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Abstract
1.	 Population size is a crucial parameter for both ecological research and conserva-

tion planning. When individuals are aggregated, estimating the size of a popula-
tion through sampling raises methodological challenges, as the high variance 
between sampling units leads to imprecise estimates. Choosing the right sample 
design depending on the population aggregation level could improve the preci-
sion of estimates; however, this is difficult because studies comparing sample 
designs for aggregated populations have been limited to a few populations and 
sampling designs, so their results cannot be generalised.

2.	 To address this gap, we combined simulations of spatial point populations and 
field counts of three plant species to compare the relative precision of estimates 
between three sampling methods: simple random sampling (SRS), systematic 
sampling (SYS) and spatially balanced sampling (SBS). Comparisons were per-
formed on density and aggregation gradients for a range of sample sizes.

3.	 Our simulations showed that SYS and SBS were always more precise than SRS 
when individuals were aggregated, reducing sampling variance up to 80% and 
60%. The highest precision for estimating population size was always obtained 
when the average distance between sampling units equalled the diameter of the 
clusters (i.e. the groups of individuals). The difference in precision was similar for 
the natural populations, with sampling variance lowered by up to 75% (SYS) and 
60% (SBS) compared to SRS.

4.	 These findings lead us to recommend using SYS or SBS rather than SRS to esti-
mate population size when individuals are spatially aggregated, as these consist-
ently provide more precise estimates. Assessing cluster diameters in the field 
enables a quick assessment of the potential gain in precision to expect, and thus 
the best choice of sampling method depending on the trade-off between preci-
sion and field constraints.

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14015 by C
IR

A
D

 - D
G

D
R

S - D
IST

, W
iley O

nline L
ibrary on [09/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

www.wileyonlinelibrary.com/journal/mee3
mailto:﻿
https://orcid.org/0000-0002-1912-6995
https://orcid.org/0000-0002-8588-6001
https://orcid.org/0000-0002-2684-9251
https://orcid.org/0000-0002-7803-2219
https://orcid.org/0000-0002-2289-9761
http://creativecommons.org/licenses/by-nc/4.0/
mailto:jan.perret@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.14015&domain=pdf&date_stamp=2022-11-03


2  |   Methods in Ecology and Evolu
on PERRET et al.

1  |  INTRODUC TION

Population size is a central parameter for all fields related to ecology 
and evolution. Evolutionary biologists use population size to predict 
the risk of genetic diversity loss due to inbreeding and genetic drift 
(Crow, 2010; Frankham, 1995). Ecologists study how population size 
varies over space and time to identify biotic interactions and abiotic 
factors that shape population dynamics (Bjørnstad & Grenfell, 2001; 
Quéroué et al., 2021) and their possible cascading consequences on 
ecosystems, as in biological invasions (Simberloff et al., 2013) or the 
reintroduction of keystone species (Ripple & Beschta, 2012; Watson 
& Estes, 2011). In conservation biology, population size is used to 
assess extinction risk (Dennis et al., 1991) and species conservation 
status (e.g. IUCN, 2019) and to evaluate the effectiveness of man-
agement actions (Beissinger & McCullough, 2002). Despite its ap-
parent simplicity, estimating the size of a population raises several 
methodological challenges, as it is often impossible to count every 
individual. Ecologists thus rely on sampling: counting individuals in 
a subset of spatial units occupied by the studied population to infer 
the entire population size (Cochran, 1977).

Sampling is a prolific field of statistics, and various methods 
exist for selecting sampling units (Thompson, 2012). Whatever the 
sampling method, estimating the size of a population denoted Y is 
achieved through the same four steps (Cochran, 1977): (1) Defining 
a statistical population made up of N units, usually spatial units (e.g. 
all possible quadrats covering the study area); (2) Drawing from this 
a sample of n units on which to conduct counts of individuals, de-
noted y1, y2, …, yn; (3) Estimating the mean number of individuals 
per unit as the sample mean ̂Y = y =

1

n

∑n

i=1
yi; finally (4) Inferring 

the entire population size by multiplying the sample mean by the 
number of sampling units in the statistical population Ŷ = Ny. The 
precision of the density estimate ̂Y  depends on the sample size n, 
higher sample sizes reducing the sampling variance, and on two pop-
ulation parameters: the population mean Y , and the dispersion of the 
number of individuals per sampling unit yi around the mean. A higher 
population mean tends to increase the sampling variance. For a pop-
ulation with a given mean number of individuals per sampling unit, 
the more heterogeneous these numbers between units, the less pre-
cise the estimates of the mean number of individuals per sampling 
unit (Cochran, 1977). Therefore, the distribution of individuals in the 
studied population strongly affects the precision of the estimates.

