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Abstract: A decrease in populations of Bacteroides thetaiotaomicron and Lactobacillus johnsonii is ob-
served during the development of colitis and fungal overgrowth, while restoration of these popula-
tions reduces inflammatory parameters and fungal overgrowth in mice. This study investigated the
effect of two fatty acids from B. thetaiotaomicron and L. johnsonii on macrophages and Caco-2 cells, as
well as their impact on the inflammatory immune response and on Candida glabrata overgrowth in a
murine model of dextran sulfate sodium (DSS)-induced colitis. Oleic acid (OA) and palmitic acid (PA)
from L. johnsonii and B. thetaiotaomicron were detected during their interaction with epithelial cells
from colon samples. OA alone or OA combined with PA (FAs) reduced the expression of proinflam-
matory mediators in intestinal epithelial Caco-2 cells challenged with DSS. OA alone or FAs increased
FFAR1, FFAR2, AMPK, and IL-10 expression in macrophages. Additionally, OA alone or FAs de-
creased COX-2, TNFα, IL-6, and IL-12 expression in LPS-stimulated macrophages. In the DSS murine
model, oral administration of FAs reduced inflammatory parameters, decreased Escherichia coli and
Enterococcus faecalis populations, and eliminated C. glabrata from the gut. Overall, these findings
provide evidence that OA combined with PA exhibits anti-inflammatory and antifungal properties.

Keywords: colitis; fatty acids; oleic acid; palmitic acid; inflammatory response; dextran sulfate
sodium; Candida glabrata; Bacteroides thetaiotaomicron; Lactobacillus johnsonii; fungal overgrowth

1. Introduction

Inflammatory bowel disease (IBD), which includes Crohn’s disease (CD) and ulcera-
tive colitis, is a chronic disorder resulting from deregulation of the immune response to
the gut microbiota in genetically susceptible individuals [1,2]. Alteration of the intestinal
microbiota, including Candida spp., plays an important role in IBD [3]. Candida albicans
and Candida glabrata are opportunistic fungal pathogens that can cause invasive fungal
infections [4,5]. Systemic C. glabrata infections are associated with higher mortality than
C. albicans infections [5]. Anti-fungal-glycan antibodies, known as ASCA (anti-Saccharomyces
cerevisiae mannan antibodies), ALCA (anti-laminaribioside carbohydrate antibodies), and
ACCA (anti-chitobioside carbohydrate antibodies), were recognized as serological markers
of CD, but subsequent studies established that they can also be generated during Candida
infection, suggesting a link between CD gut dysbiosis and endogenous opportunistic fungal
species [6,7]. In addition, experimental studies have shown that intestinal inflammation
increases C. albicans overgrowth, and that C. albicans in turn accentuates inflammation in a
murine model of DSS-induced colitis [8,9]. It has been reported that intestinal inflamma-
tion and fungal overgrowth promote a change in the biodiversity of the gut microbiota,
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including Bacteroides thetaiotaomicron and Lactobacillus johnsonii populations. These were
both highly affected during the development of colitis and overgrowth of C. glabrata [10].
Restoration of these two anaerobic bacteria attenuated the development of colitis and
C. glabrata growth in mice with DSS-induced colitis [11].

Changes in microbial metabolites have been implicated in IBD, such as short-chain
fatty acids (SCFAs), which are produced by microbial fermentation of dietary fiber and are
significantly reduced in IBD [12,13]. Stool samples from IBD patients typically had less
acetate, butyrate, and propionate, while lactate and pyruvate were increased [12]. Further
evidence of imbalanced host–microbe interactions in IBD are dietary and environmental
factors that are implicated in the perpetuation of IBD [14]. A diet high in processed
foods and fatty foods has been implicated in the recent increase in incidence of IBD,
particularly in the Western world [15]. A mouse model mimicking a Western-style diet
high in fat and sugar revealed the overgrowth of proinflammatory Proteobacteria such
as Escherichia coli, a decrease in protective bacteria, and a significantly reduction in SCFA
concentrations [16]. Furthermore, colonocyte metabolism of SCFA, in particular butyrate,
was impaired in DSS-induced colitis, while in vitro supplementation of the microbiota
of CD patients with butyrate-producing bacteria resulted in higher butyrate production,
supporting an improvement in the integrity of the intestinal epithelial barrier [17,18]. SCFA
and medium-chain fatty acids (FAs) displayed not only anti-inflammatory properties, but
also antimicrobial activities, including against Candida spp. [19,20].

This study investigated the effects of two FAs (oleic acid and palmitic acid) detected
from B. thetaiotaomicron and L. johnsonii on intestinal epithelial Caco-2 cells challenged with
DSS and on macrophages. Additionally, the impact of these two FAs on Candida spp. was
also investigated in terms of viability, adhesion, fungal growth, and biofilm formation,
and on modulation of the inflammatory immune response in a murine model of DSS-
induced colitis.

2. Materials and Methods
2.1. Fungal and Bacterial Cultures

The fungal strains used were C. glabrata wild-type (ATCC; Cg), C. albicans SC5314,
and C. albicans bioluminescent strain [21,22]. These yeasts were grown in YPD medium
(1% yeast extract, 1% peptone, 1% dextrose) on a rotary shaker for 18 h at 37 ◦C [23]. The
fungal culture obtained was then centrifuged at 2500 rpm for 5 min and washed twice in
phosphate-buffered saline (PBS; Gibco; 14200-067). Bacterial strains of B. thetaiotaomicron
and L. johnsonii were isolated from mouse stools on Bacteroides bile esculin agar and De
Man, Rogosa, and Sharpe culture medium at 37 ◦C for 48 h under anaerobic conditions
(AnaerobenTM 3.5L; ref: AN0035A; Thermo Scientific, Waltham, MA, USA). The bacteria
isolated were identified using MALDI-TOF (Microflex-Bruker Daltonics, Billerica, MA,
USA) [11].

