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Abstract
Clean water is key for sustainable development. However, large gaps in monitoring data limit our
understanding of global hotspots of poor water quality and their evolution over time. We
demonstrate the value added of a data-driven approach (here, random forest) to provide accurate
high-frequency estimates of surface water quality worldwide over the period 1992–2010. We assess
water quality for six indicators (temperature, dissolved oxygen, pH, salinity, nitrate-nitrite,
phosphorus) relevant for the sustainable development goals. The performance of our modeling
approach compares well to, or exceeds, the performance of recently published process-based
models. The model’s outputs indicate that poor water quality is a global problem that impacts
low-, middle- and high-income countries but with different pollutants. When countries become
richer, water pollution does not disappear but evolves. Water quality exhibited a signif icant change
between 1992 and 2010 with a higher percentage of grid cells where water quality shows a
statistically significant deterioration (30%) compared to where water quality improved (22%).

1. Introduction

Water quality deterioration is a global and grow-
ing problem for human development and ecosystem
health. It negatively impacts health in both the short
and long term, and it decreases labor and agri cul-
tural productivity, whichmay result in lower incomes
for people [1, 2]. As a consequence, targets of sus-
tainable development goal (SDG) 6 aim to ensure
safely managed drinking water and sanitation ser-
vices, improve ambient water quality, and protect
water-related ecosystems. SDG indicator 6.3.2 tracks
bodies of water with ‘good’ ambient water quality,
where ‘good’ refers to a level of dissolved oxygen,
salinity, nutrients (nitrogen and phosphorus) and
acidity that does not damage ecosystem and human
health. In addition, SDG 6.6 aims at protecting and
restoring water-related ecosystems, for which these
selected water quality indicators are highly relevant.

Although there are high ambitions in the SDGs
to improve water quality, there is a paucity of data
across much of the world. Furthermore, when data
are available at a given location (primarily in the
global north), time series are often incomplete, as
illustrated by the GEMStat database (figure 1)—one
of the largest databases of in-situ measurements of
freshwater quality. In addition, a majority of data
points are about 30 years old (figure 1), making
them outdated and largely uninformative for policy
purposes.

Process-based models are currently the main
modeling approach to fill data gaps in the water
literature. Since 2010, there has been a rapid
growth in the number of large-scale models for
predicting indicators such as river water temperature
[3–6], nutrients [7, 8], organic pollution [9–11],
microorganisms [12], chemicals [13], plastics [14],
nanomaterials [15] and pesticides. Limited systems
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Figure 1. GEMStat data for dissolved oxygen (do), electrical conductivity (ec), nitrate-nitrite (noxn), pH, total phosphorus (tp),
and temperature (tw) between 1992 and 2010. The left panel shows the spatial distribution of the original observations per
station. Dots size represents the number of observations per station. Dots color represents the number of indicators measured in a
station. The right panel shows the temporal availability of data.

knowledge and parameter availability exist to mech-
anistically predict water quality variations at high
temporal and spatial resolutions using process-
based models [16]. In other fields, ranging from
forest ecology [17] to development economics [18],
machine learning models are increasingly used to
flexibly predict missing data with high accuracy.

Our paper analyzes the value-added and comple-
mentarity of predictive statisticsmodels to traditional
process based models in filling global data gaps. We
use a fairly standard statistical model, random forests
(RFs), to predict six water quality indicators relev-
ant for SDG 6 at a monthly temporal scale between
1992–2010 and globally at a 0.5◦ resolution. These
indicators are dissolved oxygen (do) concentrations,
electrical conductivity (ec) for salinity, nitrate-nitrite
(noxn) and total phosphorus (tp) concentration for
nutrients, pH for acidification and water temperature
(tw). We compare our estimates to state-of-the-art
process based models [19] to understand the poten-
tial of machine learning approaches at large spatial
scales. Our modeling efforts complement recent res-
ults that have so far focused on nutrient pollution
only [20–22].

2. Methods

RFs are an ensemble, nonparametric modeling
approach. The approach grows a ‘forest’ of indi-
vidual regression trees which improve upon bagging
by using the best random set of predictors at each
node in each tree.

