon uptake, and

biodiversity conservation (Holechek et al., 2020). However,

pastoral systems in the Sahel have faced major crises since the

1970s, accentuated by climate change, increasingly threatening

the region. Climate change has led to an increase in rainfall

variability (Sloat et al., 2018; Zhang et al., 2017), impacting

mainly the processes that control ecosystem functioning

(Zhang et al., 2018). In particular, biological activity and

productivity have been affected, as well as the floristic

composition of herbaceous components in rangelands

(Hiernaux et al., 2009; Briske et al., 2015; Delon et al., 2015;

Brandt et al., 2016). Consequently, animal feeding, growth, and

reproduction are all impacted (Chirat et al., 2014). Optimal use of

pasture as a fodder source is vital for successful production

(Otgonbayar et al., 2019), particularly in the dry season (the

longest and most difficult period of the year, during which

livestock can experience increasing food shortages) when the

amount of forage decreases, severely impacting livestock (Jacques

et al., 2014). Timely monitoring and estimation of plant

vegetation mass during the dry season, therefore, are essential

for forage resource management in Sahelian rangelands (Diouf

et al., 2015).

Many studies have been conducted in the Sahel to improve

the quantification of forage mass (Diouf et al., 2014; Diouf et al.,

2015; Garba et al., 2015, Garba et al.,2017). Recently, the FAO

(Food and Agriculture Organization of the United Nations) and

CIRAD (Centre de coopération internationale en recherche

agronomique pour le développement) have provided guidelines

to propose a harmonized feed balance methodology and feed

balance sheet that is being implemented already in five countries

in the Sahel (FAO, 2020). These guidelines, in particular,

recommend a better description of the available forage

according to its type and its nutritional value at different

periods of the year. Indeed, forage balances are often used for

evaluations at different scales, such as in the context of

competition between animal and human food (Mottet et al.,

2017). In addition, over the past decades, food security

information systems like AGRHYMET (Centre régional de

formation et d’applications agronomique, hydrologique et

météorologique) (Traore et al., 2014), SMIAR (Système

Mondial d’Information et d’Alerte Rapide) (Jost, 1996) and

specific systems to pastoral monitoring, e.g., SIG Sahel

(pastoral monitoring system of action against hunger in the

Sahel) (Ham & Fillol, 2012), GEOGLAM RAPP (Group on

Earth Observations Global Agricultural Monitoring

Rangelands and Pasture Productivity) (Guerschman et al.,

2015) have shown significant progress.

Remote sensing techniques are currently used with good

success to monitor vegetation mass over large areas using both

Lidar and multispectral sensors (Rana et al., 2014). Jin et al.

(2015) used Landsat-8 images and textural layers to estimate

maize residue cover in Northeast China. Otgonbayar et al. (2019)

also used Landsat-8 images to map pasture vegetation mass in

Mongolia using Random Forest regression. Najaf et al. (2019)

compared Sentinel-2 and Landsat-8 data to map and characterize

residues of crops in the east of the Azerbaijan province (Iran).

Since the 1970s, regular remote sensing monitoring of rainy-

season vegetation mass has been conducted throughout the Sahel

for better management of pastoral resources (Tucker et al., 1985;

Diallo et al., 1991). Several parametric models have been

established to assess forage vegetation mass at the end of the

rainy season in the Sahel using vegetation indices such as the

NDVI (Normalized Difference Vegetation Index) (Diouf &

Lambin, 2001; Fensholt et al., 2004; Tucker et al., 1985).

Jacques et al. (2014) tested combinations of MODIS

(Moderate Resolution Imaging Spectroradiometer) bands

(NBAR collection 5) to quantify forage vegetation mass

during the dry season in the Sahelian zone. Their study was
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based on MODIS SWIR (short-wave infrared) bands that were

