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An asymptotic observer to reconstruct parameters of systems that are not asymptotically identifiable
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We propose the derivation of asymptotic observers for the estimation of parameters of systems whose solutions converge to a set of steadystates that are not identifiable, under some hypotheses. The proposed observer generalizes a former work for batch bioprocess. It is illustrated on a two dimensional models, and its performance is compared with the least squares method.

Introduction

System identification has received a great attention in the literature (see e.g. [START_REF] Walter | Identification of Parametric Models from Experimental Data[END_REF]). Once the system is identifiable, the least squares technique is the widelyused method to reconstruct unknown parameters from measurements. Other approaches based on observers (e.g. [START_REF] Krener | Nonlinear observers[END_REF][START_REF] Gauthier | Observability and observers for nonlinear systems[END_REF]) have also some interest in terms of robustness and noise sensitivity, especially when the state is only partially observed (It might important to briefly recall that in that case the unknown parameters are considered as additional state variables with dynamics equal to zero, and therefore the estimation problem is considered as a pure observability problem). In any case, the requirement of identifiability/observability imposes the system to be identifiable at any steady-state that can be reached by the system (according to the definition of identifiability ( [START_REF] Walter | Identification of Parametric Models from Experimental Data[END_REF]) or observablity ([3])). However, in some applications, systems are identifiable only away from steady states, while the trajectory solutions converge asymptotically to one of these steady-state (and therefore the system is not detectable neither). This is typically the case of batch processes, which stop when all the resources are consumed ( [START_REF] Bastin | On-line Estimation and Adaptive Control of Bioreactors[END_REF][START_REF] Rapaport | A robust asymptotic observer for systems that converge to unobservable states -a batch reactor case study[END_REF]). In practice, those situations lead to several issues when applying the usual estimation techniques, especially when the initial condition is not known to be closed or not to an attractive equilibrium. In this context, there is no theoretical ground to ensure that a least squares estimation is reliable. A Luenberger-like observer ( [START_REF] Luenberger | An introduction to observers[END_REF][START_REF] Kazantzis | Nonlinear observer design using lyapunov's auxiliary theorem[END_REF]) is no longer guaranteed to converge with a null error (in the best case one may expect to obtain a "practical" convergence). The gains of the high-gain observer ( [START_REF] Gauthier | A simple observer for nonlinear systems applications to bioreactors[END_REF]) explode when the estimation is close to the singularities of the observability map (which are precisely the non-identifiable steady-states).

Recently, the authors have a propose an asymptotic observer for the state reconstruction of a bioprocess model, whose solutions converge asymptotically to a set of non-observable states ( [START_REF] Rapaport | A robust asymptotic observer for systems that converge to unobservable states -a batch reactor case study[END_REF]). This observer have be shown to converge asymptotically without any bias, whatever is the initial condition away from steady-state, differently to classical observers. Numerical implementations have shown the benefit of this observer. The aim of the present work is to generalize this approach to the parameters estimation with lack of asymptotic identifiability for a large class of systems. In the next section, we define more precisely the problem to be investigated. in Section 3, we expose the estimator construction. Section 4 is devoted to examples along with numerical illustrations and discussions.

Description of the problem

Consider a dynamics in R n ẋ = f (x, p), x(t 0 ) = x 0 (1)
where x 0 is unknown, and p is an unknown vector of parameters which belongs to a subset P of R m . Along the solutions, we consider an observation variable in R q y(t) = h(x(t), p), t ≥ t 0 ,

The maps f and h are smooth, say C ∞ .

Assumption 2.1. There exists a domain D of R n which contains 0 that is forward invariant by (1) for any p ∈ P . Moreover, for any p ∈ P , one has f (0, p) = 0 and h(0, p) = 0, and any solution of (1) in K converges asymptotically to 0.

This assumption implies that the system is not identifiable at 0 i.e. the observation y does not allow to reconstruct the parameters vector p when the system is at the steady state 0, and moreover its solutions converge locally to this steady state. In such situations, it is well known that even if the system is identifiable and observable everywhere away from steady state, a construction with a classical smooth observer (such as Luenberger, extended Kalman or high gain) cannot guarantee an exact asymptotic estimation of the parameters because of the asymptotic lack of identifiability and observability. Non-smooth observers (such as sliding mode observers ( [START_REF] Spurgeon | Sliding mode observers: A survey[END_REF])) or numerical differentiators ( [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF]) could be alternatives that provide finite time convergence. However, these constructions are known to be poorly robust to noise, especially when the system is close to a singular point of the observability map, which is the case of the steady state.

Our objective is to construct, under some conditions, a smooth estimator that provides an exact asymptotic estimation of x 0 and p from the single measurements y(•), for unknown initial conditions x 0 = 0 in D (even arbitrarily close to 0).