2.2. Ex Vivo Detection of Bacterial Metabolites Using Gas Chromatography–Mass
Spectrometry (GC-MS)

The colons were removed from C57BL/6 mice and washed with PBS followed by RPMI
supplemented with 10% fetal calf serum and 1% antibiotics (penicillin G + streptomycin,
0.1 mg/mL) [24]. Coincubation of these two bacteria was then carried out for 12 h under differ-
ent conditions: colon alone; colon + Cg (as a control); colon + B. thetaiotaomicron + L. johnsonii
(BtLj; 107 cells); and colon + BtLj + Cg (107 cells). After incubation, the colons were collected,
and 1 mL of each supernatant was extracted with CHCl3/MeOH (2:1). The extract was then
centrifuged at 1500 rpm for 10 min at 4 ◦C, and the chloroform phase was recovered and
evaporated in a Speedvac to concentrate the sample and obtain the FAs. To facilitate their
identification, FAs were derivatized by transesterification to obtain the fatty acid methyl
esterified (FAME). Chloroform (100 µL) was added to the tube containing the dry sample,
then 1.5 mL of MeOH/HCl (0.5 N) was added, followed by a dry bath at 80 ◦C for 18 h.
Once the tubes had cooled, three successive extractions were performed using heptane
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before analysis using GC-MS (ThermoFisher Scientific). Following this analysis, the two
FAs were identified using GC-MS (oleic acid (OA) and palmitic acid (PA)).

2.3. Expression of Proinflammatory Cytokines and Innate Immune Receptors by Macrophages

THP-1 cells were differentiated into macrophages by adding phorbol-12-myristate13-
acetate (PMA: Sigma-Aldrich, Saint-Quentin-Fallavier, France) at a concentration of 200 ng/mL
for 72 h. The macrophages were then plated at a concentration of 106 cells/well for 24 h
in RPMI medium [23]. Lipopolysaccharide (LPS) was then added to the macrophages at
a concentration of 250 ng/mL (LPS from E. coli O111: B4; Sigma-Aldrich, France) for 6 h.
In parallel, OA (TCI; Tokyo, Japan) and PA (TCI; Japan) were added at a concentration
of 25 µg/mL. Macrophages alone were used as a control. Subsequently, macrophages
were harvested in RA1 buffer to perform mRNA extraction followed by RT-PCR and q-
PCR. For quantitative PCR reactions, cDNA products were amplified using SYBR green
real-time PCR master mix reagent. The SYBR green dye intensity was determined us-
ing one-step software. The used primers are provided in Table S1 in the Supplementary
Materials. The mRNA levels were normalized to the reference gene (GAPDH (mRNA))
and are reported as fold-change in expression over the control (macrophages alone). For
the measurement of proinflammatory cytokines using ELISA, 106 THP-1 cells were dif-
ferentiated into macrophages by adding PMA at a concentration of 200 ng/mL for 72 h.
The macrophages were then incubated for 24 h in RPMI medium. LPS was then added
to the macrophages at a concentration of 250 ng/mL for 16 h, and FAs were added at a
concentration of 25 µg/mL. The supernatants were collected from each well. The concen-
trations of TNFα (InvitrogenTM NovexTM Human TNF alpha ELISA Kit), IL-6 (ELISA
MAXTM Deluxe Set Human IL-6; 430504; BioLegend, San Diego, CA, USA), and IL-1β
(ELISA MAXTM Deluxe Set Human IL-1β; 437004; BioLegend) in the supernatants were
measured using ELISA according to the manufacturer’s instructions. The concentrations
of TNFα, IL-6, and IL-1β were then determined based on standard curves provided in
the ELISA kits, and the results were expressed as “Fold Release” by normalizing with the
positive control (macrophages + LPS).

2.4. Migration of Macrophages through Human Intestinal Epithelial Caco-2 Cells Treated with
DSS and Fatty Acids

Caco-2 cells (106 cells) were added to inserts (HTS Transwell 96-well; Corning; 3387) in
the presence of Dulbecco’s Modified Eagle Medium (DMEM) for 24 h [25]. Dextran sulfate
sodium (DSS; 1.5%; MP Biomedicals, LLC, Eschwege, Germany) was then added to each
well for 24 h. Caco-2 cells were then treated with FA at a concentration of 25 µg/mL. In
parallel, THP-1 cells were differentiated into macrophages using PMA at a concentration of
200 ng/mL for 72 h. After different washings with PBS, the macrophages were maintained
in RPMI for 24 h. They were then labeled with fluorescent calcein (Invitrogen; Villebon
sur Yvette, France) and added to each insert at a concentration of 105 macrophages/insert.
RPMI (150 µL) containing 105 C. albicans yeast cells was then added to the lower chamber,
and the plates were incubated at 37 ◦C in 5% CO2 overnight. After overnight migration,
the upper chamber of the Transwell inserts containing nonmigrated macrophages was
removed from the plate, and migrated macrophages present on C. albicans cells were
determined by measuring fluorescence using a fluorometer (FLUOstar® Omega; BMG
Labtech, Saitama, Japan). Macrophage migration through Caco-2 cells untreated with DSS
was assigned a value of 100%, corresponding to a healthy intestinal barrier, while the value
200% corresponded to a destroyed intestinal barrier.