found to be relevant due to their sensitivity to components such

as lignin, cellulose, and hemicellulose (Daughtry, 2001). Kergoat

et al. (2015) used field-based radiometer measurements and

MODIS images to estimate dry vegetation mass and cover

fraction throughout the dry season across the Sahel using the

SWIR1.6 and SWIR2.1 bands. Over the years, several other

spectral indices have been suggested to estimate vegetation

mass during the dry season based on different sensors, e.g.,

Landsat Thematic Mapper, Landsat Enhanced Thematic

Mapper, MODIS, and ASTER (Advanced Spaceborne Thermal

Emission and Reflection Radiometer); normalized difference

indices such as Normalized Difference Index 5—NDI5

(Mcnairn & Protz, 1993); chlorophyll detection indices such

as Triangular Vegetation Index—TVI (Broge & Leblanc,

2001); indices with correction for atmospheric or soil effects

such as Soil-Adjusted Vegetation Index—SAVI (Huete, 1988),

and vegetation indices by ratio such as Soil Tillage Index—STI

(Van Deventer et al., 1997).

Taking advantage of the ever-increasing quality of satellite

sensor technology and surface reflectance products readily

available to the users, the main objective of this study is to

estimate the forage availability during the dry season using

spectral indices computed from satellite images for Senegalese

rangelands. We aim to address the following research questions:

what would be the most efficient approach to assess dry season

vegetation mass in Senegalese rangelands from remote sensing

data and what are the dynamics of vegetationmass during the dry

season according to the best performing model?

2 Materials and methods

2.1 Study area

The study area covers almost the entire silvopastoral zone of

Senegal, with a total area of 101.609 km2. It is located in the Sahel

belt and is characterized by two seasons: a dry season from

November to June and a rainy season from July to October, each

year. The climate is arid to semi-arid, with a minimum and

maximum annual rainfall of 200 and 980 mm, respectively.

Generally, it is during the rainy season that herbaceous

FIGURE 1
Map of the study area with isohyets corresponding to the average annual rainfall for the period 1981–2010.
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vegetation develops and reaches its maximum growth. At the end

of this season, the vegetation begins to dry out. During the dry

season, a thin dry herbaceous layer covers the ground. As

elsewhere in the pastoral Sahel, the vegetation is dominated

by annual herbaceous species, with scattered trees and shrubs

(Kergoat et al., 2015).

The study area covers five ecoregions: the northern and

southern sandy pastoral regions, the ferruginous pastoral

region, the eastern transitional region, and the agricultural

expansion region (Figure 1) (Tappan et al., 2004). Field

measurements were collected at 11 monitoring sites: 10 sites

of the CSE (Centre de Suivi Ecologique) (Diouf et al., 2015) and

the Dahra field site (Tagesson et al., 2015).

2.2 Data acquisition and processing

2.2.1 Field measurement
2.2.1.1 Collection and calculation of standing

herbaceous and litter dry mass

Standing herbaceous dry mass was collected during three field

campaigns in the 2021 dry season (January 31 to February 10;March

25 toApril 04;May 15 toMay 25) following the sampling protocol of

Kergoat et al. (2015) at the 11monitoring sites. At each site, we used

a 500-m transect subdivided into 500 plots of 1 m2. Each of the

500 1 m2 plots was visually classified into one of the four levels of

productivity; bare soil, low-, medium-, and high-level productivity.

Bare soil was assumed to have no dry mass, and randomly, three

plots were selected in the low level, six plots in themedium level, and

three plots in the high level. At each of these 12 plots, geographic

coordinates, the nadir pointing vertical photos taken at 1.2 m height

above the top of the vegetation, and species composition were

recorded. Also, the dominant species was recorded (from the

contribution of each herbaceous species to the cover in a given

plot). Then, within each of these 12 plots, aboveground vegetation

mass was cut and weighed to obtain the fresh mass. Litter was also

collected and weighed separately. At the Dahra site, the collection

protocol was similar to that of the other sites, but the sampling plots

followed, instead, two perpendicular transects of 250 m as proposed

by Mbow et al. (2013). All samples were thereafter dried at 80°C for

48 h and weighed to retrieve the dry weight mass (DM). The dry

matter rate was estimated as the ratio of DM to fresh mass.