2.1. Water quality data
We use water quality data from GEMStat which is a
globally harmonized database on freshwater quality
developed by United Nations Environmental Pro-
gramme - Global Water Quality (UNEP-GEMS),
maintained by the International Centre for Water

Resources and Global Change and hosted by the Fed-
eral Institute of Hydrology in Koblenz. Raw data
for the six water quality indicators are mapped in
supplementary information 1. As many observations
are not correctly encoded in GEMstat, we clean the
raw data to exclude outliers, including observations
flagged as ‘suspect’ by GEMStat. Furthermore, we
removed observations with abnormal values regard-
ing the properties of the pollutant (ex: pH > 14,
Tw= 0 ◦C in the tropical band)6, and excluded obser-
vations that are abnormal regarding the distribution
of all observations in a given station and were con-
sidered as outliers (i.e. we excluded values xi,t when in
station i, |xi,t|> [x−i,t+ 2.5σx], where x−i,t represents
the average value of all xi,t in station i at tim t and σx

represents the standard deviations of all xi,t in station
i. The R2 of the final models are not sensitive to the
exclusion of these outliers while the root mean square
error (RMSE) of predictions decreases. Finally, some
countries are overrepresented in our sample (Brazil
forDO, TP andTw;NewZealand for EC; SouthAfrica
for NOxN and pH). To limit spatial bias in the results,
we randomly sampled observations from the country
with the highest number of observations and limit the
number of observations to that of the second most
represented country.

2.2. Predictors
We constructed a data set of possible drivers to train
and predict the model (supplementary information
table 1). Data come from 14 sources and include
sanitation related variables, gross domestic product
(GDP) per capita [23], population [24], urbanization
rate, fertilizer use [25], croplands extent, livestock,

6 All values outside the following thresholds were systematically
dropped: DO ∈ [0, 18 mg l−1], EC ∈ [0, 10 000 µg l−1], NOxN
∈ [0, 90 mg l−1], pH ∈ [0, 14], TP ∈ [0, 90 mg l−1] and Tw ∈ [0,
100 ◦C].
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precipitation and temperature [26], runoff [27], elev-
ation, distance to shore, soil composition (soil pH and
EC) [28], and river flows [29]. Squares, cubes, and
interactions of variables were constructed to provide
additional flexibility to the model. In total, our data-
base contains 66 possible drivers (including squares,
cubes and interactive terms).

2.3. Model
Model estimation, fitting, and prediction were done
with the ranger and caret libraries in R 4.1 [30–32].
Model training for each water quality indicator was
done as follows. First, covariates with a near zero vari-
ance were excluded. Second, we randomly split the
sample into ten folds and use cross-validation (CV)
techniques—meaning that a given observation is used
only to train or predict the model, but not for both.
Third, we modeled water quality as a function of its
drivers. We let the algorithm identify which variables
to include formaking accurate predictions.We estim-
ate for eachwater quality indicator 1000 trees. Fourth,
we explored which drivers of water quality were selec-
ted by the model with variable importance plots. We
checked that these drivers are coherent with the liter-
ature using partial dependence plots [33]. Fifth, the
final model is used to predict global values for all
available grid cells (around 60 000), at a monthly
time scale between 1992 and 2010. For each pollutant,
we statistically analyzed trends in predicted pollution
using modified Mann–Kendall trend test to account
for auto-correlation [34]. Mann–Kendall tests were
performed on a random sample of 3000 grid cells for
each pollutant.

We chose RF for its general prediction perform-
ance compared to other regression techniques such as
linear, partial least squares or support vector regres-
sions. However, RF can present drawbacks, such as
its sensitivity to time and/or spatial autocorrelations
[35]. Such dependencies may lead to over-optimistic
predictions. We test the accuracy of the predictions
using station-blocs CV and wa ter basin leave one-
out CV (LOOCV). In the station-bloc CV, instead
of randomly allocating water quality observations to
folds, we attributed monitoring stations to ten dif-
ferent folds and trained the model using CV. In the
basin LOOCV all observations from a given basin
were successively excluded from the training proced-
ure and only used for testing. This was done to simu-
late the absence of a large geographical area. Finally,
we conducted a temporal validation using an annual
LOOCV approach (all observations of a given year are
sequentially excluded from the training to be used for
testing).