Assumptions and construction of the estimator

We first assume the following condition on the dimension of the observation set, which will plays a crucial role in the method. Assumption 3.1. One has n + m = 2q.

We also assume that each coordinate y i of the observation vector y can be written as a Lie derivative of a certain function F i with respect to the vector field f (•, p), for any p ∈ P , as expressed in the assumption below. Assumption 3.2. There exists a smooth map

F : (x, p) ∈ R n × R m → F (x, p) ∈ R q
with F (0, p) = 0 for any p ∈ P that fulfills

h(x, p) = ∂F ∂x (x, p).f (x, p), (x, p) ∈ D × P. (3) 
Under these two assumptions, we define the map

Γ : (x, p) ∈ R n × R m → (h(x, p), F (x, p)) ∈ R 2q (4) 
Let us underline that under Assumption (3.1), Γ can be considered as a map from R n+m to itself.

Here is our main result.

Proposition 3.1. Let Q be a subset of D × P such that Γ is onto on Q, and Ψ a continuous map on W ⊂ R 2q such that Γ(Q) ⊂ W with Ψ = Γ -1 on Γ(Q).
For any x 0 ∈ D and t 0 ≥ 0 such that for any p ∈ P , the solution of (1) with

x(t 0 ) = x 0 verifies h(x(t 0 ), p), - t t0 h(x(τ ), p)dτ ∈ W, t > t 0 (5) 
and

h(x(t 0 ), p), - +∞ t0 h(x(τ ), p)dτ ∈ Γ(Q) (6) the following system v = y(t), v(t 0 ) = 0 (x 0 (t), p(t)) = Ψ(y(t 0 ), -v(t)), t > t 0 (7) 
is an asymptotic exact estimator of x 0 and p i.e. one has

lim t→+∞ x0 (t) -x 0 = 0, (8) 
lim t→+∞ p(t) -p = 0. (9) 
Proof. Take p ∈ P and an initial condition (t 0 , x 0 ) with x 0 ∈ D. Let x(•) be the corresponding solution of (1) and y(•) the output given by ( 2). Then the solution of ( 7) verifies, from Assumption 3.2

v(t) = t t0 h(x(τ ), p) dτ (10) = t t0 ∂F ∂x (x(τ ), p).f (x(τ ), p) dτ (11) = F (x(t), p) -F (x 0 , p) (12) 
for any t ≥ t 0 . Under condition (5), (y(t 0 ), -v(t)) belongs to W for any t > t 0 and thus the pair (x 0 (t), p(t)) = Ψ(y(t 0 ), -v(t)) is well defined for t > t 0 . From Assumptions 2.1 and 3.2, we get

lim t→+∞ F (x(t), p) = 0 and thus v(•) is bounded with lim t→+∞ v(t) = -F (x 0 , p).
By continuity of Ψ on W and condition [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF], one obtains

lim t→+∞ Ψ(y(t 0 ), -v(t)) = Ψ(y(t 0 ), F (x 0 , p)) = Γ -1 (x 0 , p)
that is the desired convergence

lim t→+∞ (x 0 (t), p(t)) = (x 0 , p).
In the next section, we present examples for which the observation has the structure (3) and show how to define the set W and construct the map Ψ that fulfill conditions ( 5) and (6) of Proposition 3.1.

Examples

We first show that the model treated in [START_REF] Rapaport | A robust asymptotic observer for systems that converge to unobservable states -a batch reactor case study[END_REF] is a particular case of application of Proposition 3.1. Then, we develop a new example in dimension two with two unknown parameters and an observation of dimension two.

A bioreactor model

We revisit the state estimation problem in the batch bioreactor model when measuring the biogas:

   ẋ = µ(s)x ṡ = -µ(s)x (13) 
y = µ(s)x (14) 
Here the function µ, which is null at 0 only, is assumed to be known, while the initial condition is not known. We show that the asymptotic observer proposed in [START_REF] Rapaport | A robust asymptotic observer for systems that converge to unobservable states -a batch reactor case study[END_REF] for this system is a particular case of the methodology that we propose here. Let us pose

z = x + s (15) 
one has ż = 0 (16) Therefore, the system can be expressed equivalently as the one dimensional dynamics ṡ = f (s, z) = -µ(s)(z -s)

with observation

y(t) = h(s(t), z) = µ(s(t))(z -s(t)), t ≥ 0
where z is an unknown parameter. Clearly all positive solutions with s < z converges asymptotically to the steady state s = 0, where parameter z is not identifiable. Here one has h(s, z) = -f (s, z)

which leads to

F (s, z) = -s (18) 
as a function that verifies

h(s, z) = ∂F ∂s F (s, z)f (s, z) (19) 
with F (0, z) = 0 whatever is z. Then we consider the map

