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Linking quantitative genetics
with community-level
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Cyril Firmat1,2* and Isabelle Litrico2
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RD150, Lusignan, France

Plant breeding is focused on the genotype and population levels while
targeting effects at higher levels of biodiversity, from crop covers to
agroecosystems. Making predictions across nested levels of biodiversity
is therefore a major challenge for the development of intercropping
practices. New prediction tools and concepts are required to design breeding
strategies with desirable outcomes at the crop community level. We reviewed
theoretical advances in the field of evolutionary ecology to identify potentially
operational ways of predicting the effects of artificial selection on community-

level performances. We identified three main types of approaches differing

in the way they model interspecific indirect genetic effects (IIGEs) at the
community level: (1) The community heritability approach estimates the
variance for IIGE induced by a focal species at the community level; (2)

the joint phenotype approach quantifies genetic constraints between direct
genetic effects and IIGE for a set of interacting species; (3) the community-
trait genetic gradient approach decomposes the IIGE for a focal species
across a multivariate set of its functional traits. We discuss the potential
operational capacities of these approaches and stress that each is a special
case of a general multitrait and multispecies selection index. Choosing one

therefore involves assumptions and goals regarding the breeding target and

strategy. Obtaining reliable quantitative, community-level predictions at the
genetic level is constrained by the size and complexity of the experimental
designs usually required. Breeding strategies should instead be compared
using theoretically informed qualitative predictions. The need to estimate
genetic covariances between traits measured both within and among species
(for IIGE) is another obstacle, as the two are not determined by the exact same

biological processes. We suggest future research directions and strategies
to overcome these limits. Our synthesis offers an integrative theoretical

framework for breeders interested in the genetic improvement of crop

communities but also for scientists interested in the genetic bases of plant

community functioning.

KEYWORDS

community genetics, eco-evolutionary dynamics, breeder’s equation, agroecology,
anticipatory predictions, general mixing ability (GMA), specific mixing ability (SMA),
genetic variance
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Introduction

Ongoing agricultural intensification, which started during
the last century, has successfully increased yields by relying
on large-scale monoculture. But it is now generally accepted
that this form of agriculture is not sustainable and does not
ensure stable food supplies in the current context of high
environmental variability (Lin et al., 2008). Field experiments on
grassland communities in the two last decades have established
that species diversity is a strong determinant of yield, yield
stability, and other agroecosystem functions (Hector et al., 1999;
Tilman et al., 2001; Isbell et al., 2015). Congruent benefits have
been obtained for cereal–grain legume intercrops (Hauggaard-
Nielsen et al., 2008; Bedoussac et al., 2015; Annicchiarico et al.,
2019; Demie et al., 2022). Together, these results suggest that,
compared to monoculture, multispecies cover crops could be
a way to maintain and stabilize high yields while reducing
the demand for chemical inputs. Overall, growing several crop
species in the same plot, either through intercropping, the use
of companion crops, or agroforestry, is now among the most
promoted strategies to develop sustainable and efficient farming
systems (Beillouin et al., 2019).

Today, most efforts invested in plant breeding focus on
improving a single species, ignoring the effect of ecological
interactions with any other species potentially sown together.
This dominant breeding strategy only considers ecological
interactions of the improved cultivars in the field among
conspecifics. This is questionable for two main reasons. First,
well-established positive relationships between plant species
richness and agroecosystem functioning (synthesis in Isbell
et al., 2017) point to the fact that adding the right species
to a monoculture can increase yield and other agronomically
relevant parameters. Second, going on improving crops in pure
stands if the target environment is a diversified cropping system
is expected to substantially reduce the efficiency of breeders’
actions (Annicchiarico et al., 2019). In these cases, continuing
breeding in the same way as today might cause a lock-in in
the transition toward more agroecological practices, making the
situation problematic for the plant breeding sector.