The resulting DM was then incorporated into the following

equation to calculate the standing herbaceous dry mass (SBH) at

the site level:

SBH � ∑
3

i�1
FMi panipmsp10 (1)

where SBH is the total standing herbaceous dry mass of the

site (kg DM/ha), FMi is the average fresh mass of the

production level (i) measured in the field (g/m2), ani is the

fraction of occurrence of the specific productivity level (i)

along the 500 m transect,ms is the dry matter rate (the ratio of

DM to fresh mass), and 10 is the conversion factor of g/m2 to

kg/ha.

This weighting was not applied for litter mass because it did

not vary between the productivity levels. The litter mass was

calculated taking into account the percentage of bare soil (BS)

using the following formula:

Lit � ∑
12

i�1

M.litpms

12
p (1 − BS)p10 (2)

where Lit is the total dry mass of the litter for the site (kg DM/ha),

M.lit is the mass of the litter per plot (g/m2),ms is the dry matter

rate, BS is the percentage of bare soil, and 10 was used to convert
g/m2 to kg/ha.

2.2.1.2 Collection and calculation of the woody foliage

mass

Foliage mass of woody plants was also collected during the

three campaigns. An inventory of dominant tree species was

made in two circular plots with the center located at 200 and

400 m from the beginning of the 500-m transects

(Supplementary Figure S1). For the Dahra site, four circular

plots were used, instead, located at the beginning and end of the

perpendicular transects due to the difference between the

sampling schemes. The radius of the plots was 28 m in the

four northernmost sites and 20 m in the remaining sites,

taking into account vegetation density which is higher in the

southern sites. For each of the dominant woody species, five twigs

with 2-cm diameter were cut, defoliated, and leaves (only) were

weighed. The samples of around 200 g were then dried in an oven

at 80°C for 48 h, and foliage was again weighted to obtain DM.

The site-level foliage dry mass of woody plants was then

calculated as follows:

BL � ∑
n

i�1
(Mvpms

Mss
)p(aCb)p(1

S
) (3)

where BL is the sum of foliage dry mass of woody plants in

kg DM/ha, n is the number of dominant species listed,Mv is the
average weight of fresh foliage mass (g) of the five twigs for each

species, ms is the dry matter rate, Mss is the average standard
dry foliage mass of five twigs for each woody species (g)

(Hiernaux, 1980), aCb is the foliage dry mass produced for

all trees and shrubs for each species in kg where a and b are

species dependent constants (Diouf & Lambin, 2001), C is the

base circumference of the trunk at 1.3 m above the ground

measured on the ground in cm, and S is the area of the circular

sample plots in ha.

Finally, the total forage dry mass (BT) of each site was

calculated by adding the standing herbaceous dry mass (SHB),

litter dry mass (Lit), and foliage dry mass (BL). The herbaceous

dry mass (BH) is the sum of the standing herbaceous dry mass

(SBH) and litter dry mass (Lit).
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TABLE 1 Description of the sensors used in the study.

Sensor Landsat-8/OLI
central wavelengths

Sentinel-2A/MSI central
wavelengths

MODIS/TERRA-
AQUA central
wavelengths

Launch date 2013 2015 1999

Spatial resolution 30 m 10 m/20 m/60 m 250 m/500 m/1000 m

Temporal resolution 16 days 5–10 days 1–2 days

Spectral bands and wavelengths (micrometer) B1 Aerosols 0.443 B1 Coastal Aerosols 0.443 B1 Red 0.659

B2 Blue 0.482 B2 Blue 0.492 B2 NIR 0.865

B3 Green 0.561 B3 Green 0.560 B3 Blue 0.470

B4 Red 0.655 B4 Red 0.665 B4 Green 0.555

B5 NIR 0.865 B5 VRedEdge 0.704 B5 NIR 1.240

B6 SWIR1 1.609 B6 VRedEdge 0.740 B6 SWIR1 1.640

B7 SWIR2 2.200 B7 VRedEdge 0.783 B7 SWIR2 2.130

B8 NIR 0.833

B8A Narrow NIR 0.865

B9 Water vapor 0.945

B10 SWIR Cirrus 1.373

B11 SWIR 1 1.614

B12 SWIR 2 2.202

FIGURE 2
Flowchart of the main steps of the study with 1) satellite data pre-processing, 2) preparation of field observed BH and BT, 3) satellite index
calculation, 4) selection of explanatory variables, and 5) parameterization and validation of models.
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2.2.2 Satellite image acquisition and processing
Three different satellite data sets were used to study their

suitability for dry season vegetation mass monitoring: MODIS,

Landsat-8, and Sentinel-2 (Table 1). The acquisition dates of the

images were chosen to correspond, as closely as possible, to the

dates of the field campaigns.