In natural populations, individuals are usually not randomly 
distributed in space (Legendre,  1993; Levin,  1992). Distribution 
may indicate a process of repulsion, with individuals more distant 
from their nearest neighbours than expected in a random distri-
bution. Repulsion can occur, for example, in territorial animals (e.g. 
Hinde, 1956; Maher & Lott, 2000) or in plant species due to intra-
specific (Stoll & Bergius, 2005) or interspecific competition (Rayburn 

& Schupp, 2013). When sampling such populations, the number of 
individuals per sampling unit is relatively homogeneous, so popu-
lation density estimates have a high precision even with relatively 
small sample sizes (Cochran,  1977). Alternatively, individuals may 
aggregate, living closer to their nearest neighbours than expected 
in a random distribution (hereafter referred to as ‘aggregated popu-
lations’). Aggregation of individuals is frequent in herbaceous plant 
species, leading many authors to state that most plant popula-
tions are aggregated (Damgaard & Irvine, 2019; Greig-Smith, 1983; 
Robinson, 1954). This arises due to limited dispersal capacity or a 
patchy habitat (Lara-Romero et al.,  2016; Seabloom et al.,  2005). 
Aggregation can also be observed in animals, such as colonial breed-
ing vertebrates (Danchin & Wagner, 1997) and freshwater mussels 
(Morales et al., 2006; Smith et al., 2011). When sampling aggregated 
populations, samples are typically composed of many zeros and a few 
high counts, resulting in imprecise estimates (McGarvey et al., 2016). 
This makes improving the precision of population size estimates for 
aggregated populations by choosing an appropriate sampling design 
an important challenge (Thompson, 2004; Yoccoz et al., 2001).

Two types of sampling methods can be used for aggregated 
populations: one-step methods, in which all sampling units are se-
lected prior to measurements in the field, and two-step methods, 
in which a sample of primary units is selected and counted in the 
field, and new units are added depending on the outcome of counts 
on primary units. Adaptive cluster sampling (Thompson, 1990) is a 
two-step method specifically developed for aggregated populations. 
Although it usually improves the precision of population size esti-
mates (Turk & Borkowski, 2005), it is difficult to implement in the 
field (see, however, Philippi,  2005 and Morrison et al.,  2008) and 
can lead to very uncertain estimates for small or very aggregated 
populations (Shackleton et al., 2020), so we did not cover it in this 
study. The most commonly used one-step sampling methods (Smith 
et al., 2017) are simple random sampling (SRS), in which the units 
are randomly selected, and systematic sampling (SYS), in which the 
location of the first unit is randomly selected and the others are ar-
ranged along a rectangular grid (Cochran, 1977). Spatially balanced 
sampling (SBS) is a more recent one-step sampling method in which 
selected units are evenly distributed over the study area but without 
imposing a strictly equal distance between units as in SYS. This can 
be done through various processes, such as dividing the study area 
into multiple spatial strata and selecting one unit from each (Stevens 
& Olsen, 2004) or using a random-start low-discrepancy sequence 
to select the location of the sampling units (Robertson et al., 2013). 
These sampling methods yield varyingly precise estimates depend-
ing on the spatial distribution of individuals in the studied population 
(McGarvey et al., 2016). However, no clear guidelines have yet been 
proposed on the best sampling method to choose depending on the 
observed aggregation.

K E Y W O R D S
autocorrelation, balanced acceptance sampling, clustered population, plant population, 
population monitoring, sampling error, spatial point process, survey design

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14015 by C
IR

A
D

 - D
G

D
R

S - D
IST

, W
iley O

nline L
ibrary on [09/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  3Methods in Ecology and Evolu
onPERRET et al.

To date, three types of studies have provided information 
about the relative precision of sampling methods for aggregated 
populations:

	(i)	 Some compare the precision of estimates between sampling 
methods in a purely analytical way: for example, they showed that 
SYS is more precise than SRS for populations with certain types 
of autocorrelation in the density of individuals (Cochran, 1946, 
1977; Matérn,  1986; Quenouille,  1949). However, since the 
autocorrelation of density is generally unknown prior to field-
work, these conclusions are difficult to translate into operational 
recommendations.

	(ii)	 Some map all individuals from a given population in the field and 
simulate multiple sampling designs on the raw data or simulated 
populations with similar characteristics. This approach is valu-
able in identifying the sampling methods that provide the most 
precise estimates for a given population but lacks generality, 
especially as the conclusions about the relative precision of the 
sampling methods vary between studies. Indeed, SYS or SBS is 
often found to be more precise than SRS, but the difference in 
precision varies considerably between studies (Kermorvant et 
al., 2020; Mier & Picquelle, 2008; Morrison et al., 2008), and a 
non-negligible fraction of the studies find all sampling methods 
to yield roughly the same precision (Khaemba et al., 2001; Smith 
et al., 2011). However, to our knowledge, no study has found SRS 
to be more precise than SYS or SBS.

	(iii)	Some simulate virtual populations with various spatial distribu-
tions on which they then simulate multiple sampling designs. For 
example, McGarvey et al. (2016) simulated populations with mul-
tiple levels of aggregation and explored how the precision of es-
timates varied between SRS and SYS for a sample size of n = 100. 
They found that SYS was substantially more precise than SRS for 
all aggregated populations.

The three types of studies seem to indicate that SYS and SBS 
usually yield more or as precise estimates than SRS. However, it is 
unclear which method between SYS and SBS yields the most pre-
cise estimates, and no previous study has described how the relative 
precision of the sampling methods varies as a function of the three 
parameters affecting the precision of estimates: the mean density 
of individuals, their aggregation level and sample size. Furthermore, 
it has been shown analytically that SYS provides more precise es-
timates than SRS if the variance within the systematic samples is 
higher than the variance of the whole population (Cochran,  1977: 
208). However, the mechanism determining the within-sample vari-
ance, and thus the precision of SYS relatively to SRS, has never been 
described. Understanding this mechanism would allow knowing 
with certainty which is the optimal sampling design for any studied 
population.