2.4. Area of applicability
The validity and spatial transferability of RF predic-
tions relies on the similarity that exists between the
values of the predictors in the training and prediction

samples. The spatial imbalances in our training data-
set means that our model could not be able to predict
trustworthy values for some parts of the world. This is
for example the case for Sub-Saharan Africa for which
we have extensive observations from South-Africa,
and more limited observations from Ghana, Lesotho,
Mali, Senegal, Sudan and Tanzania. Recent advances
allow us to determine area of applicability (AOA)
and dissimilarity index (DI) [36]. AOA is defined
as the area, for which the CV error of the model
applies. It is based on DI, a metric based on the min-
imum distance to the training data in the predictor
space. We determine the AOA for each water quality
indicator [37].

3. Results

3.1. Accuracy
R2 for random splits, basin-block, station-block cross
validation, and temporal splits are synthetized in
table 1 and illustrated in supplementary information
figures 2–5. A high correlation was found between
observed and predicted water quality. With stand-
ard random splits validation techniques, the model
explains 81% of the observed variability in the test-
ing sample for pH, 70% for EC, 79% for DO, 71% for
NOxN and 94% for Tw. This performance compares
well to, or exceeds, the performance of other recently
published process-basedmodels. For example, RMSE
of predictions for water temperature is half as large as
reported for global process-based water temperature
models [3–6]. A lower model performance was found
for TP, where it predicts 37% of the observed variab-
ility in the testing sample. The prediction power of
the models decreases, without collapsing, when using
spatially structured CV based on basins or stations.
R2 for Tw decreases only from 94% to 87%. For DO
and pH, R2 are also preserved, but at lower levels.
Higher decreases are observed for EC, NOxN, and
TP, particularly for basin-block CV. However, fur-
ther tests attest that this loss of predictive power is
driven by a handful of basins (e.g. Schelbe basin for
EC). The model preserves predictive power but cau-
tions need to be taken to interpret local values. When
station-block CV is used, more predictive power is
maintained compared to basin-block CV. Finally, we
follow previous assessments in process-based mod-
els by splitting water quality observations into three
classes (good, medium or bad, thresholds displayed
in supplementary information table 2). Our model
accurately predicts the class of water quality and out-
performs the process-based models in this task. As
an illustration, for salinity, accuracy increases from
80% using a process-based model (appendix B of
[19]) to 96% in the data-driven approach described
in this paper. Our predictions also compares well to
other recently developedmachine learningmodels for
nutrient pollutants [21]. The difference in accuracy

3
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Table 1. Synthesis of models’ performance for each type of validation. For random and station cross-validation (CV), ten folds were
constructed. For comparability with process-based models such as UNEP [19], we split water quality observations in three classes (bad,
medium and good) and determine what percentage of the predicted values for water quality falls into the accurate class.

Random CV Station CV Main Basin LOOCV Year LOOCV

# Obs. R2 (%)
Class

Acc. (%) # Stations R2 (%)
Class

Acc.(%) # Basins R2 (%)
Class

Acc. (%) R2 (%)
Class

Acc. (%)

DO 81 401 79 90 1724 69 81 173 62 80 90 85
EC 90 993 70 96 1494 36 87 192 28 86 73 93
NOxN 111 535 71 82 2154 35 57 163 35 43 73 71
pH 137 471 81 98 2598 64 97 221 41 97 77 98
TP 78 257 37 84 1610 19 61 135 1 50 38 75
Tw 81 499 94 96 2089 9 91 189 87 89 93 93

between the different pollutants is likely to be driven
by several factors, including the difference in qual-
ity of input data for both the pollutants and drivers,
the type of drivers included in the model, and the
higher inherent complexity to predict certain type of
pollutants than others. This higher difficulty to pre-
dict some pollutants more than others, particularly
with spatially-structured validation, translates into
the number of drivers needed in the model to predict
a pollutant accurately (see supplementary figure 7).
For Tw, only two drivers have a variable importance
larger than 50 (the square and cube of monthly air
temperature, supplementary figure 7). On the other
hand for nutrient pollutants (NOxN and TP), all 10
drivers included in the model have a variable import-
ance larger than 50 (supplementary figure 7). This
highlights the higher complexity to predict nutrient
pollution than Tw. For DO, pH, and EC, 2, 5, and 6
drivers have a variable importance larger than 50.

3.2. Predictions
Monthly time series data from 1992 to 2010 are gen-
erated for the six water quality indicators. Figure 2
shows the predicted average value of water qual-
ity between 2000 and 2010. Figure 3 displays the
predicted change in annual average water quality
between 1992 and 2010. Table 2 synthetizes the main
results of the trend analyses. Water quality exhibited
a significant change between 1992 and 2010 in 52%
of the grid cells on average. For each pollutant, the
percentage of grids where water quality deteriorated
(30%) is greater than the percentage of grids where
water quality improved (22%).