2.2.2.1 Moderate-resolution imaging spectroradiometer

The MODIS-NBAR (Nadir BRDF-Adjusted Reflectance)

collection 6 (MCD43A4) product with 500-m spatial resolution

(Schaaf & Wang, 2015) was downloaded with the MODIStsp

platform (Busetto & Ranghetti, 2016). The NBAR product with a

temporal resolution of 1–2 days was chosen because reflectance is

less-affected by view angle effects. The quality layer from the

MCD43A2 product was used to exclude pixels with clouds

(i.e., quality value > 2) (Jacques et al., 2014). The seven bands

(bands 1–7) were used to calculate spectral indices.

2.2.2.2 Landsat-8

With a spatial resolution of 30 m and a temporal resolution

of 16 days, Landsat-8 OLI (operational land imager) data

collection 2 level 2 (EROS, 2020) was downloaded from the

Earth Explorer platform. These images were geometrically and

atmospherically corrected prior to downloading. Images with less

than 10% cloud cover were downloaded following a visual

inspection to ensure that clouds were not present over the

specific study sites.

2.2.2.3 Sentinel-2

Sentinel-2 L2A images, atmospherically corrected (Drusch

et al., 2012) with less than 5% clouds, were downloaded from the

Copernicus Open Access Hub. The spatial resolution of Sentinel-

2 is varying between 10 and 60 m, and the temporal resolution is

5 days. All bands were resampled (nearest neighbor method) to a

10-m spatial resolution using the Sentinel Application Platform

(SNAP).

2.2.3 Spectral indices
Initially, a literature review was conducted in order to list the

most suitable remote sensing indices formonitoring dry vegetation

and crop residues. Then, from this review, several indices for green

vegetation were suggested to be very useful for mapping dry

vegetation and crop residues and were subsequently used in

this study. These indices were also used to capture the

chlorophyll activity left on the vegetation at the beginning of

the dry season. In total, 29 spectral indices were calculated for

monitoring foliage drymass during the dry season (Supplementary

Table S1). These indices were grouped into four categories: 1)

normalized difference vegetation indices, 2) chlorophyll detection

indices, 3) vegetation indices with correction for atmospheric or

soil effects, and 4) vegetation indices by ratio. All indices were

averaged for each site within a 500-meter buffer.

2.3 Methods

The overall approach for developing the models to monitor

dry season forage mass followed five processing steps is given in

Figure 2.

2.3.1 Selection of explanatory variables of
vegetation mass

A performance test was applied to identify the most relevant

satellite variables and eliminate non-performing spectral

indices for predicting each of the dry mass variables (BH

(herbaceous dry mass) and BT (total forage dry mass)). To

do this, the recursive feature elimination algorithm (RFE) was

used (Kuhn et al., 2021). To assess and select the best collection

of spectral indices, the random forest classifier was used with 5-

fold cross-validation. Additionally, the variance inflation factor

(VIF) was applied to detect the collinearity or dependence

between the spectral indices (Thompson et al., 2017) and

avoid its amplifying effect on the standard error of the

model (Miles, 2014). The VIF uses multiple regression in

order to eliminate satellite variables that could impact the

performance of the models, e.g., create overfitting. A VIF

threshold >10 (only predictors with a VIF less than or equal

to 10 were retained) was used to exclude collinear spectral

indices from the dataset (Midi & Bagheri, 2010) and retrieve the

optimal number of variables used to build the final models.

VIF � 1
1 − R2 (4)

where R2 is the coefficient of determination from a multiple

linear regression with the predictor variable against the other

independent variables that gives the proportion of the variance in

the outcome associated with the explanatory variables.