This study aimed to determine which sampling method provides 
the most precise estimates depending on the level of aggregation of 
the population. To this end, we combined computer-based simula-
tions and field counts of plant populations to compare the precision 

of three one-step sampling methods (SRS, SYS and SBS) over wide 
gradients of density, aggregation and sample size. We sought to 
answer four key questions: (i) Does aggregation have the same ef-
fect on estimate precision across the three sampling methods? (ii) 
Does the effect of aggregation on estimate precision change with 
population density? (iii) Does the effect of aggregation on estimate 
precision change with sample size? (iv) What is the mechanism gen-
erating the differences in precision between sampling methods for 
aggregated populations?

2  |  MATERIAL S AND METHODS

Our simulations followed a three-step procedure: (1) we generated 
virtual populations for a given combination of density and aggrega-
tion, (2) we drew samples from each virtual population with three 
sampling methods (SRS, SYS and SBS) and several sample sizes, and 
(3), we measured the precision of the density estimates obtained 
with each sampling method and sample size for each virtual popula-
tion (Figure 1).

2.1  |  Simulation of the virtual populations

We generated virtual populations by simulating spatial point pat-
terns in which each point represented the location of an individual 
of the population of interest. We simulated the populations inside a 
study area of 100 × 100 spatial units (i.e. as the dimensions were vir-
tual, they could be any surface area), and the sampling units were all 
10,000 spatial units (hereafter called ‘cells’) with a dimension of 1 × 1 
covering the study area. The distribution of individuals was gener-
ated using point process models (Baddeley et al., 2015). We investi-
gated an aggregation gradient ranging from (i) populations in which 
individuals repel each other, (ii) to randomly located individuals and 
(iii) to populations in which individuals aggregate. We thus used 
three different point process models to generate the populations.

We simulated populations with randomly located individ-
uals using a Poisson point process, in which point locations are 
determined by randomly drawing their x and y coordinates. We 
simulated populations with repulsion between individuals using 
a simple sequential inhibition (SSI) process. In this point process, 
randomly located points are added one by one to the study area, 
and if a point falls closer than a chosen distance r from an existing 
point, it is deleted, and a new random point is generated (Baddeley 
et al., 2015). Lastly, we simulated populations with individuals ag-
gregating into clusters (i.e. circular groups of individuals) using a 
Matérn cluster process. This consists of four steps: (1) a set of 
‘parent’ points is generated using a Poisson point process with a 
mean density denoted kappa; (2) a disc of a given radius, denoted 
scale, is centred on each parent point; (3) ‘offspring’ points are 
distributed across each disc using a Poisson point process with a 
mean density noted mu; and (4) parent points are then suppressed 
from the simulated distribution. The clusters can overlap, leading 
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to areas with a high point density (Matérn, 1986). The mean den-
sity of the individuals is λ = kappa*mu, and scale only modulates 
the surface area of the clusters. Therefore, when simulating point 
patterns with a Matérn cluster process, the density of individuals 
can be increased by increasing only kappa, only mu, or kappa and 
mu simultaneously. These three ways to increase density result in 
populations with different spatial structures, that is, populations 
with more clusters, clusters with more individuals or both. As this 
could affect the precision of density estimates, we simulated all 
combinations of density and aggregation (as defined below) using 
the three approaches. For populations in which kappa and mu 
increased simultaneously (modality 1), we kept the ratio of mu 
over kappa at 10,000. For populations in which only kappa was 
increased (modality 2), mu was kept constant at 100 individuals/
cluster. For populations in which only mu was increased (modality 
3), kappa was kept at 0.01 clusters/cell.

To compare the populations simulated with the three types of 
point processes (Poisson, SSI and Matérn cluster), we used the index 
of dispersion I as a common metric of aggregation. This index is de-
fined as 

�2

Y
, where Y  is the mean density of individuals in every pos-

sible cell of the study area, and σ2 is the associated variance. I is equal 
to one for populations with randomly distributed individuals, de-
creases when individuals show repulsion (its minimum possible value 
being 0) and increases when individuals aggregate (with no upper 
bound; Baddeley et al.,  2015: 201). For the populations simulated 
with the Matérn cluster process, we had to increase the cluster ra-
dius when increasing population density to maintain the same value 
of dispersion index in modalities 1 and 3. Thus, populations with the 
same dispersion index had larger clusters as density increased, ex-
cept for modality 2, in which clusters had the same radius for the 
same level of dispersion index at all densities (Appendix S1).

We chose the extent of the density and aggregation gradi-
ents based on our knowledge of plant ecology and published lit-
erature (see, e.g. Greig-Smith, 1983; Morrison et al.,  2008; Reisch 
et al., 2018). Thus, we simulated populations with seven densities (1, 
5, 10, 15, 20, 25 and 30 individuals/cell) and 78 different aggregation 
levels (I = 0.4, 0.6 and 0.8 with the SSI process; I = 1 with the Poisson 
process; I = from 2 to 75 with the Matérn cluster process). We simu-
lated all aggregation levels for all densities, except those generated 
with the SSI process, which we simulated only for densities of 1, 10 
and 20 individuals/cell to save computation time. Altogether, we sim-
ulated populations for 534 combinations of density and aggregation, 
and for each combination we simulated 60 populations. Examples of 
these populations are found in Appendix S2.