Γ(s, z) = µ(s)(z -s) -s
and the set

Q = {(s, z) ∈ R 2 ; z > s > 0} (20) 
For any ξ ∈ Γ(Q), one has

s = -ξ 2 , z = s + ξ 1 µ(s)
which shows that Γ is invertible on Γ(Q). We define the function

Ψ(ξ) = -ξ 2 ξ1 µ(-ξ2) -ξ 2
that is well-defined and continuous on the set

W = {ξ ∈ R 2 ; ξ 2 < 0} (21) 
which contains Γ(Q), and coincides with Γ -1 on Γ(Q). Note that for any initial condition (t 0 , s 0 ) with s 0 ∈ (0, z), one hast t0 y(τ )dτ < 0 for any t > t 0 .

Conditions of Proposition 3.1 are thus fulfilled for any initial condition (t 0 , s 0 ) such that s 0 > 0 and s 0 < z.

Finally the estimator of z

     v(t) = y(t), v(t 0 ) = 0 ẑ(t) = y(t 0 ) µ(v(t)) + v(t), t > t 0
is exactly the one proposed in [START_REF] Rapaport | A robust asymptotic observer for systems that converge to unobservable states -a batch reactor case study[END_REF]. In this last reference, the benefits of the estimator are discussed in comparison with classical Luenberger or high gain observers for various growth functions µ.

A mechanical model

Consider the classical harmonic oscillator with damping

mz + kz + c ż = 0
where the mass m and the damping coefficient c are unknown positive parameters (the spring constant k is assumed to be known). We assume that the position and the damping force are measured. The system with x = (z, ż) in

R 2 writes ẋ = f (x, p) = 0 1 -k m -c m A(p) x, p = m c y = h(x, p) = x 1 cx 2
One can check that the matrix A(p) is Hurwitz and thus all solutions converges to the steady state 0, whatever is the positive vector p. At steady state, one has f (0, p) = 0 and h(0, p) = 0 and the system is thus not identifiable at 0. However, let us show that the system is infinitesimally identifiable away from 0.

• We show now how to apply the methodology exposed in Section 3. The map h can be written as

h(x, p) = -c k -m k c 0 J(p) f (x, p)
and then

F (x, p) = -c k x 1 -m k x 2 cx 1 verifies ∂F ∂x (x, p) = J(p) (22) 
with F (0, p) = 0 for any p. The next step is to define

Γ : (x, p) →     x 1 cx 2 -c k x 1 -m k x 2 cx 1    
and consider the set

Q = {(x, p) ∈ R 2 × R 2 ; x 1 = 0, x 2 = 0, m > 0, c > 0}.
For ξ = Γ(x, p) in Γ(Q), one obtains

x 1 = ξ 1 , x 2 = ξ 2 c , c = ξ 4 ξ 1 , m = - kξ 3 + ξ 4 x 2
showing that Γ is invertible on Γ(Q). However, the map

Ψ(ξ) =            ξ 1 ξ 2 ξ 4 ξ 1 - (kξ 3 + ξ 4 )ξ 4 ξ 1 ξ 2 ξ 4 ξ 1           
is well-defined and continuous on the set

W = {ξ ∈ R 4 ; ξ 1 = 0, ξ 2 = 0}
which contains Γ(Q) and coincides with Γ -1 on Γ(Q). Conditions of Proposition 3.1 are thus verified, provided that the initial condition verifies x 1 (t 0 ) = 0 and x 2 (0) = 0. However, note that for any solution x(•) of (1) that is not at steady state, x 1 (t) and x 2 (t) are both non null for almost any t. Therefore, one can initialize the system (7) with t 0 as closed as desired to the initial time, such that the observation at t 0 verifies y 1 (t 0 ) = 0 and y 2 (t 0 ) = 0.

Finally, the estimator is as follows

           vi (t) = y i (t), v i (t 0 ) = 0 (i = 1, 2) m(t) = - (kv 1 (t) + v 2 (t))v 2 (t) y 1 (t 0 )y 2 (t 0 ) ĉ(t) = - v 2 (t) y 1 (t 0 )
We have compared this asymptotic observer with a least-square estimation of the parameters, provided from 1000 measurement points over the same time window [0, T ] using the Levenberg-Marquardt algorithm (lsqrsolve function in Scilab software). Initial condition and parameters values used for the simulations are given in Table 4.2. We have compared the estimations on different time horizons T , without and with measurement noise (normal distribution with 0 mean and 0.01 standard deviation).

x 1 (0) x 2 (0) m k c 0.2 -2 1 1 0.4
Table 1: Initial condition and parameter values used for the simulations Time-varying estimations provided by the asymptotic observer are depicted on Fig. 1 and2. The final estimation errors are given on Tables 4.2 and 4.2.