2.3.2 Model approaches
Four regression modeling approaches were used to estimate

the dry season forage vegetation mass across the study area: two

linear regression models (simple and multiple) and two machine

learning algorithms (random forest and gradient boosting

machines). Independent variables were BH and BT, and the

spectral indices checked for collinearity were used as explanatory

variables. Since the dataset available for this study was relatively

small, the k-fold cross-validation method was applied with five

folds and three repetitions (Kuhn et al., 2021). For each modeling

approach, the different possible combinations that could emerge

from the final base obtained after the VIF test for each vegetation

mass variable (BH and BT) have been assessed. Each

combination (a minimum of two for ordinary least squares

(OLS) models and a minimum of three for machines learning

(ML) models) constituted a separate model. In total, for all types

of images, 619 models were tested for BH and 987 models for BT

(Supplementary Table S2).
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2.3.2.1 Random forest

To run the random forest (RF) model (Liaw &Wiener, 2002),

the number of features to use at each split (mtry) was set to the

half number of included explanatory variables, while the number

of trees to grow (ntree) were set to 1,000. All combinations

starting at three up to the total number of explanatory variables

retained after the RFE and VIF tests were tested for each

independent variable. The model with the lowest RMSE was

selected and optimized based on these three input parameters:

mtry, ntree, and minimum node size. The final result of the

optimization used the following values: 1 for mtry, 100 for ntree,

and 2 for minimum node size (Supplementary Table S3). The

optimization was carried out by rescaling the model with the

prediction variables of the best model. By iteration, the best mtry

was integrated as a parameter of the model, and the latter was re-

run to search for the best ntree. Then, the best ntree and mtry

were integrated with the parameters of the model to search for

the best node size.

2.3.2.2 Gradient boosting machines

Several combinations of explanatory variables (starting at

three) were also tested with gradient boosting machines (GBM)

(Ridgeway, 2020). The model run and optimization involved

the total number of trees (ntrees), the maximum depth of

variable interactions (interaction depth), the learning rate

(shrinkage), and the minimum number of observations in

TABLE 2 List of the vegetation indices used in the development of the models.

Indices Definition Formula Source

NDI5 Normalized Difference Vegetation Index NDI5 � (NIR−SWIR1)
(NIR+SWIR1) Rouse et al. (1974)

DFI Dead Fuel Index DFI � 100*(1 − SWIR2
SWIR1)*(Red

NIR) Cao et al. (2010)

TCARI Transformed CARI TCARI � 3*[(NIR − Red) − 0, 2(NIR − Green)*(NIR
Red )] Haboudane et al. (2002)

GRCI Green Residue Cover Index GRCI � (Green−Blue)
(Green+Blue) Kavoosi et al. (2020)

SRI Simple Ratio Index SRI � NIR
Red

Rondeaux et al. (1996)

RVI2 Ratio Vegetation Index2 RVI2 � Green
Red

Jordan, (1969)

CRC Crop Residue Cover CRC � SWIR1−Green
SWIR1+Green Sullivan et al. (2006)

RVI3 Ratio Vegetation Index3 RVI3 � Green
Blue

Jordan (1969)

FIGURE 3
Selected explanatory variables after performance and collinearity tests. The included variables are colored as follows: vegetation indices by
normalized difference (green), chlorophyll detection indices (yellow), vegetation indices with correction for atmospheric or soil effects (red), and
vegetation indices by the ratio (blue).
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the tree’s terminal nodes (n. minobsinnode) (Supplementary

Table S4). After the iteration process, the GBM model with the

lowest RMSE was obtained using the following values: ntrees

(200), interaction. depth (3), shrinkage (0.1), and n.

minobsinnode (3).

2.3.2.3 Linear regression

Simple linear regression (MLS) was carried out for each of the

vegetation indices, and multiple linear regressions (MML) were

tested for all possible combinations of vegetation indices. A

comparison between the linear model developed by Jacques

et al. (2014) and the one developed in this study was carried

out for the herbaceous dry mass estimation (Supplementary

Table S5).

2.3.3 Assessment of model performance
Four parameters were used to assess the accuracy of the

models: coefficient of determination (R2), root mean square error

(RMSE), relative root mean square error (RRMSE), and Nash

Sutcliff Efficiency (NSE). NSE shows the relative magnitude of

the residual variance compared to the measured data variance

and varies in the range of −∞ to 1 (Nash & Sutcliffe, 1970). A

value of NSE = 1 reflects that between the modeled and measured

values, there is a perfect match (Nadiri et al., 2020).