2.2  |  Sampling process

We selected nine sample sizes: n = 9, 15, 25, 49, 100, 150, 196, 
300 and 400 (out of 10,000 possible sample units) because 
for SYS they allow the sample units to be arranged in a square 
or quasi-square grid, which limits major spatial coverage differ-
ences between sample sizes. Many ways of performing SBS have 
been proposed, and we chose one of the most commonly used, 
called balanced acceptance sampling (BAS), in which the sampling 
units are selected by drawing their coordinates from a low dis-
crepancy sequence, in our case the Halton sequence (Robertson 
et al., 2013). BAS is one of the methods yielding the best spatial 
balance when all units are accepted, which was always the case 
in our simulations (Robertson et al., 2018). For each virtual popu-
lation, we simulated 1000 sampling surveys for each of the nine 
sample sizes. A survey consisted of two steps: drawing a sam-
ple of size n from a population with each of the three sampling 
methods and storing the mean densities calculated from the three 
samples. For SYS and SRS, all sampling units have the same in-
clusion probability; thus, the sample mean is an unbiased estima-
tor of the population mean density (Cochran,  1977). For SBS as 
we simulated it, inclusion probabilities are equal to the 3rd or 4th 
decimal (Robertson et al., 2013), so we treated them as equiprob-
able, as weighting the sample mean by the inclusion probability 
of the units would have had no discernible effect on our results. 
Altogether, we simulated 60,000 sampling surveys by combina-
tion of density, aggregation and sample size, that is, 1000 sampling 
surveys on 60 virtual populations.

2.3  |  Comparison of estimate precision between 
sampling methods

Before comparing the precision of the density estimates obtained 
with each sampling method, we first checked whether they were 
unbiased. Then, for each combination of density, aggregation and 
sample size, we computed the mean of the 1000 mean densities cal-
culated from the samples for each of the 60 virtual populations. We 
then averaged the resulting 60 mean densities and compared the 
result to the mean of the true densities of the 60 virtual populations 
that were sampled. The estimated density was always very close to 
the true density (see Appendix S3), indicating that the estimates ob-
tained with the three sampling methods were unbiased, as expected 
from sampling theory (Thompson, 2012).

F I G U R E  1  Workflow of the simulation process. One level of density (out of seven) and four levels of aggregation (out of 78) are 
represented. The simulation process is described for one aggregation level and one sample size (out of nine). For every level of aggregation 
(top row), we simulated 60 virtual populations (step 1). We drew 1000 samples of size n with each of the three sampling methods from every 
population and computed their means (step 2). We calculated the variance of the 1000 sample means to estimate the sampling variance and 
computed the ratios of the sampling variance of SYS and spatially balanced sampling (SBS) relative to simple random sampling (SRS; step 3). 
The horizontal dotted line on the violin plot represents the true mean density of the sampled population. The final result is the curve of the 
variance ratio as a function of the population aggregation level, each point of the curve being the average over 60 virtual populations. For 
clarity, only the curve for var(systematic)/var(random) is shown.
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To measure the precision of the density estimates, we esti-
mated the sampling variance for every combination of sampling 
method and sample size by computing the variance of the means 
of the 1000 corresponding sampling surveys for each virtual pop-
ulation. This method of estimating the sampling variance avoids the 
need for variance estimators, but requires knowing the mean of all 
possible samples (although in our case we did not draw all possible 
samples but a large proportion of them) and can therefore only be 
used in simulation studies (Magnussen et al.,  2020; Magnussen & 
Fehrmann, 2019; McGarvey et al., 2016). This method allows to es-
timate the conditional sampling variance, that is, conditional on a 
realised population covering a finite area as encountered in the field, 
within the context of design-based inference (see Brus, 2021, for a 
synthesis on design-based and model-based inference). To compare 
the estimate precision between the three sampling methods for a 
given sample size, we calculated the ratio of the sampling variance 
of SYS and SBS, relative to the sampling variance of SRS. This indica-
tor represents the rate of reduction in variance obtained on average 
when changing from SRS to another sampling method (Kish, 1965). 
A variance ratio below one means that a method (here SYS or SBS) is 
more precise than SRS. The variance ratio can also be interpreted as 
the effective sample size (Kish, 1965). Its inverse then represents the 
rate of increase in sample size required to achieve the same preci-
sion as the alternative method using SRS. For example, for a sample 
size of n = 100, a ratio of 0.5 between the sampling variance of SYS 
and SRS means that SRS would need, on average, a sample size of 
n  =  100*(1/0.5)  =  200 to achieve the same precision as SYS with 
n = 100. To obtain a generalizable result, for each sample size, we 
averaged the variance ratio values over the 60 virtual populations 
that were sampled for each combination of density and aggregation. 
Hence, the values of variance ratio we present are the expected val-
ues for each combination of density, aggregation and sample size 
(Magnussen et al., 2020).