Litrico and Violle (2015) proposed that redesigning
breeding methods accounting for species interactions and their
underlying traits could enable an upward shift of the typical
saturating curve that links ecological functions and species
richness in natural communities (refer to Tilman et al., 2014).
Thus, the plant breeder’s usual problem, i.e., “What is the best
way to improve the performance of this species from this gene
pool?” should become “What is the best way to improve the
performance of this plant community (refer to Box 1) by selecting
within several gene pools?” (refer to Box 2 for some illustrative
examples). Regarding biological knowledge, this is far from
a minor transition, as the second question requires coupling
two biodiversity scales, the population genetic scale and the
ecological community scale. The properties of a complex and

composite structure cannot be trivially extrapolated from the
properties of its components (Anderson, 1972). Typically, the
properties of a plant community cannot be trivially extrapolated
from the genetic composition of its individual component
species. Such an extrapolation remains a key challenge in applied
evolutionary and ecological research (Levin, 1992).

As a professional practice rooted in quantitative genetics,
the original objective of plant breeding was and continues to
be population-level variation. The quantitative genetic bases
of species interactions and community properties were thus
broadly excluded from the rich history of modeling efforts (refer
to e.g., Walsh and Lynch, 2018). Although the implications of
ecological interactions among individuals within species have
been well studied by quantitative geneticists (Griffing, 1967;
Moore et al., 1997; Wolf et al., 1999; review in Bijma, 2014),
this does not address the coupling between two nested diversity
scales as interspecific indirect genetic effects (hereafter IIGE,
refer to Box 1). The evolutionary dynamics of IIGE do not
involve the same processes as indirect genetic effect within
species as the latter is assumed to account for individual
relatedness (Queller, 2014). The study of IIGE needs to assume
that individual relatedness is null and its effects can be treated as
an external environmental influence whose variability is partly
determined by genes (Goodnight, 1991).

The scope of the present article (Figure 1) is to explore
recent modeling efforts conducted under the umbrella of eco-
evolutionary dynamics (Hendry, 2016) from a plant breeding
perspective. This exploration can be an inspiring source of
concepts and models to extend the practice of plant breeding to
the crop community scale, i.e., the minimum scale of interest
from an agroecological point of view. While evolutionary
biology (as well plant breeding) was for many years focused on
the effect of natural (or artificial) selective factors on evolution
(or “genetic improvement”), eco-evolutionary approaches have
also investigated the effects of evolutionary changes in the
environment. Eco-evolutionary thinking addresses the problem
of the relationship between populations and their environment
as a feedback loop between ecology and evolution (Schoener,
2011). It is therefore potentially relevant for the challenge
facing community-level plant breeding today. The first task is
to provide breeders with genetic models to help them to identify
the range of community-level breeding problems. In this review,
we postulate that the “evo-to-eco” half of the eco-evolutionary
causal circle can provide some of the missing elements required
to renew plant breeding practices and orient them toward more
integrative and sustainable objectives.

As stressed by Casler and Van Santen (2010), plant breeders
often have to make difficult choices based on incomplete
scientific knowledge. Current plant breeding practice mostly
pursues continuous improvement of predefined value criteria
of a given cultivar (i.e., through the notions of ideotype
and breeding indices). Accounting for genetic diversity and
species interactions to improve mixed cropping systems requires
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BOX 1 Definitions of specific terms used in the text.
Plant community: Synonym for intercropping systems or mixtures of species used in the context of this review. Assemblage of plant species
(two or more) growing in the same place and interacting through processes such as competition, facilitation or resource partitioning. These
interactions and their variability generate functional properties measurable at the scale of the whole community (refer to examples in Box 2).
Community-level variable (c): The target of selection predefined by the breeder according to agronomic objectives. Its variation is expected to
result from both direct (DGE) and interspecific indirect (IIGE) genetic effects that occur within the plant community. It is modeled as a linear
selection index. For two species (A and B) in the mixture, each with n traits: c = (zA1 + zA2 + . . . + zAn) + (zB1 + zB2 + . . . + zBn). Specific cases of
c can simplified to the yield measurements of a single associated species of economic interest in the mixture (thus, e.g., c = zA1). The phenotype
zA1 of this species is expected to be affected by IIGE from the genotypes of one or several species in the mixture.
Indirect genetic effect (IIGE): The expression of genes in one species affecting the phenotypic expression in individuals of another species and
potentially the value of the functional trait (i.e., the community-level variable c) at the whole community level. It is therefore distinct from the
usual direct genetic effects (DGE) qualifying the expression of genes on the phenotype of the individual bearing these genes.
Focal species: A species for which genetic relatedness is experimentally known to measure the variation in its indirect genetic effect (i.e., the
IIGE) on a community-level variable (c) or on the phenotype of an associated species. This makes it possible to select genotypes of this focal
species based on their IIGE of interest.
Associated species: A species grown in interaction with a focal species. Phenotypes of this species are measured but genetic relatedness
among its individuals may remain unknown in the experimental design.