The residuals of the best model for each vegetation mass

variable and each sensor were also used to analyze existing

variability over the dry season (Supplementary Figure S2).

2.3.4 Upscaling of dry season vegetation mass
The indices included in the best models for BH and BT were

computed across the study area using the Google Earth Engine

platform (Gorelick et al., 2017) for the three study periods

(January–February, March–April, and May). For each

composite image (MODIS-MCD43A4, Landsat-8, and

Sentinel-2), cloud masks were applied to remove residual

noises from the final output images.

TABLE 3 Model performance for estimating dry season herbaceous dry mass (BH) and total ecosystem foliage dry mass (BT) (upper and lower row,
respectively) for the three satellite sensor systems.

Model Dry mass
variable

R2 RMSE (kg DM/ha) RRMSE (%) NSE

Landsat-8 MLS BH 0.37 569 40 0.30

BT 0.45 906 45 0.32

MML BH 0.62 437 30 0.70

BT 0.77 526 26 0.82

RF BH 0.63 476 33 0.48

BT 0.64 688 34 0.52

GBM BH 0.68 450 31 0.90

BT 0.63 622 31 0.97

MODIS MLS BH 0.42 575 40 0.33

BT 0.51 923 46 0.25

MML BH 0.65 414 29 0.70

BT 0.69 551 27 0.77

RF BH 0.57 482 34 0.45

BT 0.64 694 35 0.49

GBM BH 0.55 469 33 0.81

BT 0.69 605 30 0.76

Sentinel-2 MLS BH 0.43 567 39 0.30

BT 0.36 901 45 0.22

MML BH 0.74 378 26 0.76

BT 0.78 496 25 0.81

RF BH 0.45 544 38 0.28

BT 0.53 816 41 0.27

GBM BH 0.53 476 33 0.92

BT 0.57 712 35 0.97
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3 Results

3.1 Vegetation index relation with dry
season forage variability

After the exploratory analysis of the explanatory variables

(i.e., RFE and VIF test), eight of the 29 vegetation indices were

selected for development of the models (Table 2). It is noted that

TCARI, DFI, and NDI5 were retained for each of the dry mass

variables and for all sensors (Figure 3). The explanatory variables

for each dry mass variable and each sensor contain at least one

index belonging to the four-index group with a dominance of

normalized difference vegetation indices and vegetation indices

with correction for atmospheric or soil effects (Figure 3).

3.2 Models adapted for monitoring
vegetation dry mass variables

On the basis of R2, RMSE, RRMSE, and NSE, the multilinear

model (MML) showed the best performance among the four tested

models for the estimation of both BH and BT (Table 3) and for all

TABLE 4 Best model and sensor for estimating dry season herbaceous dry mass (BH) and total ecosystem foliage dry mass (BT) in the silvopastoral
zone in Senegal.

Best model Dry mass
variable

R2 RMSE (kg DM/ha) RRMSE (%) NSE Sensor

MML BH 0.74 378 26 0.76 Sentinel-2

BT 0.78 496 25 0.81

FIGURE 4
Variation of field observed SBH (A), BL (B), and Lit (C) during the dry season. Jan.Feb = January–February, Mar.Apr = March–April. The values in
the first column of heatmaps were sorted in descending order from the top to bottom.
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sensor types (Supplementary Tables S6–S8). The multilinear model

applied to Sentinel-2 was found to be the best model for estimating

dry vegetation mass in the silvopastoral zone of Senegal (Table 4).

3.3 Dry season dynamics in herbaceous
dry mass and total foliage dry mass

3.3.1 Field observed variation during the dry
season

A boxplot analysis (Figure 4) shows that herbaceous standing

dry mass (SHB) showed a decrease over the dry season, while the

litter dry mass (Lit) increased slightly between January and May.

An increase in foliage dry mass (BL) was observed between

January and April and then decreased between April and May.

Spatiotemporal analysis from the heatmap (Figure 4) showed a

spatial variability with BL with an increase along a north–south

gradient. On the other hand, temporal variability is observed for SBH.