2.4  |  Field study

To compare our results from simulated populations with natural 
populations, we conducted a field survey to map the distribution 
of all individuals in one population for three herbaceous plant spe-
cies exhibiting different levels of density and aggregation. We chose 
a population of Bellis sylvestris Cirillo, a common Mediterranean 
Asteraceae, to illustrate a population with approximately ran-
domly distributed individuals; a population of Sanguisorba minor 
L., a Rosaceae common in the Mediterranean basin, to illustrate 
a population with high density and slightly aggregated individu-
als; and a population of Limonium girardianum Guss. to illustrate a 
population in which individuals are highly aggregated and form well-
delimited clusters—this Plumbaginaceae is endemic in the north-
west Mediterranean basin and grows in saltmarshes on small sand 
mounds a few metres wide.

To survey these populations, we placed a 20 × 20 m square on 
each and mapped all individuals in each 10 × 10 cm cell using 1 × 1 m 

quadrats subdivided with a 100-cell grid. To analyse the data from 
the three natural populations, we grouped the cells four by four to 
obtain the total number of individuals per 20 × 20 cm cell to have a 
study area of 100 × 100 cells as for the virtual populations. We sim-
ulated the same sampling surveys on the counts of the three natural 
populations as on the virtual populations and computed the variance 
ratio of SYS and SBS relative to SRS. To test whether cluster diameter 
can be quickly assessed in the field, an observer surveyed the study 
area by splitting the 20 × 20 m square into 20 columns 1 m in width. He 
then walked through every second column and measured the largest 
width of five randomly selected clusters intersected by the column.

All the simulations were performed in R version 3.6.1 (R Core 
Team,  2019). The spatial point patterns were generated with the 
package spatstat (Baddeley et al., 2015). The functions used to draw 
the samples were either programmed by the authors or adapted 
from the package SDraw (McDonald & McDonald, 2020).

3  |  RESULTS

3.1  |  Comparison of estimate precision between 
the three sampling methods for the virtual 
populations

The relative precision of the three sampling methods varied consid-
erably with the aggregation level (Figure  2). For randomly distrib-
uted populations (I = 1) and populations exhibiting repulsion (I < 1), 
the values of the variance ratio were close to one: that is, SRS, SBS 
and SYS had equivalent precision. This result was consistent for all 
densities and sample sizes tested. For all populations with aggre-
gated individuals (I > 1), whatever the sample size, SYS and SBS were 
always as precise or more precise than SRS, and SYS was always 
more precise than SBS. For both SYS and SBS, the variance ratio de-
creased rapidly below one as aggregation increased, and after reach-
ing a minimum, it slowly increased towards 1. This means that as the 
aggregation of individuals increased, the estimates obtained with 
SYS and SBS quickly became more precise than those obtained with 
SRS until they reached a maximum of relative precision. After this 
maximum, their relative precision slowly decreased until it became 
equivalent to SRS for high aggregation levels. When the sample size 
was increased, the minimum of the variance ratio had a lower value 
and shifted towards higher levels of aggregation. In other words, as 
sample size increased, SYS and SBS became increasingly more pre-
cise than SRS, and maximum relative precision was reached at higher 
aggregation levels.

The effect of the mean density depended on the modality we used 
to simulate increasing density. For modality 1 (shown in Figure 2), 
when density increased, the variance ratio had lower values, and its 
minimum shifted towards higher aggregation levels. In other words, 
as density increased, SYS and SBS became more precise relative to 
SRS, and their maximum relative precision shifted towards more ag-
gregated populations. For modality 3, the same pattern occurred in 
a more pronounced way. In contrast, for modality 2, the variance 
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F I G U R E  2  Ratio of sampling variance of systematic sampling (SYS) and spatially balanced sampling (SBS) over sampling variance of simple 
random sampling (SRS), as a function of the dispersion index (I) of the sampled populations. Panels show three mean densities (1, 10 and 20 
individuals/cell). For the aggregated populations, density was increased by simultaneously increasing the number of clusters and the number 
of individuals per cluster (modality 1). Each point of the curves is the ratio of two sampling variances, each estimated from 60,000 sampling 
survey simulations (1000 for 60 populations).
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ratio curves were identical for all densities (Appendix S1). These mo-
dalities differed in that the diameter of the clusters changed with 
density for modalities 1 and 3, but not for modality 2. Therefore, 
cluster diameter appeared central to explain the relative precision of 
the sampling methods.

To investigate this result, we represented the variance ratio as a 
function of the diameter of clusters instead of the dispersion index. 
Figure 3 shows that the relative precision of SYS compared to SRS for 
a given sample size was the same for all densities and depended only 
on cluster diameter. Moreover, the variance ratio only reached one 
when the cluster diameter was so small that clusters could fit in one 
sampling unit. We obtained the same result for SBS (Appendix S1) 
and for all populations, regardless of the modality used to simulate 
increasing density. Furthermore, the minimum variance ratio of SYS 
and SBS was always reached when the mean distance between the 
sampling units was equal to the cluster diameter.

