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Abstract

We propose the derivation of asymptotic observers for the estimation
of parameters of systems whose solutions converge to a set of steady-
states that are not identifiable, under some hypotheses. The proposed
observer generalizes a former work for batch bioprocess. It is illustrated
on a two dimensional models, and its performance is compared with the
least squares method.
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1 Introduction
System identification has received a great attention in the literature (see e.g.
[10]). Once the system is identifiable, the least squares technique is the widely-
used method to reconstruct unknown parameters from measurements. Other
approaches based on observers (e.g. [5, 3]) have also some interest in terms
of robustness and noise sensitivity, especially when the state is only partially
observed (It might important to briefly recall that in that case the unknown
parameters are considered as additional state variables with dynamics equal
to zero, and therefore the estimation problem is considered as a pure observ-
ability problem). In any case, the requirement of identifiability/observability
imposes the system to be identifiable at any steady-state that can be reached
by the system (according to the definition of identifiability ([10]) or observablity
([3])). However, in some applications, systems are identifiable only away from
steady states, while the trajectory solutions converge asymptotically to one of
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these steady-state (and therefore the system is not detectable neither). This
is typically the case of batch processes, which stop when all the resources are
consumed ([1, 8]). In practice, those situations lead to several issues when ap-
plying the usual estimation techniques, especially when the initial condition is
not known to be closed or not to an attractive equilibrium. In this context, there
is no theoretical ground to ensure that a least squares estimation is reliable. A
Luenberger-like observer ([7, 4]) is no longer guaranteed to converge with a null
error (in the best case one may expect to obtain a "practical" convergence). The
gains of the high-gain observer ([2]) explode when the estimation is close to the
singularities of the observability map (which are precisely the non-identifiable
steady-states).

Recently, the authors have a propose an asymptotic observer for the state
reconstruction of a bioprocess model, whose solutions converge asymptotically
to a set of non-observable states ([8]). This observer have be shown to converge
asymptotically without any bias, whatever is the initial condition away from
steady-state, differently to classical observers. Numerical implementations have
shown the benefit of this observer. The aim of the present work is to generalize
this approach to the parameters estimation with lack of asymptotic identifia-
bility for a large class of systems. In the next section, we define more precisely
the problem to be investigated. in Section 3, we expose the estimator construc-
tion. Section 4 is devoted to examples along with numerical illustrations and
discussions.

2 Description of the problem
Consider a dynamics in Rn

ẋ = f(x, p), x(t0) = x0 (1)

where x0 is unknown, and p is an unknown vector of parameters which belongs
to a subset P of Rm. Along the solutions, we consider an observation variable
in Rq

y(t) = h(x(t), p), t ≥ t0, (2)

The maps f and h are smooth, say C∞.

Assumption 2.1. There exists a domain D of Rn which contains 0 that is
forward invariant by (1) for any p ∈ P . Moreover, for any p ∈ P , one has
f(0, p) = 0 and h(0, p) = 0, and any solution of (1) in K converges asymptoti-
cally to 0.

This assumption implies that the system is not identifiable at 0 i.e. the obser-
vation y does not allow to reconstruct the parameters vector p when the system
is at the steady state 0, and moreover its solutions converge locally to this steady
state. In such situations, it is well known that even if the system is identifi-
able and observable everywhere away from steady state, a construction with a
classical smooth observer (such as Luenberger, extended Kalman or high gain)
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cannot guarantee an exact asymptotic estimation of the parameters because of
the asymptotic lack of identifiability and observability. Non-smooth observers
(such as sliding mode observers ([9])) or numerical differentiators ([6]) could be
alternatives that provide finite time convergence. However, these constructions
are known to be poorly robust to noise, especially when the system is close to
a singular point of the observability map, which is the case of the steady state.

Our objective is to construct, under some conditions, a smooth estimator
that provides an exact asymptotic estimation of x0 and p from the single mea-
surements y(·), for unknown initial conditions x0 6= 0 in D (even arbitrarily
close to 0).

3 Assumptions and construction of the estimator
We first assume the following condition on the dimension of the observation set,
which will plays a crucial role in the method.

Assumption 3.1. One has n+m = 2q.

We also assume that each coordinate yi of the observation vector y can be
written as a Lie derivative of a certain function Fi with respect to the vector
field f(·, p), for any p ∈ P , as expressed in the assumption below.