3.3.2 Spatialization maps for BH and BT with the
best Sahelian model outputs

The multilinear model applied on a Sentinel-2 image was

found to be effective in predicting BH and BT data over the entire

study area with the following model equations:

BH � 3326.60 + 16221.51pNDI5 − 721.34pGRCI + 84.72pDFI

− 19074.62pTCARI + 1638.59pSRI

(5)
BT � 5684.40 + 20292.26pNDI5 + 4363.24pSRI

− 30111.55pTCARI + 102.60pDFI − 646.06pGRCI

− 2531.03pRVI3 (6)

The extrapolated results with these bestmodels reflected, through

the scatterplots, that a strong and significant relationship exists

between the observed and predicted dry mass by the model. This

implies that these models are capable of predicting total dry mass

spatially (Figure 5) and temporally at 10-m resolution (Figure 6).

4 Discussion

4.1 Best approach to estimate dry season
vegetation mass

4.1.1 Most suited sensor(s) and indices for
monitoring dry season vegetation mass

Sentinel-2 data generally yielded better performances for BH

and BT estimation (Table 3) with a finer spatial resolution and a

higher capacity to differentiate signals from the woody and

herbaceous components.

Indices such as NDI5, DFI, and TCARI are essential for

monitoring of dry vegetation mass (Figure 3). These indices used

the red, green, blue, NIR, SWIR1, and SWIR2 bands. In

particular, the SWIR1 and SWIR2 bands play an important

role in forage estimation with low model accuracy when

omitted. Kergoat et al. (2015) showed the relevance of using

the SWIR1 and SWIR2 bands for dry season vegetation mass

estimation in the Sahel. Similarly, Kavoosi et al. (2020) showed

that indices based on SWIR1 and SWIR2 bands were able to

provide more accurate predictions of crop residue cover. In fact,

without the SWIR (i.e., 2100 nm region), the estimation of crop

residues on the soil surface likely provides a high RMSE as shown

by Najaf et al. (2019). This is mainly due to the absorption

signature of the cellulose which increases in the SWIR region,

around 2,100 nm (Daughtry et al., 2004).

Previous studies have reported the relevance of other indices,

also tested in this study, to quantify dry vegetation mass. For

example, Kavoosi et al. (2020) identified the DFI as the most

suitable formonitoring the cover of crop residues, and it was found

here to be an important variable for estimation of both BH and BT.

Therefore, we can confirm its relevance in monitoring dry

vegetation in semi-arid areas. According to Ji et al. (2020), the

red and NIR bands from Sentinel-2 were identified to be effective

in improving the accuracy of non-photosynthetic vegetation cover

fraction estimation. Kowalski et al. (2022) pointed out that non-

photosynthetic vegetation often had a stronger reflectance increase

in the red edge to the NIR wavelength region (different from soil

reflectance). Furthermore, we suggest the use of these indices that

differentiate the soil from non-photosynthetic vegetation for dry

mass monitoring, and as stated by Verrelst et al. (2015), there is no

reason to limit the estimation to two-band indices when multiple

bands are available.

This study also showed that a saturation of the estimates

occurs at thresholds equal to 2,200 kg DM/ha for BH and 3,000 kg

DM/ha for BT regardless of the sensor type (Supplementary Figure

S3). Our results are thereby in line with those of Jacques et al.

(2014) who showed a saturation of the herbaceous mass estimation

with values above 2,500 kg DM/ha using the STI based on

SWIR1 and SWIR2 bands from MODIS.

4.1.2 Selection of modeling approach
The multilinear regression model (the best model of this

study) (Table 3) showed better performance than the random

forest and gradient boosting machines models, regardless of

sensor type. The weaker performance of the machine learning

algorithms could be explained by the small size of the dataset

(33 samples). In fact, Li et al. (2014) showed that the larger the

dataset, the better the performance of the random forest model in

their study on improving the linkage affinity prediction of

scoring functions on the substitution of random forest for

linear regression. This conclusion was also reached by Ding

et al. (2020) in their study on the comparison of empirical

regressions and machine learning methods for crop residue

cover estimation using Sentinel-2 data, as well as by Wang

et al. (2016) in their study on wheat biomass estimation using

the random forest regression algorithm and remote sensing data.
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FIGURE 5
Predictionmaps of herbaceous drymass and total forage drymass in (A) January–February, (B)March–April, and (C)Maywith the best model to
estimate BH and BT.