Supplementary information 7 highlights that a
combination of hydro-climatic and socio-economic
variables best predict all pollutants. Supplementary
information 9 maps DI. The results indicate that
for EC, Temp, TP and to a lesser extent pH, we
can confidently extrapolate predicted water quality in
continents like Sub-SaharanAfrica despite the limited
input water quality data. This is because the model
can complement local African data by data fromother
continents, possibly at different times (e.g.: Latin
America or South Asia in the 1990s shared important
similarities with large parts of Sub-Saharan Africa

in later decades). For DO and NOxN, the proced-
ure indicates that uncertainties exist in some areas
to predict water quality, including in Sub-Saharan
Africa.

Unsafe levels of water quality are widely found
in most parts of the world, driven by both climate
and anthropic pressures. Low-, middle- and high-
income countries all face unsafe levels but for differ-
ent types of pollutants. Our model uncovers water
quality hotspots in data scarce regions. Low levels of
DO—a sign of unsafe water when levels are below
5–6.5 mg l−1—are widely predicted in large parts of
Sub-Saharan Africa, Latin America, and South and
Southeast Asia (figure 2). Along with hydro-climatic
variables, the lack of access to basic sanitation is a
key covariate associated with low levels of DO (sup-
plementary information 7). The infrastructure gap
that prevails in most low- and middle- income coun-
tries explains these low values of DO. In places where
the infrastructure gap has widened because of high
population growth and low investment in sanitation,
DO has decreased during the study period. This is,
for example, the case for coastal parts of China, India,
Nepal, or in the northeast region of Brazil.

The concentration of NOxN in water is the
highest in densely populated areas with intensive eco-
nomic activities. England, Belgium, Germany, and
some parts of France are the predicted global hotspots
of nitrate-nitrite, notably because of intensive animal
farming (poultry and pig) and agricultural activit-
ies. The challenge of NOxN in most high-income
countries has persisted during the period studied and
has worsened in fast-growing economies, such as in
South Asia, East Asia (e.g. eastern China) and parts
of Mexico (figure 3). In these fast-growing areas,
intensive animal farming, combined with high popu-
lation density, excessive fertilizer use, and infrastruc-
ture gaps contribute to high nutrient pollution levels
(supplementary information 7). A certain degree of
caution should be taken when interpreting data from
some parts of East Asia, because of the dissimilarities
between the training and testing samples for NOxN.

High levels of salinity, as reflected by EC, are
driven by geological conditions, drier climates, and
the use of fertilizers, which is in correspondence with

4
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Figure 2. Global maps of river water quality risks for SDG pollutants dissolved oxygen (DO), electrical conductivity (EC),
nitrate-nitrite (NOxN), pH, total phosphorus (TP), and temperature (Tw). Maps below present average values between 2000 and
2010. Regions with river discharge less than 1 m3 s−1 or with missing data on covariates (e.g. Indonesia) are masked (gray). Blue
and green represent good water quality, as defined by indicative thresholds provided in supplementary table 2. Yellow, orange and
red represent moderate and poor water quality. For Tw, the color coding does not represent quality but the average level.
Transparency was added to the cells in which a DI was too high between the training and predictions samples (supplementary
information 9).

the overview salinity drivers identified in various river
basins across the world [38]. Thus, Australia, Mex-
ico, the Southern USA and Central Asia are salinity
hotspots because of their drier climates (supplement-
ary information 7). Over the study period 1992–2010,
EC is predicted to have increased the most in India.
Turning to Tw and pH, we find that soil composition
and air temperature are, respectively, strong determ-
inants of observed levels (supplementary informa-
tion 6). Large parts of the world have experienced
increases in water temperature greater than 1 ◦C in
less than 20 years because of climate variations and
change. Such increases in water temperature can have
detrimental effects on aquatic life [39–41].