The comparisons leads to the following comments.

• the asymptotic observer has a relatively slow convergence: it needs T > 30 to give an accurate estimation which improves with larger time windows even with presence of noise. Table 3: Estimation errors on parameters m and c (with noise)

Figure 1: Simulation of the system and the estimation provided by the observer (without noise)

• the least square estimator does not provide an estimation as good as the asymptotic observer on large time horizons.

• the least square estimator is less affected by noise, but the quality of its estimation is deteriorating over large time horizon, when the state get where we pose θ = 1 m . Therefore, one may consider the "naive" Luenbeger observer

       d dt x1 = x2 + G 1 (x 1 -y 1 (t)) d dt x2 = -θ(ky 1 (t) + y 2 (t)) + G 2 (x 1 -y 1 (t)) d dt θ = -G 3 (x 1 -y 1 (t)) with m = 1 θ , ĉ = y 2 x2
to estimate parameters m and c. However, the error dynamics

d dt e =   G 1 1 0 G 2 0 -ky 1 (t) -y 2 (t) G 3 0 0   M (t)
e has a matrix M (•) that is periodically singular and that converges to a singular matrix, whatever is the choice of the gains G 1 , G 2 , G 3 . Then, the convergence of the error cannot be obtained. As an illustration, we have simulated this observer without measurement noise, for the gains G 1 = -13, G 2 = 32, G 3 = -20 which gave the best results for the estimation of m. As one can see on Fig. 3, the estimation of m is biased. While the innovation x1 -x 1 is rapidly small, we did not obtain a fast enough convergence of the error on x 2 with this observer, which explains the bad behavior of the estimation of c. We have proposed the derivation of an asymptotic observer for the estimation of parameters of systems that are not asymptotically identifiable. Although it takes the form of an observer, its philosophy is quite different from the conventional observers, in the sense that it can be considered as an expression that combines initial observation and integrals of the observed variables, without innovation (and gain) terms. As a consequence, its convergence speed cannot be tuned. We believe that it is the price to pay to obtain an asymptotic estimation without bias, in this precise context of lack of asymptotic identifiability. Numerical simulations show that this approach is more reliable than a classical least-squares method, especially on the long term, with or without noise. However, the structure of the proposed observer relies strongly on the initial observation which is prone to noise measurement. A future work will deal with robustness issues of this observer under stronger noises that the ones considered in this preliminary work.

If y 2 •

 2 = 0, ẏ1 = y 2 /c is non null and one has c = y 2 ẏ1 . If moreover ẏ2 = 0, one gets m = -(ky 1 + y 2 )y 2 ẏ1 ẏ2 . If ẏ2 = 0, then ẏ1 = x 2 is non null and ÿ2 = -kc m ẏ1 as well. We get m = -ky 2 ÿ2 . If y 2 = 0, y 1 is non null away from steady state. then ẏ2 = -kc m y 1 is non null and ÿ1 = -ky 1 m as well. We get m = -ky 1 ÿ1 and c = ẏ2 ÿ1 .

Table 2 :

 2 m , e c ) = (3.3%, 1.7%) (e m , e c ) = (9.7%, 11.1%) 30 (e m , e c ) = (7.0%, 3.2%) (e m , e c ) = (2.0%, 2.1%) 40 (e m , e c ) = (1.75%, 0.67%) (e m , e c ) = (0.33%, 0.33%) 50 (e m , e c ) = (4.3%, 2.6%) (e m , e c ) = (0.05%, 0.04%) 70 (e m , e c ) = (3.7%, 2.3%) (e m , e c ) = (0.0006%, 0.0005%) Estimation errors on parameters m and c (without noise) T least square observer 20 (e m , e c ) = (3.1%, 1.9%) (e m , e c ) = (8.2%, 9.6%) 30 (e m , e c ) = (2.0%, 1.9%) (e m , e c ) = (0.69%, 0.81%) 40 (e m , e c ) = (2.7%, 0.60%) (e m , e c ) = (0.057%, 0.13%) 50 (e m , e c ) = (4.2%, 2.3%) (e m , e c ) = (1.7%, 1.6%) 70 (e m , e c ) = (4.2%, 1.5%) (e m , e c ) = (0.5%, 0.5%)

Figure 2 :Remark 4 . 1 .

 241 Figure 2: Simulation of the system and the estimation provided by the observer (with noise)

Figure

  Figure Simulation with the Luenberger observer (without noise). Estimations are in blue
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