2.5. Adhesion of C. glabrata to Human Intestinal Epithelial Caco-2 Cells Treated with Fatty Acids

Caco-2 cells (150 µL containing 5 × 105 cells) were added to each well of a 96-well
plate (Greiner Bio-One, Kremsmünster, Austria). The plate was incubated at 37 ◦C in a
humidified atmosphere containing 5% CO2. Once the Caco-2 cells were confluent, the
intestinal cells were treated with FA at a concentration of 25 µg/mL. C. glabrata yeast cells
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(100 µL containing 105 cells) labeled with calcein (Invitrogen; France) were added to each
well. After 2 h of incubation and different washings with PBS, fluorescence was measured
using a fluorometer (FLUOstar Omega; BMG Labtech).

2.6. Effect of Fatty Acids on Candida spp.

The C. albicans bioluminescent strain (100 µL containing 106 cells) was added to
each well of a 96-well plate (Greiner Bio-One) [26]. OA and PA were added at various
concentrations (250, 100, 50, 25, and 10 µg/mL). Finally, coelenterazine was added at a
concentration of 2 µM (Coelenterazine, ABP Biosciences/tebu-bio, Le Perray-en-Yvelines,
France). After 0, 1, and 2 h incubation, bioluminescence was measured using a fluorometer
(FLUOstar Omega; BMG Labtech). C. albicans viability was considered to be 100% when the
fungal cells were unchallenged with any FA treatment (100% corresponding to a control
group receiving PBS only). We then normalized all of the results obtained under the various
conditions according to this control. To test the viability of C. glabrata in the presence of
FA, 1 mL RPMI containing 105 C. glabrata cells in the presence or absence of FA (250 or
25 µg/mL) was used. Kinetics were carried out after coincubation for different times (0, 1,
and 2 h) at 37 ◦C. Different dilutions were then performed in order to obtain a volume of
100 µL per Sabouraud agar Petri dish. The number of fungal colonies was determined in
each Petri dish after 24 h of incubation at 37 ◦C. In parallel, caspofungin (50 mg; OHRE
Pharma, Tours, France) at a concentration of 100 µg/mL was used as a control.

2.7. Effect of Fatty Acids on Fungal Biofilm Formation

RPMI (200 µL) containing 107 C. albicans SC5314 or C. glabrata ATCC 2001 cells was
added to each well of a 96-well plate (Greiner Bio-One; 655101). After 1.5 h of incubation at
37 ◦C, different washings with PBS were performed. RPMI (200 µL) containing the FAs was
added to each well. The biofilm was then measured after 0, 4, 8, and 24 h of incubation. The
plate was washed with PBS and left to dry for 2 h at 37 ◦C before adding 110 µL of crystal
violet (0.4%; Fluka, Gillingham, UK; 61135) for 45 min. The plate was then washed four
times with 300 µL water before adding 200 µL of ethanol. Absorbance of the decolorization
solution was measured at 550 nm using a spectrophotometer (FLUOstar; BMG Labtech,
Champigny sur Marne, France). Caspofungin at a concentration of 100 µg/mL was used
as a control. The biofilm analyzed at T0 represented the basal rate for each condition and
corresponded to a rate of 100%. Thus, each condition assessed at T4, T8, and T24 was
normalized according to that of the biofilm observed at T0.

2.8. Animal Model

Female C57BL/6 mice aged 3–4 months and certified free from infection were used
(Janvier Laboratories, Le Genest-Saint-Isle, France). The mice were kept at 21 ◦C with free
access to water and food and a 12/12 h light/dark cycle in the animal facility of the Faculty
of Medicine, Lille University. We used hermetically sealed and filtered single-use plastic
cages that were only opened in rooms containing no other animals and were disinfected
between each series of experiments. All experiments were performed in accordance with
the decrees relating to the ethics of animal experimentation (Decree 86/609/EC), as well as
according to Protocol 00550.05.

On day 0, a single oral gavage of 300 µL PBS containing 5 × 107 cells of C. glabrata was
given to each mouse. The animals received an oral gavage of 250 µL PBS containing the
FA (OA and PA) at a concentration of 1 mg/kg/mouse during the first 5 days. To induce
chemical colitis in the mice, DSS at a concentration of 1.5% was added to water for the entire
duration of the experiment. The optimal effect of DSS was reached on the sixth day. The
animals were separated into several groups with free access to water containing 1.5% DSS.
The control group (CTL) represented mice receiving water. The groups C. glabrata (Cg)
alone or FAs alone represented control groups without DSS treatment. D corresponded to
mice receiving DSS to induce chemical colitis, DCg to mice receiving DSS and C. glabrata,
and DCgFA to mice treated with FA and challenged with DSS and C. glabrata.
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During the experiments, the animals were weighed, and stool samples were collected
every 2 days. The stool samples were weighed, homogenized in 1 mL PBS, and then
serially diluted in 1 mL 1X PBS [22,27]. A volume of 100 µL was then added to Petri dishes
containing Sabouraud agar. A bacterial culture was performed on MacConkey and bile
esculin azide medium for Enterobacteriaceae and Enterococci, respectively. After 24 h
of incubation at 37 ◦C fungal growth was recorded as number of colony-forming units
(CFU)/mg of stool. To identify bacterial colonies in the Petri dishes, 1.5 µL of matrix
solution (α-cyano-4-hydroxycinnamic acid; Bruker Daltonics) dissolved in 50% acetonitrile,
47.5% water, and 2.5% trifluoroacetic acid was added to the bacterial colonies, and they
were then analyzed using mass spectrometry (MALDI-TOF; Microflex-Bruker Daltonics).
On day 14, the mice were sacrificed by cervical dislocation and the colon, stomach, and
caecum were collected to determine the fungal load. After different washings with PBS, the
colon, stomach, and caecum were weighed and homogenized in 1 mL PBS (TURRAX, T10
basic ULTRA-TURRAX®, IKA®). Each sample (100 µL) was plated on Sabouraud agar for
24 h at 37 ◦C. The result was noted as number of CFU/mg of the organ.