Assumption 3.2. There exists a smooth map

F : (x, p) ∈ Rn × Rm 7→ F (x, p) ∈ Rq

with F (0, p) = 0 for any p ∈ P that fulfills

h(x, p) =
∂F

∂x
(x, p).f(x, p), (x, p) ∈ D × P. (3)

Under these two assumptions, we define the map

Γ : (x, p) ∈ Rn × Rm 7→ (h(x, p), F (x, p)) ∈ R2q (4)

Let us underline that under Assumption (3.1), Γ can be considered as a map
from Rn+m to itself.

Here is our main result.

Proposition 3.1. Let Q be a subset of D × P such that Γ is onto on Q, and
Ψ a continuous map on W ⊂ R2q such that Γ(Q) ⊂ W with Ψ = Γ−1 on Γ(Q).
For any x0 ∈ D and t0 ≥ 0 such that for any p ∈ P , the solution of (1) with
x(t0) = x0 verifies(

h(x(t0), p),−
∫ t

t0

h(x(τ), p)dτ

)
∈ W, t > t0 (5)

and (
h(x(t0), p),−

∫ +∞

t0

h(x(τ), p)dτ

)
∈ Γ(Q) (6)

3



the following system{
v̇ = y(t), v(t0) = 0

(x̂0(t), p̂(t)) = Ψ(y(t0),−v(t)), t > t0
(7)

is an asymptotic exact estimator of x0 and p i.e. one has

lim
t→+∞

x̂0(t)− x0 = 0, (8)

lim
t→+∞

p̂(t)− p = 0. (9)

Proof. Take p ∈ P and an initial condition (t0, x0) with x0 ∈ D. Let x(·) be
the corresponding solution of (1) and y(·) the output given by (2). Then the
solution of (7) verifies, from Assumption 3.2

v(t) =

∫ t

t0

h(x(τ), p) dτ (10)

=

∫ t

t0

∂F

∂x
(x(τ), p).f(x(τ), p) dτ (11)

= F (x(t), p)− F (x0, p) (12)

for any t ≥ t0. Under condition (5), (y(t0),−v(t)) belongs to W for any t > t0
and thus the pair (x̂0(t), p̂(t)) = Ψ(y(t0),−v(t)) is well defined for t > t0.

From Assumptions 2.1 and 3.2, we get

lim
t→+∞

F (x(t), p) = 0

and thus v(·) is bounded with

lim
t→+∞

v(t) = −F (x0, p).

By continuity of Ψ on W and condition (6), one obtains

lim
t→+∞

Ψ(y(t0),−v(t)) = Ψ(y(t0), F (x0, p)) = Γ−1(x0, p)

that is the desired convergence

lim
t→+∞

(x̂0(t), p̂(t)) = (x0, p).

In the next section, we present examples for which the observation has the
structure (3) and show how to define the set W and construct the map Ψ that
fulfill conditions (5) and (6) of Proposition 3.1.

4



4 Examples
We first show that the model treated in [8] is a particular case of application of
Proposition 3.1. Then, we develop a new example in dimension two with two
unknown parameters and an observation of dimension two.

4.1 A bioreactor model
We revisit the state estimation problem in the batch bioreactor model when
measuring the biogas:  ẋ = µ(s)x

ṡ = −µ(s)x
(13)

y = µ(s)x (14)

Here the function µ, which is null at 0 only, is assumed to be known, while the
initial condition is not known. We show that the asymptotic observer proposed
in [8] for this system is a particular case of the methodology that we propose
here. Let us pose

z = x+ s (15)

one has
ż = 0 (16)

Therefore, the system can be expressed equivalently as the one dimensional
dynamics

ṡ = f(s, z) = −µ(s)(z − s)

with observation

y(t) = h(s(t), z) = µ(s(t))(z − s(t)), t ≥ 0

where z is an unknown parameter. Clearly all positive solutions with s < z
converges asymptotically to the steady state s = 0, where parameter z is not
identifiable. Here one has

h(s, z) = −f(s, z) (17)

which leads to
F (s, z) = −s (18)

as a function that verifies

h(s, z) =
∂F

∂s
F (s, z)f(s, z) (19)

with F (0, z) = 0 whatever is z. Then we consider the map

Γ(s, z) =

[
µ(s)(z − s)
−s

]
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and the set
Q = {(s, z) ∈ R2; z > s > 0} (20)

For any ξ ∈ Γ(Q), one has

s = −ξ2, z = s+
ξ1
µ(s)

which shows that Γ is invertible on Γ(Q). We define the function

Ψ(ξ) =

[ −ξ2
ξ1

µ(−ξ2) − ξ2

]
that is well-defined and continuous on the set

W = {ξ ∈ R2; ξ2 < 0} (21)

which contains Γ(Q), and coincides with Γ−1 on Γ(Q). Note that for any initial

condition (t0, s0) with s0 ∈ (0, z), one has −
∫ t

t0

y(τ)dτ < 0 for any t > t0.