3.2  |  Relative precision of estimates for three plant 
populations

The B. sylvestris population had a mean density of 0.079 individ-
ual per 20 × 20 cm cell and a dispersion index of 2.87. Individuals 

were thus slightly aggregated, although it was difficult to clearly 
distinguish clusters (Figure 4). The S. minor population had a mean 
density of 1.47 individuals/cell and a dispersion index of 7.63. 
Individuals formed clusters of various diameters with indistinct 
boundaries. The population of L. girardianum had a mean density 
of 1.66 individuals/cell and a dispersion index of 8.42. Individuals 
were grouped into clusters with clear boundaries, corresponding 
to the sand mounds present in the study area. For B. sylvestris, 
the cluster diameters measured in the field were within the range 
(20 cm; 110 cm) with a median of 45 cm; for S. minor, they were 
within the range (60 cm; 290 cm) with a median of 145 cm; and for 
L. girardianum they were within the range (20 cm; 520 cm) with a 
median of 90 cm.

For the three populations, the variance ratio was below 1 for both 
SYS and SBS for almost all sample sizes, indicating that density esti-
mates obtained with SYS and SBS were generally more precise than 
those obtained with SRS (Figure  4). The variance ratios decreased 
overall as the sample size increased. The minimum values reached by 
the variance ratio (0.25 for SYS and 0.40 for SBS) imply that the sample 
size would have to be increased by 400% and 250% to achieve the 
same precision as SYS or SBS using SRS. The SYS and SBS methods did 
not reach their highest relative precision at the point where the mean 
distance between the sampling units was equal to the median cluster 

F I G U R E  3  Ratio of sampling variance 
of systematic sampling (SYS) over 
sampling variance of simple random 
sampling (SRS) for the aggregated 
populations. The x-axis is the cluster 
diameter, and the panels show five 
different sample sizes. Each curve shows 
the variance ratio obtained for a given 
mean density of individuals (from 1 to 
30 individuals/cell). The black vertical 
lines indicate where the distance between 
the sampling units for SYS is equal to the 
cluster diameter.
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diameter, as was the case for the virtual populations. However, at this 
point, SYS and SBS were considerably more precise than SRS.

4  |  DISCUSSION

Our findings provide evidence that different one-step sampling 
methods do not yield estimates of the same precision when estimat-
ing the size of aggregated populations. Our simulations showed that 
this difference in precision depends on the aggregation level of in-
dividuals and sample size. For populations of individuals aggregated 
in clusters of equal diameter, SYS is on average always as or more 

precise than SBS, which is always as or more precise than SRS for a 
given sample size. For the virtual populations, sampling variance ob-
tained with SYS and SBS was, respectively, up to 80% and 60% lower 
than that obtained with SRS. The difference in precision was similar 
for the natural populations, with sampling variance up to 75% lower 
for SYS and 60% lower for SBS compared to SRS. In other words, 
the fieldwork effort required to estimate population size could be 
divided by four or five without altering the precision of the final es-
timates if the sampling design is well calibrated to the aggregation 
level of the population.

The overall result that SYS is more precise than SRS for aggre-
gated populations is in line with theoretical work (Matérn,  1986; 

F I G U R E  4  Pictures of the three plant species in their natural habitat (left panel), maps of the number of individuals in every 20 × 20 cm 
cell covering the study area (middle panel) and curves of the ratios var(systematic)/var(random) in red and var(spatially balanced)/
var(random) in green, as a function of sample size (right panel). The vertical lines represent where the mean distance between the sampling 
units equals the median cluster diameter we measured in the field. For B. sylvestris, this exceeds the extent of the sample size gradient 
shown here. The maximum simulated sample size for the virtual populations was n = 400, but here we simulated sample sizes up to n = 625 
for illustrative purposes.
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Quenouille,  1949) and previous simulation studies (McGarvey 
et al., 2016). Our results show that this holds true for a wide range 
of population densities, aggregations and sample sizes. The magni-
tude of difference in precision we found in our simulations is con-
sistent with several previous studies (Ambrosio et al., 2004; Mier & 
Picquelle, 2008; Morrison et al., 2008), especially regarding the larg-
est differences in precision that were found. For example, McGarvey 
et al.  (2016) found a reduction in sampling variance of up to 82% 
for SYS compared to SRS, and Cochran (1977: 223) reported stud-
ies finding up to 83% lower variance for SYS compared to stratified 
random sampling. SBS has been less investigated, but the existing 
simulation studies have also shown that it is usually more precise 
than SRS (see Kermorvant et al., 2019, for a summary). Our findings 
demonstrate that this is true for a large variety of aggregated popu-
lations and sample sizes.

4.1  |  How the distribution of individuals drives 
sampling variance in the virtual populations

Simulating sampling surveys over gradients of population density, 
aggregation and sample size showed that the relative precision of 
the sampling methods always followed the same pattern as aggre-
gation increased. Changing the population density and sample size 
modulated this general pattern, shifting the minimum variance ratio 
to a higher level of aggregation and lowering its value. Nevertheless, 
the highest relative precision for SYS and SBS was always achieved 
when the mean distance between the sampling units was equal to 
the cluster diameter, whatever the density of individuals (Figure 3). 

This is because the aggregated populations we simulated were 
constituted of clusters with the same diameter and number of indi-
viduals. In this setup, sampling units located in clusters have values 
close to each other, and all sampling units located outside clusters 
are equal to zero. Thus, the sampling variance mainly depends on 
the between-sample variability in the proportion of sampling units 
located within clusters. The closer this proportion is between sam-
ples, the lower the sampling variance. With SYS and SBS, the spacing 
between units (fixed for SYS and slightly variable for SBS) leads the 
proportion of units located in clusters to be less variable between 
samples than with SRS (Figure 5). Therefore, SYS and SBS will always 
lead to more precise estimates than SRS, except if the clusters are 
smaller than the sampling units, in which case all sampling methods 
will achieve the same precision.

