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Abstract 
Animal traits, such as body weights, and rumen microbiota composition have been proposed as 
feed intake predictors. The present study assessed what are the best predictors out of animal 
traits, metabarcoding data or a combination of both. Predictions were carried out with sparse 
Partial Least Squares Regression (sPLSR), Support Vector Regression (SVR) and Random 
Forest Regression (RFR). With all three approaches, best feed intake predictions were obtained 
with animal traits only. The generalizability of models to animals of an independent year was 
assessed: negative (<-0.1) to high (>0.8) correlations between actual and predicted feed intakes 
were obtained. Finally, estimated breeding values (EBVs) were computed for actual and 
predicted feed intakes. These EBVs were highly correlated (>0.9) depending on the prediction 
approach. It mainly varied with proportions of true and predicted feed intakes used during the 
genetic evaluation. 
 
Introduction 
To assess feed efficiency of sheep, expensive feed intake recording is necessary. Thus, most 
meat sheep breeding companies cannot afford to select for feed efficiency. Predicting feed 
intake or feed efficiency could be one solution. As reviewed by Pittroff and Kothmann (2001), 
many sheep feed intake prediction models include live weight. Omics data were also used as 
predictors, such as 16S data to predict sheep Residual Feed Intake (RFI) with a general linear 
model (Ellison et al., 2019), or rabbit feed intakes with mixed models and SPLSR (Velasco-
Galilea et al., 2021). 
We have chosen to focus on the prediction of feed intake since it intervenes in the definition of 
many complex phenotypes such as feed efficiency or the environmental footprint. Moreover, to 
our knowledge, there is no comparison between accuracies of feed intake predictions from 
animal traits or microbiota compositions with a large number of sheep and machine learning.  
The first goal of our study is to check whether microbial information improves feed intake 
predictions with different machine learning approaches. To do so, we compare accuracies of 
different machine learning approaches (sPLSR, SVR and RFR) applied to several sets of 
predictors (body weight, body composition traits, and/or ruminal microbiota composition). 
Then, the second objective is to see if a machine learning model could be generalized to new 
animals raised a different year. Finally, the last objective is to assess if a genetic selection with 
machine learning predictions is feasible.  
 
Materials & Methods 
Animal husbandry and traits 
Overall 277 Romane male lambs were reared at the INRAE Experimental Unit P3R between 
2018 and 2020. Animals originated from two experimental divergent lines selected for a 
decreased or increased RFI. Lambs are part of the second generation of selection in 2018 
(n=103) and the third generation in 2019 (n=101) or 2020 (n=73). The divergence represented 
1.9 genetic standard deviations during the third generation. After weaning, lambs were 
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accustomed to an ad libitum diet with low-energy concentrates. When animals were 
approximately 3 months old, feed intakes were recorded during six weeks. Average Daily Feed 
Intake (ADFI) was computed as the daily feed intake mean over six weeks. At the beginning 
and end of the trial period, body weights were recorded, then average daily weight gain and 
growth capacity (estimated body weight at 145 days old) were calculated. Back ultrasound 
measurements enabled to estimate the back-fat thickness and muscle depth at the trial end.  
 
Ruminal microbiota composition 
At the end of the six-weeks trial, ruminal fluid was collected with a medical gastric tube and 
DNA was extracted from samples. The V4-V5 region of 16S rRNA gene was amplified and 
then sequenced at the Genomic and Transcriptomic Platform (INRAE, Toulouse, France). 
Sequences were processed, cleaned and clustered into Operational Taxonomic Units (OTUs) 
with FROGS tools and pipeline (Escudié et al., 2018). OTUs were pre-filtered according to 
their relative abundance: only OTUs representing at least 0.005% of all sequences were kept. 
OTUs zero counts were imputed with Bayes-Laplace multiplicative replacement (Martín-
Fernández et al., 2015) before applying the Centered LogRatio (CLR) transformation. CLR 
coordinates were filtered to retain OTUs with less than 90% imputed values each year. Finally, 
the 496 retained OTUs coordinates were adjusted for the age, the year, the pen and sequencing 
plate effects with a robust MM linear regression (Maechler et al., 2017).  
 
Machine learning 
Three different approaches of machine learning were carried out to predict ADFI: sparse Partial 
Least Squares (sPLSR, mixOmics R package), support vector (SVR, e1071 R package) and 
random forest (RFR, randomForest R package) regressions. Different sets of prediction features 
were considered: animal traits (body weights, growth traits and body composition), or adjusted 
16S CLR coordinates. Those feature sets were used separately or were combined together by 
concatenation for ADFI predictions. Successively, animals of one year were used as a testing 
set. To avoid a bias, 2018 will not be used as a testing set because 2020 lambs are the progeny 
of 2018 individuals. Animals of the two remaining years were used as training/validation sets: 
10-fold cross-validations repeated 50 times were used to tune the hyperparameters and 
maximize the coefficient of determination (R2) between predicted and actual ADFI phenotypes. 
Models were then fitted without the testing dataset. Next, ADFI of testing set animals were 
predicted with each predictor set and machine learning model. Pearson correlations between 
predicted and actual ADFI phenotypes were computed. Within one testing set, significance of 
differences between machine learning approaches and features sets were tested with Dunn and 
Clark’s z test (Dunn and Clark, 1969). P-values were adjusted with Bonferroni’s procedure.  
 
