

Characterizing microbial interactions in controlled and natural microbial communities

Maxime Lecomte, Simon Labarthe, David James Sherman, Hélène Falentin, Clémence Frioux

▶ To cite this version:

Maxime Lecomte, Simon Labarthe, David James Sherman, Hélène Falentin, Clémence Frioux. Characterizing microbial interactions in controlled and natural microbial communities. Workshop Sym-BioDiversity, May 2022, Santiago, Chile. hal-03857848v2

HAL Id: hal-03857848 https://hal.inrae.fr/hal-03857848v2

Submitted on 9 Dec 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Characterizing microbial interactions in controlled and natural microbial communities

Maxime Lecomte, Simon Labarthe, David Sherman, Hélène Falentin, Clémence Frioux

Workshop SymBioDiversity 2021-2022

Industrial cheese starter bacterial community as a controlled ecosystem

Which biological phenomena rules aroma compounds production?

Bacterial fermentation process in cheese

Model the metabolism enable us to monitor compounds

Multi-omics strategy

Genes expression	
(metatranscriptomic	s)

Acétate-HPLC-F1	Acétate-HPLC-F3
0,01	0,01
0,04	0,05
0,44	0,36
0,92	0,81
1,05	0,97
2,00	1,77
2,59	2,52

Metabolomics data

Growth and pH data in pure cultures

To integrate all this data, we first reconstruct the metabolism

Inference of genome-scale metabolic networks

FBA as a numerical model of metabolism

$$\text{Stoichiometric matrix} = \left(\begin{array}{cccc} & \text{metabolites} & r_1 & \dots & r_n \\ & \text{A} & \left(\begin{array}{cccc} -1 & \dots & 0 \\ 1 & \dots & -2 \\ 0 & \dots & 1 \end{array} \right) \\ \end{array} \right)$$

$$\max v_{growth}$$
 such that $S.v = 0$ and $v_{min} \leq v \leq v_{max}$

FBA as a numerical model of metabolism

Stoichiometric matrix =
$$\begin{array}{c} \text{metabolites} & r_1 & \dots & r_n \\ \text{A} & \begin{pmatrix} -1 & \dots & 0 \\ 1 & \dots & -2 \\ 0 & \dots & 1 \\ \end{pmatrix}$$

 $\max v_{growth}$ such that S.v = 0 and $v_{min} \leq v \leq v_{max}$

Flux distribution that maximizes biomass production

Orth, J. D. et al,2010, *Nature Biotechnology* King, Z. et al,2015. *PLoS Computational Biology*

FBA as a numerical model of metabolism

Stoichiometric matrix =
$$\begin{array}{c} \text{metabolites} & r_1 & \dots & r_n \\ \text{A} & \left(\begin{array}{cccc} -1 & \dots & 0 \\ 1 & \dots & -2 \\ 0 & \dots & 1 \end{array} \right)$$

 $\max v_{growth}$ such that S.v = 0 and $v_{min} \leq v \leq v_{max}$

Flux distribution that maximizes biomass production

Individual models are in accordance with literature

Orth, J. D. et al,2010, *Nature Biotechnology* King, Z. et al,2015. *PLoS Computational Biology* Thierry, A et al, 2011, International Journal of Food Microbiology Loux, V. et al, 2015, BMC Genomics

Liquid environment

solid environment

The consistency of the environment changes

Liquid environment

solid environment

 T_0 T₇ weeks

The consistency of the environment changes A dynamic process

List of pre-defined interest compounds:

$$\partial_t m_j = \mu_{FBA_i}(c)_j b_i$$

List of pre-defined interest compounds:

$$\partial_t m_j = \mu_{FBA_i}(c)_j b_i$$

Bacterial concentration:

$$\partial_t b_i = q_s(b_i) \mu_{FBA_i}(c)_i b_i$$

List of pre-defined interest compounds:

$$\partial_t m_j = \mu_{FBA_i}(c)_j b_i$$

Bacterial concentration:

$$\partial_t b_i = q_s(b_i) \mu_{FBA_i}(c)_i b_i$$

q_s = Quorum sensing

$$q_s(b_i) = 1 - \frac{b_i}{\beta_i}$$

dFBA results of pure cultures

dFBA results of pure cultures

Individual dFBA simulations are performed

Fit with experimental data ? → growth and pH curves and metabolomics data

Optimizing dynamic models on pure cultures

$$J(b, pH|b_{exp}, pH_{exp}) = ||b - b_{exp}||^2 + \alpha ||pH - pH_{exp}||^2$$

Optimizing dynamic models on pure cultures

$$J(b, pH|b_{exp}, pH_{exp}) = ||b - b_{exp}||^2 + \alpha ||pH - pH_{exp}||^2$$

- Lambda 🍃

- C1 & C2

- K lactate

- QS

- Vmin & Vmax lactose

- Lactate_upper

Identification of parameters to fit with experimental data

dFBA results after optimization

dFBA results after optimization

The small number of parameters is sufficient to explain the experimental data

What about metabolomics?

Community dFBA

Community dFBA model

Consider the change in medium volume

 Each bacterium optimizes its own biomass

Optimised dFBA models for each bacterium

$$\partial_t b_i = q_s(b_i) \mu_{FBA_i}(c)_i b_i + \mathcal{V}(t) b_i$$

$$\mathcal{V}(t) = rac{\partial_t v(t)}{V(t)}$$
 where $v(t) = egin{cases} V_M & ext{if} t \leq t_M \ V_M + rac{t - t_M}{t_D - t_M} V_D & ext{if} t_M \leq t \leq t_D \ V_D & ext{if} t \geq t_D \end{cases}$

Bacterial growth computed with community dFBA fits with experimental data

Some metabolites fit with metabolomics data ...

- The model do not capture all modifications brings by the community
- Integration of transcriptomic data is not significantly different
- Is qualitative result enough for characterizing communities?

Characterizing natural communities (meta)genomics data

Calculating cooperation and competition potentials

Characterizing natural communities with (meta)genomics data

Not easily scalable

Freilich. S, et al,2011, *Nature Communications*Zelezniak, A et al,2015, *Proceedings of the National Academy of Sciences of the United States of America*.

- Numerical methods

Discrete methods

Levy et al, 2015., *BMC Bioinformatics*. Kreimer, A et al, 2012 *Bioinformatics*.

Discrete modelling of metabolism using metabolic potentials (work in progress)

Number of metabolites produced

metabolites

Related to limiting substrates consumed

reactions

Related to limiting substrates consumed

Number of exchanged metabolites

Unify cooperation metrics to one unique score

Model test on designed communities

Metrics are not linearly correlate with the community size

of size 5 to 200

Competition score test on real data

Identify some correlation between our score and the experimental data

Conclusion

Numerical accuracy not mandatory to characterize community

 Our method based on discrete modeling seems to characterize natural community → improve cooperation and competition scores

• Test on different communities \rightarrow Hiring data (genomic data)

- David Sherman
- Clémence Frioux
- Simon labarthe

- Hélène Falentin

Thanks for your attention

List of pre-defined interest compounds:

$$\partial_t m_j = \mu_{FBA_i}(c)_j b_i$$

$$c_k = \begin{cases} \lambda_i \max(-m_k/(\Delta_t \sum_{i \in \mathcal{B}} b_i, c_k) & \text{if } 1 \neq k \neq N_m \\ = e_k & \text{if } N_m + 1 \leq k \leq N_c \end{cases}$$

Summary of the interactions in the cheese ecosystem