2.9. Clinical and Histologic Scores for Inflammation

Clinical scores were assessed independently by two investigators blinded to the
study protocol, as described previously [28,29]. Four scores (behavior, body weight, stool
consistency, and bleeding) were added together, resulting in a total clinical score ranging
from 0 (healthy) to 6 (maximum colitis activity). For analysis of the histologic score, the
colon sample from each animal was fixed overnight in 4% paraformaldehyde-acid at 4 ◦C.
The colon samples were then embedded in paraffin at 60 ◦C overnight. The samples were
fixed, cut in a microtome (4 µm thick; RM2245, Leica, Wetzlar, Germany), and scanned with
an Axio-Scan.Z1 (Zeiss, Oberkochen, Germany). For the histologic score, 0 = no epithelial
lesion and no leukocyte infiltrates; 3 = presence of epithelial lesion, edema, or leukocyte
infiltrates; 6 = presence of epithelial lesions, edema, and leukocyte infiltrates.

2.10. Real-Time mRNA Quantification of Proinflammatory Cytokines and Innate
Immune Receptors

RNA was extracted from the colon samples using the NucleoSpin RNA® protocol
(Macherey-Nagel, Düren, Germany). For each sample, mRNA (in µg/µL) was measured
with a spectrophotometer (Nanodrop 1000; Thermo Scientific). The ratio of each of our
samples was >2.0, which was a sign of pure RNA. The cDNA synthesis was performed
using a high-capacity DNAc reverse-transcription (RT) master mix (Applied Biosystems,
Waltham, MA, USA). For a final volume of 10 µL/sample, the mix contained 2 µL 10X RT
buffer, 2 µL 10X RT random primers, 0.8 µL 25X dNTP mix, 1 µL reverse transcriptase,
and 4.2 µL RNase-free H2O. PCR was performed in a 96-well microplate (MicroAmp Fast
Optical 96-well; Applied Biosystems). For a final volume of 12 µL/well of each sample,
a mix was made containing 0.25 µL of forward and reverse primer, 6 µL of SYBR green
(Applied Biosystems), 3 µL of RNase-free H2O, and 2.5 µL of cDNA from the samples.
SYBR green dye intensity was determined using one-step software. The used primers are
provided in Table S2 in the Supplementary Materials. The mRNA levels were normalized
to the reference gene (POLR2A (mRNA)) and are reported as fold-change in expression
over the control group (CTL).

2.11. Statistical Analysis

The data are presented as the mean± standard deviation (SD) of the individual ex-
perimental groups. Statistical comparisons were performed using the nonparametric
Mann–Whitney test or ANOVA,

All statistical analyses were performed using GraphPad Prism® 7.0 software (Graph-
Pad software, San Diego, CA, USA). The p-values < 0.05, 0.01, or 0.001 were considered
statistically significant.
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3. Results
3.1. Characterization and Identification of Two Fatty Acids from B. thetaiotaomicron and
L. johnsonii by GC-MS

Two FAs were identified from B. thetaiotaomicron and L. johnsonii during their interac-
tion with epithelial cells from mouse colons (Figure 1). In contrast to the controls (RPMI,
colon alone, or colon incubated with C. glabrata), two FAs were detected using GC-MS in
colon extract incubated with these two anaerobic bacteria. The first FA was detected at a
peak of 37.4 min, corresponding to palmitic acid methyl ester (PAME); while the second
was observed at 41.4 min, corresponding to oleic acid methyl ester (OAME). This GC-MS
analysis indicated the presence of PA and OA following bacterial interaction with the
colon samples.
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Figure 1. Representative data of the analysis obtained using GC-MS. (A) Analysis of RPMI medium.
(B) Analysis of a control mouse colon sample. (C) Analysis of a mouse colon sample incubated with
L. johnsonii and B. thetaiotaomicron. (D) Analysis of a mouse colon sample incubated with C. glabrata.
(E) Analysis of a mouse colon sample incubated with L. johnsonii, B. thetaiotaomicron, and C. glabrata.
The retention time (RT) peak of 6.85 min corresponded to tetrahydrofuran, 2-methyl-5-methyl; while
the RT peak of 7.04 min was not identified in chromatogram B.

3.2. Effect of These Two Fatty Acids on the Modulation of Proinflammatory Cytokine Expression in
Caco-2 Cells Challenged with DSS and on the Migration of Macrophages through DSS-Challenged
Caco-2 Cells

Caco-2 cells treated with the fatty acids did not show a significant variation in the
expression of TNFα, IL-8, and CCL2 when compared to untreated cells (Figure 2). A
significant increase in the expression of these cytokines was seen when the intestinal cells
were challenged with 1.5% DSS for 24 h (Figure 2). However, Caco-2 cells treated with



Microorganisms 2022, 10, 1803 7 of 20

FAs and challenged with DSS showed a significant decrease in the expression of these
proinflammatory mediators when compared to untreated Caco-2 cells challenged with
DSS (Figure 2). The migration of macrophages through Caco-2 cells unchallenged with
DSS (CTL-) was assigned a value of 100%, while the positive control corresponded to easy
migration of macrophages without Caco-2 cells. Macrophage migration through Caco-2
cells with DSS was assigned a value of 200% (D). Treatment of epithelial cells with either
OA or PA did not reduce macrophage migration when compared to untreated Caco-2 cells
challenged with DSS (Figure 3). Interestingly, treatment of intestinal cells with both FAs
significantly reduced the migration of macrophages through Caco-2 cells challenged with
DSS, indicating that a combination of these two FAs improved the intestinal epithelial
barrier (Figure 3).