Breeding values estimation 
Breeding values were estimated with PEST (Groeneveld et al., 1990), considering a feed intake 
heritability of 0.28 (Tortereau et al., 2020). Two sets of populations were used to estimate 
breeding values: an entire Romane population named E (born from 2009 to 2020), with 6,419 
animals in the pedigree including 1,900 with ADFI records; one subset population named S 
(2018 to 2020), with 4,102 animals in the pedigree including 277 with records. The model 
included the fixed effects of year, pen, early life traits (litter size, suckling method), sex and 
body weight as a covariate. EBVs of actual ADFI and EBVs of predicted phenotypes are 
estimated. EBVs were only estimated for phenotypic ADFI predicted with accurate strategies 
(R2> 0.7). 
 
Results 
Comparison of different predictors and machine learning approaches for phenotypic ADFI 



Table 1 details accuracies of ADFI predictions for the three machine learning models carried 
out with 16S data, animal traits and a concatenation of both. Considering correlations between 
actual and predicted ADFI phenotypes, there was no significant difference between sPLSR, 
SVR and RFR accuracies whatever the testing set or the predictors.  
With all testing sets and machine learning techniques, correlations were significantly lower 
when only 16S data was used as the feature set. Whatever the testing set and the machine 
learning model, combining animal traits and 16S data together as predictors did not significantly 
increased correlations. 
 
Table 1. Pearson correlations between predicted and actual ADFI phenotypes of testing 
set animals. 
 

  Testing sets 
Models Features 2019  2020 

sPLSR 
16S -0.116a  0.191a 

Animal  0.763b  0.810b 

Animal+16S  0.726b  0.818b 

SVR 
16S -0.040a  0.351a 

Animal  0.766b  0.802b 

Animal+16S  0.763b  0.817b 

RFR 
16S  0.031a  0.312a 

Animal  0.777b  0.773b 

Animal+16S  0.709b  0.737b 

a,b Within one testing set, correlations with no common letter significantly differ (adjusted P<0.05, Dunn and 
Clark’s z test). 

 
Relationship between EBVs of predicted and actual ADFI 
 
The quality of predicted ADFI EBVs is presented in Table 2. Within one machine learning 
approach and regardless of the testing set, correlations between EBVs are significantly higher 
when a full set of records (E) is used during the genetic evaluation compared to a partial set (S).  
 
Table 2. Pearson correlations between predicted and actual ADFI estimated breeding 
values of testing set animals. 
 

  Testing sets and populations1 

  2019  2020 
Models Features S E  S E 

sPLSR Animal 0.681a 0.868c  0.843a 0.954b 
Animal+16S 0.698ab 0.876cd  0.852a 0.956b 

SVR Animal 0.624b 0.814d  0.848a 0.962b 

Animal+16S 0.650ab 0.817cd  0.839a 0.956b 

RFR Animal 0.731ab 0.891cd  0.863a 0.952b 
Animal+16S 0.698ab 0.880cd  0.848a 0.959b 

1 Populations differ in the number of records used for EBVs estimation. S: subset population; E: entire population. 
a,b Within one testing set (2019 or 2020), correlations with no common letter significantly differ (adjusted P<0.05, 
Dunn and Clark’s z test). 
 
In 2020, no significant difference could be found between machine learning approaches. 
However, when only animal traits were used as 2019 ADFI predictors, sPLSR performed 
significantly better than SVR, with RFR having intermediate performances. Finally, the 



combination of animal traits and 16S data as predictors did not significantly improve 
correlations between actual and predicted ADFI EBVs. 
 
Discussion 
Rumen microbiota composition alone lead to poorly accurate ADFI predictions with sPLSR, 
SVR and RFR, which was also observed with sPLSR carried out with rabbit caecal microbiota 
compositions (Velasco-Galilea et al., 2018). Predictions made with animal traits reached higher 
performances, whatever the machine learning model. The integration of animal traits and 
microbiota compositions did not improve predictions. Therefore, our results do not advocate 
for the use of metabarcoding data to predict feed intake. However, the microbiota composition 
could be more relevant when one is trying to predict feed efficiency. Ellison et al. (2019) 
managed to predict RFI of 20 animals with 16S data and achieved a correlation of 0.71 between 
actual and predicted feed efficiency. In the future, another comparison will be done with RFI 
to assess the potential of 16S and 18S data predictors and determine the relevance of archaeal, 
bacterial, fungal and protozoal compositions. 
Depending on testing sets and predictors, no consistent difference was found between the three 
modelling approaches when it comes to predict ADFI and then estimate its EBVs. Only SVR 
performances seemed to be less stable across testing sets when predicted ADFI EBVs were 
compared to actual ADFI breeding values.  
The moderate or high correlations achieved between EBVs of predicted and actual ADFI 
suggests that predictions could be used for genetic selection of feed intake. Further research in 
the phenotyping strategy should be carried out, especially about the ratio between predicted and 
recorded phenotypes. In the present study only two testing sets were used to assess 
performances of machine learning predictions. Those testing sets were constituted as 
independent cohorts, i.e with animals raised a different year than the training set. When 
predictors are sensitive to environmental factors, such as microbiota compositions, the presence 
of contemporaneous animals in both training and testing sets should improve predictions. 
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