With SYS, when the distance between the sampling units is 
equal to the cluster diameter (Figure 5, 4th column), all clusters are 
intersected by a single sampling unit so that the proportion of units 
located in clusters is strictly identical for all samples. Consequently, 
the means are very close for all samples, and SYS reaches its opti-
mal precision relative to SRS. When the distance between units is 
smaller or greater than the cluster diameter, the proportion of units 
located in clusters is not strictly identical between samples, and the 
relative precision deviates from the optimum. Using the formulation 
of Cochran (1977: 208), for any aggregated population, the within-
sample variance is the highest for SYS when the distance between 
the sampling units is equal to the cluster diameter, and thereby SYS 
achieves its highest precision relative to SRS. The same mechanism 
operates for SBS, but as the distance between sampling units is not 
strictly constant, the proportion of sampling units located in clusters 

F I G U R E  5  Illustration of the 
mechanism underlying the simulation 
results regarding the impact of the 
distance between sampling units on 
the relative precision of the sampling 
methods. Three samples drawn from the 
same virtual population are presented for 
random (SRS) and systematic sampling 
(SYS), with two sample sizes (n = 9 and 
n = 16). The green circles represent 
clusters of individuals. For SYS, with n = 9 
(2nd column), the cluster diameter is 
inferior to the inter-unit distance, so some 
clusters can be missed, but there is never 
more than one unit in each cluster. With 
n = 16 (4th column), the cluster diameter 
equals the inter-unit distance; all clusters 
present in the study area are sampled at 
least once in every sample. This leads to 
a lower sampling variance for SYS than 
random sampling, in which the proportion 
of units located in clusters varies more 
between samples (1st and 3rd columns).

SystematicRandom Random

n = 9 n = 16

Systematic
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varies more between samples than in SYS. The SBS method is con-
sequently less efficient than SYS for the virtual populations we simu-
lated. Although it has often been stated that sampling methods with 
better spatial coverage are usually more precise for spatially struc-
tured populations (Kermorvant et al., 2019; Robertson et al., 2013; 
Stevens & Olsen,  2004), the mechanism driving this expectation 
has, to our knowledge, never been reported before. This mechanism 
certainly determines the relative precision of all one-step sampling 
methods when sampling aggregated populations, not only that of 
the versions of SYS and SBS that we investigated in this study (sys-
tematic square-grid sampling and BAS, respectively).

4.2  |  From computer simulations to field studies

The aggregated populations we simulated had a simplistic spatial 
structure, as clusters were discs of equal diameter with clear bound-
aries and containing the same number of individuals. The three 
plant populations we exhaustively mapped illustrate how natural 
populations are far less simplistic (Figure  4). In the population of 
B. sylvestris, individuals appeared to be slightly aggregated, but no 
clear cluster could be identified. The two other populations showed 
clusters of varying size, with indistinct boundaries, and the distri-
bution of individuals within clusters was heterogeneous. Despite 
these differences between the virtual and natural populations, the 
general result that SYS and SBS are more precise than SRS on aggre-
gated populations held true for the three natural populations, and 
the variance ratio reached similar values than for the virtual popu-
lations. Thus, sampling methods with a balanced spatial coverage 
seem to yield more precise estimates than SRS, even for populations 
with more complex spatial structures than our virtual populations. 
However, two differences emerged: (1) the variance ratio did not 
exhibit a localised minimum at the point where the mean distance 
between sampling units equalled the diameter of the clusters and 
instead appeared to be stable for sample sizes above n = 200; and (2) 
SYS and SBS seemed to have roughly similar precision. We expected 
that the variance ratio curves would not have a minimum as clearly 
localised for natural populations as for virtual populations. Indeed, 
for populations consisting of clusters with various sizes and densi-
ties of individuals, it is likely that multiple sample sizes may yield 
a similar proportion of units located in the clusters and, therefore, 
a similar relative precision. The fact that SYS and SBS achieved a 
similar precision could stem from the same phenomenon, but this 
requires further investigation.

Further studies need to be conducted to identify the other char-
acteristics of the distribution of individuals than the diameter of 
the clusters involved for natural populations. This will first require 
to better understand how individuals are distributed within natu-
ral populations. Currently, datasets containing the location of all 
individuals in a population, or more synthetic aggregation metrics, 
remain scarce (but see Morrison et al., 2008, and Law et al., 2009), 
making it difficult to build simulations with realistic distributions 
of individuals. Once this barrier is removed, simulation studies will 

have to be carried out to identify the characteristics other than clus-
ter diameter that drive the relative precision of sampling methods. 
For example, the non-random location of clusters, heterogeneity in 
cluster size and shape, or heterogeneity in density between clusters 
and within each cluster might be good candidates. Finally, metrics 
that can be measured easily in the field will have to be identified so 
that the sampling design can be adapted to the spatial structure of 
the population. This last step will be critical for the results of future 
methodological work to be implemented in the field.