3.3. Effect of Fatty Acids on the Modulation of Proinflammatory Mediators and Receptors
in Macrophages

Regarding the receptors mediating FAs as signaling molecules, OA or OA+PA (FAs)
increased the expression of FFAR1 and FFAR2 in macrophages. The addition of OA or FAs
to macrophages significantly increased the expression of 5′ AMP-activated protein kinase
(AMPK), TLR2, AhR, and IL-10, while there was no change in proinflammatory cytokines
except for IL-12 expression, which was decreased significantly in macrophages treated with
FAs (Figure 4). PA increased FFAR2, TLR2, TNFα, and IL-1β expression in macrophages.
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Figure 2. Effect of fatty acids on the modulation of proinflammatory cytokine expression in DSS-
treated Caco-2 cells. Relative expression levels of (A) TNFα, (B) IL-8, and (C) CCL-2 mRNA in
Caco-2 cells challenged with 1.5% DSS. CTL: control group (Caco-2 cells alone); OA: Caco-2 cells
treated with OA; PA: Caco-2 cells treated with PA; OA/PA: Caco-2 cells treated with PA and OA; D:
Caco-2 cells challenged with 1.5% DSS; DOA: Caco-2 cells challenged with 1.5% DSS and treated
with OA; DPA: Caco-2 cells challenged with 1.5% DSS and treated with PA; DOA/PA: Caco-2 cells
challenged with 1.5% DSS and treated with PA and OA. The results were obtained from three
independent experiments.
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Figure 3. Migration of macrophages to C. albicans through Caco2 cells challenged with DSS and treated
with fatty acids (FAs). CTL: control (migration of macrophages through Caco-2 cells untreated with
DSS); OA: migration of macrophages through Caco-2 cells treated with OA only and unchallenged
with DSS; PA: migration of macrophages through Caco-2 cells treated with PA only and unchallenged
with DSS; OA/PA: migration of macrophages through Caco-2 cells treated with both FAs and
unchallenged with DSS; D: migration of macrophages through Caco-2 cells challenged with DSS;
DOA: migration of macrophages through Caco-2 cells challenged with DSS and treated with OA;
DPA: migration of macrophages through Caco-2 cells challenged with DSS and treated with PA;
DOA/PA: migration of macrophages through Caco-2 cells challenged with DSS and treated with
both FAs; CTL+: positive control (migration of macrophages without Caco-2 cells). The results were
obtained from three independent experiments.

In LPS-stimulated macrophages, OA, PA, or FAs increased the expression of FFAR3,
whereas the expression of FFAR2 was observed only in the presence of OA. LPS-stimulated
macrophages resulted in the expression of TLR2, TLR4, TLR8, AhR, COX-2, MyD88, NF-kB,
TNFα, IL-1β, IL-6, IL-8, CCL2, and CCL5 (Figure 4 and Supplementary Materials Figure S1).
Treatment of LPS-stimulated macrophages with FAs significantly decreased COX-2, TNFα, IL-6,
IL-12, CCL2, and CCL5, while the expression of FFAR1 was not affected in LPS-stimulated
macrophages treated with FAs (Figure 4 and Supplementary Materials Figure S1). Additionally,
a high expression of AhR was observed in LPS-stimulated macrophages treated with OA or
FAs. Protein expression levels of TNFα and IL-6 revealed the anti-inflammatory effect of FAs in
macrophages treated with LPS (Supplementary Materials Figure S2).
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Figure 4. Expression of proinflammatory mediators and receptors in macrophages treated with fatty
acids and challenged with lipopolysaccharide (LPS). (A–N) Relative expression levels of FFAR1,
FFAR2, FFAR3, AMPKα, COX-2, TLR2, AhR, TNFα, IL-1β, IL-6, IL-10, IL-12, CCL2, and CCL5
mRNA, respectively, in macrophages. MΦ: control group (macrophages alone); MΦOA, MΦPA, and
MΦOA/PA: macrophages treated with OA, PA, or FAs (OA/PA), respectively; MΦLPS: positive
control (macrophages exposed to LPS); MΦLPSOA, MΦLPSPA, and MΦLPSOA/PA: macrophages
challenged with LPS and treated with OA, PA, or FAs (OA/PA), respectively. The results were
obtained from three independent experiments.
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3.4. Role of These Two Fatty Acids in Pathogen–Epithelial Cell Interactions

To evaluate whether these two FAs could reduce the adhesion of pathogens, in par-
ticular Candida spp., to Caco-2 cells, FAs at a concentration of 25 µg/mL were added to
Caco-2 cells, and the epithelial cells were then challenged with C. glabrata. A decrease in
the adhesion of C. glabrata to intestinal cells treated with OA, PA, or FAs was observed,
indicating that these two FAs protected the intestinal epithelial barrier from pathogen
adhesion (Figure 5).
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Figure 5. Effect of fatty acids on the adhesion of C. glabrata to Caco-2 cells. Cg: control (Caco-2 cells
challenged with C. glabrata); Caspo: standard control (Caco-2 cells challenged with C. glabrata and
treated with caspofungin); OA, PA, OA/PA: Caco-2 cells challenged with C. glabrata and treated with
OA, PA, or FAs (OA/PA), respectively. The results were obtained from two independent experiments.