4. Discussion and conclusion

Filling data gaps for water quality will be key to bet-
ter understanding where hotspots are, to determine
trends, and to thus understand our progress towards

reaching SDG6 targets. Data-drivenmodels, based on
well-established statistical algorithms, can play a sig-
nificant role in this endeavor and have shown suitable
model performance. They flexibly identifies combin-
ations of factors among a large set of possible drivers
to provide accurate estimates of water quality that
replicate intra- and inter-annual variations in water
quality. They are robust to out of sample geograph-
ical predictions and perform at least as well as tradi-
tional measurement tools, thus offering a promising
path forward for water quality monitoring meas-
urement. Because of their flexibility, high accuracy
and ability to model uncertainties, machine learn-
ing approaches should be seen as complementary to
existing process-based models (e.g. by helping identi-
fying the selection and the inclusion of alternative or
additional divers).

Our results show that critical regions and hotspots
of water pollution are found across low-, middle- and
high-income countries, but for different water quality
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Figure 3. Evolution of water quality between 1992 and 2010 for SDG indicators dissolved oxygen (DO), electrical conductivity
(EC), nitrate-nitrite (NOxN), pH, total phosphorus (TP), and temperature (Tw). Values for 1992 were estimated as the annual
averages for the years 1992, 93 and 94. Likewise, values for 2010 were estimated as the annual averages of the years 2008, 09 and
10. This was done to limit possible anomalies. Regions with river discharge less than 1 m3 s−1 or with missing data on covariates
(e.g. Indonesia) are masked (gray). Blue and green represent an improvement in water quality (e.g. decreases in DO, increases in
NOxN). Orange and red represent a worsening of water quality. For pH, deviations with respect to pH= 7 were calculated. For
Tw, the water coding highlights cooling or warming. Transparency was added to the cells in which a DI was too high between the
training and predictions samples (supplementary information 9).

Table 2. For each pollutant, we report the percentage of grid cells
showing a statistically significant donward trend, no trend, and
statistically significant upward trend between 1992 and 2010
(p-value < 0.05). Trends and significance were tested using
modified Mann–Kendall tests to account for serial
auto-correlation.

Pollutant Decrease (%) Stable (%) Increase (%)

DO 28 50 22
EC 25 49 26
pH 24 47 28
NOxN 26 45 29
TP 23 43 33
Tw 9 55 36

indicators. Fast growing middle-income countries
tend to suffer from a combination of pollutants found
in both low- and high-income countries. This is par-
ticularly salient when synthetizing all pollutants in
a synthetic water quality indicator (supplementary
information 10).When the income levels of countries

increase, our results illustrate that water quality does
not automatically improve: economic development
does not solve the problem of poor water quality, but
transforms it. In low-income countries, the dominant
concern is water pollutants of poverty resulting from
poor sanitation and litter that are mostly driven by
infrastructure gaps in a fast-changing environment
[42, 43]. Elsewhere there are concerns with pollutants
of prosperity that result frommore intensive economic
activities, captured here by NOxN or in other stud-
ies by pesticide [44], plastic [14] and pharmaceut-
ical pollutions [45]. Reaching SDG targets will require
further investments in treatment, as well as emission
control efforts to prevent the pollution from happen-
ing in the first place.

Data driven models, such as the one presented
here, are an accurate, low-cost and fast method to
complement in-situ measurements collected in lakes
and rivers. However, the performance of the models
also strongly depends on the quality of the input

6
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datasets that are used. Although GEMStat is critically
important for researchers, policy makers, and civil
society, it suffers from important drawbacks. While
some regions are well covered in the water quality
monitoring database, such as North America, Brazil,
and India, other regions such as Central and North
Africa, Western and Central Asia, the South Pacific,
andAustralia are characterized by large data gaps both
in time and space. The absence of water quality mon-
itoring data for large geographic areas such as sub-
Saharan Africa, might introduce biases in the predic-
tions if there are different drivers of pollution across
regions.

Our model serves as a starting point and future
work could strengthen the results by expanding to
other relevant water quality indicators, using new
algorithms (including hydrological grounded mod-
els), including more precise drivers, and employ-
ing richer water quality training data. We believe
that the flexibility of the approach and its transpar-
ency can make these machine learning tools useful
in the near real-time monitoring of water quality,
notably in the context of the SDGs. To this end, an
important conclusion of this research is the critical
need to expand the spatial coverage of current water
quality databases to data-poor regions, notably East-
Asia and Sub-Saharan-Africa, to enhance the spatial
transferability of the results. This work also high-
lights importance to sample appropriate anthropo-
genic and environmental factors thatmay impact pol-
lution dynamics.
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