Conditions of Proposition 3.1 are thus fulfilled for any initial condition (t0, s0)
such that s0 > 0 and s0 < z.

Finally the estimator of z
v̇(t) = y(t), v(t0) = 0

ẑ(t) =
y(t0)

µ(v(t))
+ v(t), t > t0

is exactly the one proposed in [8]. In this last reference, the benefits of the
estimator are discussed in comparison with classical Luenberger or high gain
observers for various growth functions µ.

4.2 A mechanical model
Consider the classical harmonic oscillator with damping

mz̈ + kz + cż = 0

where the mass m and the damping coefficient c are unknown positive param-
eters (the spring constant k is assumed to be known). We assume that the
position and the damping force are measured. The system with x = (z, ż)> in
R2 writes

ẋ = f(x, p) =

[
0 1
− k
m − c

m

]
︸ ︷︷ ︸

A(p)

x, p =

[
m
c

]

y = h(x, p) =

[
x1
cx2

]
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One can check that the matrix A(p) is Hurwitz and thus all solutions converges
to the steady state 0, whatever is the positive vector p. At steady state, one
has f(0, p) = 0 and h(0, p) = 0 and the system is thus not identifiable at 0.
However, let us show that the system is infinitesimally identifiable away from 0.

• If y2 6= 0, ẏ1 = y2/c is non null and one has c =
y2
ẏ1

. If moreover ẏ2 6= 0,

one gets m = − (ky1 + y2)y2
ẏ1ẏ2

. If ẏ2 = 0, then ẏ1 = x2 is non null and

ÿ2 = −kc
m
ẏ1 as well. We get m = −ky2

ÿ2
.

• If y2 = 0, y1 is non null away from steady state. then ẏ2 = −kc
m
y1 is non

null and ÿ1 = −ky1
m

as well. We get m = −ky1
ÿ1

and c =
ẏ2
ÿ1

.

We show now how to apply the methodology exposed in Section 3. The map
h can be written as

h(x, p) =

[
− c
k −mk
c 0

]
︸ ︷︷ ︸

J(p)

f(x, p)

and then
F (x, p) =

[
− c
kx1 −

m
k x2

cx1

]
verifies

∂F

∂x
(x, p) = J(p) (22)

with F (0, p) = 0 for any p. The next step is to define

Γ : (x, p) 7→


x1
cx2

− c
kx1 −

m
k x2

cx1


and consider the set

Q = {(x, p) ∈ R2 × R2; x1 6= 0, x2 6= 0, m > 0, c > 0}.

For ξ = Γ(x, p) in Γ(Q), one obtains

x1 = ξ1, x2 =
ξ2
c
, c =

ξ4
ξ1
, m = −kξ3 + ξ4

x2
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showing that Γ is invertible on Γ(Q). However, the map

Ψ(ξ) =



ξ1

ξ2ξ4
ξ1

− (kξ3 + ξ4)ξ4
ξ1ξ2
ξ4
ξ1


is well-defined and continuous on the set

W = {ξ ∈ R4; ξ1 6= 0, ξ2 6= 0}

which contains Γ(Q) and coincides with Γ−1 on Γ(Q). Conditions of Proposition
3.1 are thus verified, provided that the initial condition verifies x1(t0) 6= 0 and
x2(0) 6= 0. However, note that for any solution x(·) of (1) that is not at steady
state, x1(t) and x2(t) are both non null for almost any t. Therefore, one can
initialize the system (7) with t0 as closed as desired to the initial time, such
that the observation at t0 verifies y1(t0) 6= 0 and y2(t0) 6= 0.