B. thetaiotaomicron and L. johnsonii are known to produce chitinase-like and mannosidase-
like activities that promote digestion of the Candida cell wall, but the question arose whether
these two FAs from these bacteria would have a direct effect on Candida viability. The
effect of these FAs on Candida viability was assessed at various concentrations (10, 25,
50, 100, and 250 µg/mL; Figure 6 and Supplementary Materials Figure S3). In parallel,
caspofungin, which is an antifungal drug indicated in the treatment of invasive candidiasis,
was used as a standard control. At T0, no variation was observed in the bioluminescence
of C. albicans treated with FAs at different concentrations when compared to untreated
C. albicans (Figure 6A). However, a significant decrease in the bioluminescence of C. albicans
was observed after 1 h of coincubation with OA, PA, or FAs at various concentrations.
This significant decrease in the bioluminescence of C. albicans was only effective for OA or
FAs after 2 h of coincubation at a concentration ≥25 µg/mL, indicating that OA exerted a
direct antifungal effect against Candida when compared to PA. The formation of biofilms,
which contain dense yeast cells and hyphae, is an important virulence factor for fungal
infection, and correlates strongly with fungal resistance to different antifungal treatments.
The effect of FAs on fungal biofilm formation was also determined. Based on the Candida
viability experiments, FAs at a concentration of 25 µg/mL were used in this biofilm assay.
FA treatment significantly decreased biofilm formation by C. glabrata and C. albicans after 4,
8, or 24 h of incubation (Figure 6B,C), showing that FAs interacted with Candida biofilms
and affected their formation.



Microorganisms 2022, 10, 1803 11 of 20

Microorganisms 2022, 10, x FOR PEER REVIEW 12 of 22 
 

 

the Candida viability experiments, FAs at a concentration of 25 µg/mL were used in this 
biofilm assay. FA treatment significantly decreased biofilm formation by C. glabrata and 
C. albicans after 4, 8, or 24 h of incubation (Figure 6B,C), showing that FAs interacted with 
Candida biofilms and affected their formation. 

 
Figure 6. Effect of fatty acids on Candida spp. (A) Bioluminescence of C. albicans treated with OA, 
PA, or OA/PA at a concentration of 10, 25, 50, 100, or 250 µg/mL after 0, 60, and 120 min. * p < 0.05 
OA, PA, or OA/PA vs. C. albicans; ** p < 0.01 OA, PA, or OA/PA vs. C. albicans; *** p < 0.001 OA, PA, 
or OA/PA vs. C. albicans. (B) Biofilm of C. glabrata challenged with OA, PA, or OA/PA at a concen-
tration of 25 µg/mL after 4, 8, and 24 h. (C) Biofilm of C. albicans challenged with OA, PA, or OA/PA 
at a concentration of 25 µg/mL after 4, 8, and 24 h. C. glabrata (Cg) and C. albicans (Ca): control groups; 
Caspo: standard control, challenge with caspofungin; OA, PA, OA/PA: C. glabrata or C. albicans chal-
lenged with OA, PA, or FAs (OA/PA), respectively. The results were obtained from three independ-
ent experiments. 

3.5. Effect of Fatty Acids on Modulation of the Inflammatory Immune Response and Fungal 
Overgrowth in a Murine Model of DSS-Induced Colitis 

Figure 6. Effect of fatty acids on Candida spp. (A) Bioluminescence of C. albicans treated with OA,
PA, or OA/PA at a concentration of 10, 25, 50, 100, or 250 µg/mL after 0, 60, and 120 min. * p < 0.05
OA, PA, or OA/PA vs. C. albicans; ** p < 0.01 OA, PA, or OA/PA vs. C. albicans; *** p < 0.001 OA,
PA, or OA/PA vs. C. albicans. (B) Biofilm of C. glabrata challenged with OA, PA, or OA/PA at a
concentration of 25 µg/mL after 4, 8, and 24 h. (C) Biofilm of C. albicans challenged with OA, PA,
or OA/PA at a concentration of 25 µg/mL after 4, 8, and 24 h. C. glabrata (Cg) and C. albicans (Ca):
control groups; Caspo: standard control, challenge with caspofungin; OA, PA, OA/PA: C. glabrata or
C. albicans challenged with OA, PA, or FAs (OA/PA), respectively. The results were obtained from
three independent experiments.

3.5. Effect of Fatty Acids on Modulation of the Inflammatory Immune Response and Fungal
Overgrowth in a Murine Model of DSS-Induced Colitis

To assess whether FAs could eliminate C. glabrata from the gut during intestinal
inflammation, mice were administered an oral inoculum of C. glabrata on a day 1, and
every mouse was tagged and followed daily in terms of body weight, clinical score for
inflammation, and fungal and bacterial load in stool samples. During the experiment,
mice received an oral dose of OA and PA at a concentration of 1 mg/kg/mouse daily
for 5 days. With regards to inflammatory parameters, control groups corresponding to
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mice receiving water (CTL), FA alone, and C. glabrata (Cg) did not show any signs of
inflammation in terms of clinical and histologic scores (Figure 7A,B). Furthermore, FA
prevented the increase in clinical scores for inflammation for DFA (DSS + FA) and DCgFA
(DSS + Cg + FA) when compared to groups D (DSS only) and DCg (DSS + Cg) (Figure 7A).
With regard to the histologic score for inflammation, colon sections from D and DCg mice
showed greater leukocyte infiltrate, edema, and epithelial lesions, while FA treatment
significantly decreased the signs of inflammation in colons from DFA and DCgFA mice,
showing that FA prevented epithelial damage by exerting an anti-inflammatory effect
during the development of colitis (Figure 7B,C).
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Cg (C. glabrata), and FAs (OA and PA). Experimental groups correspond to D (DSS), DCg (DSS and C.
glabrata), DFA (DSS + OA/PA), and DCgFA (DSS + C. glabrata + OA/PA). (B) Histologic scores for
inflammation. (C) Histologic analysis of colon sections from DSS-induced colitis. The symbols Θ, Ψ,
δ correspond to epithelial lesions; edema; and leukocyte infiltrate, respectively. Scale bar corresponds
to 50 µm.