FIGURE 6
Scatterplot between observed and predicted (data over all the three periods) data using the best model for each dry mass variable with (A): BH
and (B): BT.
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They all reported that the accuracy of the machine learning

approaches was improved when increasing the training sample

size relative to the total sample population.

4.2 Dynamics of vegetation mass
throughout the dry-season

Our results showed a diminution in forage drymass during the

dry season, from January to May (Figure 5). These results are

consistent with those of Sanon et al. (2015) who showed that the

availability of herbaceous forage and grazed forage was

significantly reduced during the dry season in their study on

the seasonal dynamics of herbaceous forage production in

Sahelian pastures used by domestic ruminants. Furthermore,

Sanon et al. (2015) indicated that, in addition to biological

aging, this reduction in dry mass during the dry season could

be accentuated by livestock trampling and human activities such as

cutting wood for charcoal and cutting certain herbaceous species

such as Andropogon gayanus to obtain straw or bushfire.

4.3 Comparison of the best herbaceous
dry mass estimation model with Jacques’s
model on moderate resolution imaging
spectroradiometer images

The STI index has been proven suitable to monitor dry

vegetation mass in the Gourma region of Mali but is

potentially suitable for many other semi-arid areas (Jacques

et al., 2014).

The simple linear model developed in this study using only the

STI index and the one developed by Jacques et al. (2014) based on

MODIS images (Supplementary Figure S4) showed a similar

correlation coefficient of 0.53. The dry vegetation mass estimation

model of the Malian Gourma (Jacques et al., 2014) was implemented

through a set of fieldmeasurements (26 sites) along the 1-km transect

and over the 7-year period (2004–2011). In their study, the best

results were obtained with indices such as the short-wave infrared

bands (R2 = 66%, n= 126, RRMSE= 44%, index = STI). In contrast to

several studies that reported the relevance of the STI for estimating

dry vegetation mass such as that by Jacques et al. (2014) or Kergoat

et al. (2015), this study showed that this index (Supplementary Table

S5) was not the most suited for monitoring dry vegetation mass in

Senegalese rangelands (R2 = 42%, RRMSE = 39%).

5 Conclusion

The performance assessment of estimation models of dry

season forage dry mass through several modeling approaches and

vegetation indices derived from three widely used satellite sensor

systems (i.e., MODIS, Landsat-8, and Sentinel-2) allowed the

following conclusions:

- Sentinel-2 overall provides better estimates of herbaceous

dry mass (BH) and total forage dry mass (BT) in

silvopastoral ecosystems in Senegal;

- MODIS and Landsat-8 data could also be used for

predicting BH and BT in the study area with nearly

similar performance;

- a multilinear model is preferred for estimating dry season

vegetation when only limited numbers of sample points are

available;

- The indices NDI5, DFI, GRCI, TCARI, SRI, and RVI3 are

all relevant to estimate BH and BT in Sahelian drylands.

This study demonstrated that dry season vegetation mass

could be accurately predicted (RRMSE = 26%) using multilinear

models and satellite indices that include several spectral bands

covering both visible, near-infrared, and shortwave infrared

wavelengths. Most countries in the Sahel region calculate feed

balances only once a year, using estimated forage dry mass

toward the end of the rainy season. This constitutes a

shortcoming as such assessment offers increasingly less

detailed information on the feed status and potential forage

deficits as the dry season, lasting up to 9 months, progresses.

It also hinders the efficiency of response measures potentially to

be taken to alleviate such deficit. While several countries in West

Africa are currently improving their national feed balance

inventory tools, better estimates of available dry mass over the

year and during the dry season, in particular, are timely signs of

progress. As a perspective to this study, we recommend further

increasing the number of sampling sites, taking into account the

size of the ecoregions as well as performing further analysis of the

impact of fires on the satellite-based estimation of forage

resources.
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