4.3  |  Recommendations for field studies

Given our results on both virtual and natural populations, we recom-
mend using SYS or SBS when studying populations with signs of spa-
tial aggregation. These sampling methods will, on average, provide 
more precise estimates than SRS unless the clusters are of similar 
size to the sampling units, in which case all sampling methods will 
achieve equivalent precision. However, as the results between simu-
lations and natural populations differed, we do not recommend SYS 
over SBS, as both methods might provide roughly equivalent preci-
sion estimates for natural populations.

To check whether it is worthwhile to choose SYS or SBS instead 
of SRS, cluster diameter measurements can be used to verify if the 
planned sample size allows a large increase in precision or not. If 
clusters are identifiable in the study area, one can randomly select 
clusters and measure their greatest width. If the median diameter is 
close to the mean inter-unit distance obtained for the planned sample 
size, the increase in precision will be large. For the plant populations 
we mapped, the median cluster diameter we measured identified 
sample sizes for which SYS and SBS were much more precise than 
SRS. Another solution proposed by Kermorvant et al.  (2020) is to 
use the available information on the population (i.e. results from a 
pilot study, expert knowledge, etc.) to simulate a virtual population 
with a distribution of individuals as close as possible to the studied 
population, and to perform sampling simulations to identify the op-
timal sampling design. Furthermore, the consequence of the better 
spatial coverage of SYS and SBS compared to SRS is that the distance 
to visit all sample units is generally greater. If travel time is a strong 
constraint and the expected gain in precision is low, SRS might be 
favoured over the other methods.

Field ecologists should be aware that SYS has a statistical 
drawback. For SYS, the sample mean is an unbiased estimator of 
the population mean, but there is no universally unbiased estima-
tor for the variance of this estimate, that is, the sampling variance 
(Cochran,  1977: 224). In other words, all existing estimators can 
sometimes give biased estimates of the sampling variance so that al-
though the population mean will be estimated without bias, the pre-
cision of this estimate can be under- or overestimated (Magnussen & 
Fehrmann, 2019). Nevertheless, we argue that this problem should 
not prevent using SYS, given the substantial potential increase in 
precision using this sampling method. The search for better estima-
tors is an ongoing research topic, and the best estimators currently 
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known usually allow to see a substantial gain in precision by shifting 
from SRS to SYS, although variances tend to be slightly overesti-
mated. For example, the two best estimators found by McGarvey 
et al. (2016) overestimated the sampling variance by less than 20% 
for most populations, although cases of overestimation above 60% 
were found for a few populations. Simulating even more populations, 
Magnussen et al. (2020) found two other estimators to overestimate 
sampling variance on average by less than 10%. We tested these four 
estimators on our virtual and natural populations (Appendix S4). For 
the virtual populations, the four estimators overestimated the sam-
pling variance, which was expected given that they are all based on 
measurements of the correlation among neighbouring units. This is 
not adapted for populations following a Matérn cluster process as in 
our simulations. However, we propose a new estimator that is more 
adapted for this type of populations, and it provided nearly unbiased 
estimates of the sampling variance. For the natural populations, we 
found similar levels of performance to previous studies (Magnussen 
et al., 2020; McGarvey et al., 2016), with several estimators based on 
correlation between neighbouring units, as well as our new estima-
tor, providing almost unbiased estimates of the sampling variance. 
Estimating sampling variance is less problematic for SBS, although 
some cases of biased estimates have also been reported (Robertson 
et al., 2013; Stevens & Olsen, 2003). We tested the most commonly 
used estimator, and it provided nearly unbiased estimates for both 
the virtual and natural populations (Appendix  S4). These results 
confirm that given a variance estimator appropriate for the studied 
population is used, a substantial gain in precision will be seen when 
using SYS or SBS instead of SRS. To help choose the variance esti-
mator, future simulation studies need to be conducted to screen the 
performance of estimators across many distributions of individuals. 
This will be particularly useful if realistic distributions of individuals 
can be simulated based on a better understanding of how individuals 
are distributed in natural populations. Other advantages of SBS over 
the other two methods include the ability to incorporate legacy sites 
where data have already been accumulated (Foster et al., 2017) and 
to draw oversamples to replace units that could not be observed in 
the field (e.g. inaccessible sites) while maintaining spatially balanced 
samples (Kermorvant et al., 2019).

The results of this paper refer to design-based inference, in 
which the estimates of the population mean and sampling variance 
are generally unbiased (except for SYS as discussed above), and no 
assumptions about the studied population need to be made. Model-
based inference is an alternative approach in which the estimates are 
obtained by fitting a spatial variation model to the sample. This ap-
proach usually provides more precise estimates than design-based 
inference when there is spatial dependence in the density of individ-
uals. Yet, the accuracy of this approach strongly relies on the realism 
of model assumptions, and unrealistic assumptions can lead to spu-
rious estimates. Moreover, hybrid methods, called model-assisted 
inference, which combine the advantages of both approaches have 
been developed (Brus,  2021). Using model-based or preferably 
model-assisted inference seems a promising way to further increase 
the precision of estimates for aggregated populations. However, the 

difference in estimate precision between design-based and model-
based approaches seems limited when the sample is selected with a 
SBS method, while it is large with SRS (Dumelle et al., 2022). Finding 
ways to combine the strengths of model-assisted inference and SBS 
methods tailored to the aggregation of the studied population would 
be the next step to further improve the precision of aggregated pop-
ulation size estimates.
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