3.6. Fungal Load in the Stools and Gut Was Investigated Every 2 Days and in the Digestive Tract
on Day 14 (Colon, Cecum, and Stomach)

No C. glabrata was observed in stools or the gut of the CTL group receiving water. For
Cg, DCg, or DCgFA mice, on day 1, after C. glabrata challenge, a significant fungal load in
stools was observed in all groups, while a rapid decrease in C. glabrata CFU was recorded
on day 2 in all groups, indicating that the mice were not natural hosts for C. glabrata. This
fungal decrease continued until day 6, when elimination of C. glabrata was observed in
the Cg group (control group untreated with DSS) and in mice treated with FAs (DCgFA),
while the DCg group had a significant increase in fungal load from day 12, correlating
with significant signs of inflammation (Figure 8A). In addition, FA treatment significantly
decreased C. glabrata in the stomach, indicating that FAs promoted the elimination of C.
glabrata from the gut (Figure 8B).
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Figure 8. Effect of fatty acids (FAs) on C. glabrata elimination from the gut in mice with DSS-induced
colitis. (A) Determination of the number of C. glabrata colonies recovered from stools. (B) Number
of C. glabrata colonies recovered from the stomach, caecum, and colon. The four groups consisted
of controls (CTL; water), C. glabrata alone (Cg), DSS + C. glabrata (DCg), and DSS + C. glabrata + FAs
(DCgFA). Data are the mean ± SD of six mice per group.
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In terms of the effect of FAs on modulating pathogenic bacteria, in particular E. coli and
Enterococcus faecalis, which are involved in the pathogenesis of IBD, populations of E. coli
and E. faecalis increased significantly during the development of colitis in D and DCg mice
when compared to control mice (Figure 9A,B). These bacterial populations significantly
decreased in mice treated with FAs (DFA and DCgFA), indicating that FAs affected not only
the Candida populations, but also the E. coli and E. faecalis populations.
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Figure 9. Cultivable E. faecalis and E. coli after fatty acid (FA) treatment in mice with DSS-induced
colitis. (A) Number of E. coli colony–forming units (CFUs) recovered from stool samples. (B) Number
of E. faecalis CFUs recovered from stool samples. Stool bacteria were isolated from mice on day 0
before C. glabrata, DSS challenge, and FA treatment. The seven groups consisted of controls (CTL;
water), C. glabrata alone (Cg), oleic and palmitic acids alone (FA), DSS alone (D), DSS + oleic and
palmitic acids (DFA), DSS + C. glabrata (DCg), and DSS + C. glabrata + oleic and palmitic acids (DCgFA).
Data are the mean ± SD of six mice per group.

The expression levels of MyD88, FOXP3, and proinflammatory cytokines (IL-1β, IL-
6, TNFα, and IFNγ) were assessed in the colons (Figure 10D,E,G–J). In contrast to FOXP3,
expression of MyD88, IL-1β, IL-6, TNFα, and INFγ was significantly lower in the colons of
DCgFA mice than in DCg mice, indicating that FAs attenuated the inflammatory response
caused by C. glabrata overgrowth (Figure 10D,E,G–J). In addition, the expression levels of
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TLR-8 were significantly decreased, while dectin-1, aryl hydrocarbon receptor (AhR), and
IL-10 expression increased in DFA and DCgFA mice (Figure 10A–C,F).
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Data are the mean ± SD of six mice per group.

4. Discussion

Alteration of the gut microbiota plays a crucial role in many human diseases, in-
cluding IBD [3,14,30]. Microbial changes in IBD show a decrease in biodiversity of the
gut microbiota, in particular strict anaerobic species within the Firmicutes and Actinobac-
teria phyla [31]. Reduced Bacteroides spp. are also observed in IBD, more so in active
disease than during remission [32]. The gut microbiota is critical to health and is essen-
tial for healthy immune development. Furthermore, some microbial metabolites are key
regulators of the host–gut environment, including FAs produced by microbial fermenta-
tion [33]. In the murine model of DSS-induced colitis, it has been shown that intestinal
inflammation in the gut increased the aerobic bacterial population, in particular E. coli



Microorganisms 2022, 10, 1803 16 of 20

and E. faecalis, but decreased the population of anaerobic bacteria such as L. johnsonii
and B. thetaiotaomicron [10]. Restoration of these two anaerobic bacteria alleviated the
development of colitis in mice, mediated by the modulation of proinflammatory cytokine
and TLR expression [11]. Since L. johnsonii and B. thetaiotaomicron exert a beneficial effect
on intestinal inflammation, the present study identified two FAs from these two bacteria
during their interaction with colonic epithelial cells. A GC-MS analysis revealed that
PA and OA from these two anaerobic bacteria could be detected during their interaction
with colonic epithelial cells. PA (16:0) is a saturated fatty acid that is known to modulate
the immune system by inducing monocyte activation and stimulating proinflammatory
responses in human immune cells [34]. OA (18:1) is an unsaturated fatty acid that exhibits
anti-inflammatory properties in humans [35]. Both PA and OA are found in animals, plants,
and microorganisms. In the present study, OA alone or OA combined with PA reduced the
expression of proinflammatory mediators in Caco-2 cells challenged with DSS. Additionally,
OA alone or OA combined with PA improved intestinal epithelial Caco-2 cells through a
reduction in macrophage migration during inflammation. PA alone did not exhibit any anti-
inflammatory properties on epithelial cells or macrophages when compared to OA. In line
with these data, Finucane et al. showed that OA inhibited ATP-induced IL-1β production
through an AMPK-dependent mechanism in LPS- and PA-exposed macrophages [36].