Finally, the estimator is as follows
v̇i(t) = yi(t), vi(t0) = 0 (i = 1, 2)

m̂(t) = − (kv1(t) + v2(t))v2(t)

y1(t0)y2(t0)

ĉ(t) = − v2(t)

y1(t0)

We have compared this asymptotic observer with a least-square estimation
of the parameters, provided from 1000 measurement points over the same time
window [0, T ] using the Levenberg-Marquardt algorithm (lsqrsolve function
in Scilab software). Initial condition and parameters values used for the sim-
ulations are given in Table 4.2. We have compared the estimations on different
time horizons T , without and with measurement noise (normal distribution with
0 mean and 0.01 standard deviation).

x1(0) x2(0) m k c
0.2 −2 1 1 0.4

Table 1: Initial condition and parameter values used for the simulations

Time-varying estimations provided by the asymptotic observer are depicted
on Fig. 1 and 2. The final estimation errors are given on Tables 4.2 and 4.2.

The comparisons leads to the following comments.

• the asymptotic observer has a relatively slow convergence: it needs T > 30
to give an accurate estimation which improves with larger time windows
even with presence of noise.
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T least square observer
20 (em, ec) = (3.3%, 1.7%) (em, ec) = (9.7%, 11.1%)
30 (em, ec) = (7.0%, 3.2%) (em, ec) = (2.0%, 2.1%)
40 (em, ec) = (1.75%, 0.67%) (em, ec) = (0.33%, 0.33%)
50 (em, ec) = (4.3%, 2.6%) (em, ec) = (0.05%, 0.04%)
70 (em, ec) = (3.7%, 2.3%) (em, ec) = (0.0006%, 0.0005%)

Table 2: Estimation errors on parameters m and c (without noise)

T least square observer
20 (em, ec) = (3.1%, 1.9%) (em, ec) = (8.2%, 9.6%)
30 (em, ec) = (2.0%, 1.9%) (em, ec) = (0.69%, 0.81%)
40 (em, ec) = (2.7%, 0.60%) (em, ec) = (0.057%, 0.13%)
50 (em, ec) = (4.2%, 2.3%) (em, ec) = (1.7%, 1.6%)
70 (em, ec) = (4.2%, 1.5%) (em, ec) = (0.5%, 0.5%)

Table 3: Estimation errors on parameters m and c (with noise)

Figure 1: Simulation of the system and the estimation provided by the observer
(without noise)

• the least square estimator does not provide an estimation as good as the
asymptotic observer on large time horizons.

• the least square estimator is less affected by noise, but the quality of its
estimation is deteriorating over large time horizon, when the state get
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Figure 2: Simulation of the system and the estimation provided by the observer
(with noise)

closer from the equilibrium point.

Remark 4.1. Note that the dynamics can be written as{
ẋ1 = x2
ẋ2 = −θ(ky1(t) + y2(t))

where we pose θ = 1
m . Therefore, one may consider the "naive" Luenbeger

observer 
d
dt x̂1 = x̂2 +G1(x̂1 − y1(t))

d
dt x̂2 = −θ̂(ky1(t) + y2(t)) +G2(x̂1 − y1(t))

d
dt θ̂ = −G3(x̂1 − y1(t))

with
m̂ =

1

θ̂
, ĉ =

y2
x̂2

to estimate parameters m and c. However, the error dynamics

d

dt
e =

 G1 1 0
G2 0 −ky1(t)− y2(t)
G3 0 0


︸ ︷︷ ︸

M(t)

e

has a matrix M(·) that is periodically singular and that converges to a singular
matrix, whatever is the choice of the gains G1, G2, G3. Then, the convergence of
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the error cannot be obtained. As an illustration, we have simulated this observer
without measurement noise, for the gains G1 = −13, G2 = 32, G3 = −20 which
gave the best results for the estimation of m. As one can see on Fig. 3, the
estimation of m is biased. While the innovation x̂1 − x1 is rapidly small, we
did not obtain a fast enough convergence of the error on x2 with this observer,
which explains the bad behavior of the estimation of c.

Figure 3: Simulation with the Luenberger observer (without noise). Estimations
are in blue

5 Conclusion
We have proposed the derivation of an asymptotic observer for the estimation of
parameters of systems that are not asymptotically identifiable. Although it takes
the form of an observer, its philosophy is quite different from the conventional
observers, in the sense that it can be considered as an expression that combines
initial observation and integrals of the observed variables, without innovation
(and gain) terms. As a consequence, its convergence speed cannot be tuned. We
believe that it is the price to pay to obtain an asymptotic estimation without
bias, in this precise context of lack of asymptotic identifiability.

Numerical simulations show that this approach is more reliable than a clas-
sical least-squares method, especially on the long term, with or without noise.
However, the structure of the proposed observer relies strongly on the initial
observation which is prone to noise measurement. A future work will deal with
robustness issues of this observer under stronger noises that the ones considered
in this preliminary work.
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