OA and PA are mediated through FFAR1, FFAR2, and FFA3 [37,38]. FFARs are
critical for metabolic functions and contribute to energy homeostasis and modulation
of inflammation [39]. In terms of the role of FFAR in inflammation, FFAR1 signaling
induced by a gut microbial metabolite of linoleic acid restored intestinal epithelial barrier
impairment [40]. Different studies have demonstrated the role of FFAR2 in modulation of
the inflammatory response [38,40]. Activation of FFAR2 inhibited colitis and inflammation,
while mice deficient in FFAR2 showed a severe inflammatory response in colitis that
was related to an increase in the recruitment of immune cells [41]. In the current study,
OA alone or FAs (OA/PA) increased FFAR1, FFAR2, AMPK, and IL-10 expression in
macrophages. Impaired AMPK in macrophages has been shown to be associated with
greater production of proinflammatory cytokines [42]. Savado et al. reported that the
beneficial effect of OA was dependent on the activation of AMPK, a metabolic sensor that
modulates inflammation [43]. Additionally, Howe et al. showed that OA and PA differently
modulated TLR2-mediated inflammatory responses in macrophages [44]. We observed that
OA increased IL-10 expression in macrophages. These observations were consistent with
experimental studies, which showed that the anti-inflammatory effects of an OA-enriched
diet improved whole-body insulin resistance by reducing the inflammatory response and
increasing IL-10 levels in an animal model of diet-induced obesity [45]. The addition of
OA alone or FAs to LPS-stimulated macrophages decreased COX-2, TNFα, IL-6, and IL-12
production. In line with these observations, Muller et al. showed that the addition of OA to
LPS-stimulated macrophages significantly reduced LPS-induced expression of inducible
nitric oxide synthase (iNos), COX-2, and IL-6 expression [46].

In addition to the effect of FAs on modulation of the inflammatory response in
macrophages and intestinal epithelial Caco-2 cells, these two FAs have also been shown to
exhibit antibacterial and antifungal activity. In the present study, FA treatment significantly
decreased Candida viability and Candida spp. biofilm formation. Muthami et al. showed,
using proteomic analysis of C. albicans, that OA exerted stress conditions such as heat stress
and targeted the proteins implicated in glucose metabolism, ergosterol biosynthesis, lipase
production, iron homeostasis, and amino acid biosynthesis [47]. Like OA, PA inhibited the
virulence factors of Candida spp. such as ergosterol biosynthesis, enzymatic activity, and
mature biofilm formation at various time points [48].

Given that OA and PA were detected during the interaction of L. johnsonii and
B. thetaiotaomicron with colonic epithelial cells, and the combination of OA and PA had anti-
inflammatory and antifungal properties in vitro, these FAs were evaluated in the murine
model of DSS-induced colitis. FA prevented the increase in clinical and histologic scores for
inflammation and allowed the elimination of C. glabrata from the gut. This observation was
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supported by a reduction in the E. coli and E. faecalis populations in mice treated with FAs,
indicating that these FAs were not only able to decrease C. albicans colonization, but also
attenuated intestinal inflammation. Reddy at al. showed that the antioxidant activity of OA
inhibited mucosal damage, as evidenced by lower crypt distortion, edema, and abundant
goblet cells in the mucosa [49]. In this animal model, increased expression of IL-1β and
IL-6 was associated with the development of inflammation and C. glabrata overgrowth in
mice, while FA attenuated the expression of these cytokines. Ben-Dror et al. showed that
the combination of OA and PA significantly alleviated cellular stress and inflammation
marker levels [50]. Additionally, the expression of TLR8 and MyD88 decreased in mice
treated with FAs. This reduction was correlated with the reduction in C. glabrata, E. coli,
and E. faecalis populations in mice treated with FAs, showing that the effect of FAs on
pathogens modulated the inflammatory response mediated via TLR/MyD88. In contrast,
FA treatment increased dectin-1 expression in the colons of DCg mice. This observation was
in line with a previous study showing that dectin-1 expression was increased during the
elimination of C. glabrata in mice with DSS-induced colitis [10]. Expression of AhR, which
is a receptor for aromatic hydrocarbons, was suppressed in the intestines of patients with
IBD [51,52]. AhR −/−mice exhibited severe inflammatory parameters in DSS-induced col-
itis and produced high levels of proinflammatory cytokines, suggesting that the function of
AhR in the intestine is protective [53]. In the present study, we observed that FAs increased
the expression of AhR in mice treated with DSS or DSS+C. glabrata, and this increase in
AhR expression was correlated with the increase in IL-6, TNFα, and IFNγ. Lamas et al.
showed that the administration of three Lactobacillus strains to mice promoted the activation
of AhR by rescuing impaired IL-22 production and allowed the attenuation of intestinal
inflammation [54].

In conclusion, OA and PA were detected during the interaction of L. johnsonii and
B. thetaiotaomicron with colonic epithelial cells. OA alone or FAs reduced the expression of
proinflammatory mediators in Caco-2 cells challenged with DSS. OA alone or FAs increased
FFAR1, FFAR2, AMPK, and IL-10 expression in macrophages. Additionally, OA alone or
FAs decreased COX-2, TNFα, IL-6, and IL-12 expression in LPS-stimulated macrophages. In
the DSS-induced colitis model, oral administration of FAs prevented the increase in clinical
and histologic scores for inflammation, reduced the E. coli and E. faecalis populations, and
eliminated C. glabrata from the gut. Overall, these findings provided evidence that FAs have
anti-inflammatory and antifungal properties. These two FAs decreased the inflammatory
response in macrophages mediated via FFAR1, FFAR2, FFAR3, and AMPK; attenuated the
development of colitis; and were involved in the elimination of C. glabrata from the gut.
This study emphasized the importance of adding unsaturated FAs, in particular OA, to the
human diet to promote the attenuation of intestinal inflammation and fungal elimination
from the gut. In addition, the current work offers new perspectives for exploring the effect
of polysaturated and trans isomers of both OA and PA on fungal overgrowth, as well as
how these FAs can modulate the microbiota biodiversity and intestinal inflammation.
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