BOX 2 Some examples of agronomic goals that could be achieved using breeding approaches that account for interspecific indirect
genetic effects.
To connect the model variables used in the text with agronomic problems, below we use letters in parentheses to identify: the community-level
variable as a final goal for the breeder [c] and the candidate traits [z] assumed to affect it, as measured in a species of the sown community (see
main text for details).
Persistence of legumes in sown grasslands. In low input multispecies grasslands, the persistence of legume species [z] in the cover is a major
determinant of the effects of biodiversity on yield (Brophy et al., 2017), and legumes are generally the most sensitive component. Persistence is
a heritable trait that can be improved by selection (Smith and Kretschmer, 1989; Casler and Van Santen, 2010; Annicchiarico et al., 2019).
Although community performance such as multiyear biomass production and quality [c] is the final objective of selection, we have no direct
indication of the effectiveness of breeding programs for legume persistence at the grassland community level. Accounting for IIGE linked to the
legume persistence trait at the community level and above (e.g., N release that enhances the overall performance of the cropping system) could
improve the agronomic relevance of such breeding efforts.
Weed suppression in faba bean. Faba bean is among the most promising species in temperate areas to develop to increase protein autonomy,
but is quite sensitive to competition with weeds. Intercropping faba bean with cereals is a sound management strategy to solve this problem
(Jensen et al., 2010). In barley, resistance to weed competition is known to vary among cultivars (Dhima et al., 2000). Consequently, breeding
cereals for increased weed suppressing effect [z] can be an IIGE to target to improve faba bean grain yield in no herbicide systems [c].
Lodging reduction in sensitive grain legumes. Lentil or pea is intercropped by farmers with cereals or with Brassicaceae to avoid legume
lodging and to improve their mechanical harvestability (Cowell et al., 1989; Viguier et al., 2018). The rigidity of the stem of the non-legume
companion species [z] thus becomes a trait of interest for legume performance and harvestability [c]. Stem rigidity is known to be genetically
variable and, accordingly, performance in intercropping can differ among cultivars (e.g., Cowell et al., 1989). Selecting for this trait can produce
a positive response at the scale of the intercrop, through an IIGE on the legume component. In addition, the lodging resistance traits of the
legume lose their relevance under intercropping (Hauggaard-Nielsen and Jensen, 2001), allowing breeders to invest efforts in other traits more
closely related to yield performance.

accounting for the distributions of traits to identify the best
performing genotypes (Litrico and Violle, 2015). The breeder’s
choices become even more difficult and knowledge even more
incomplete as the biological system to be managed becomes
substantially more complex. We consider that selection theory
is a powerful tool for objectivizing daily breeding practice
and appraising its future orientations (Cobb et al., 2019). In
the present context, we need to further extend this theory to
shed light on the community-level consequences of choosing
certain genotypes within a range of genetic resources. We thus
aim to describe models that provide guidance for choosing
the best strategy when breeding targets include interacting
species. To guarantee the practical relevance of our survey,
we focused on models based on the breeder’s equation or
its parameters (Walsh and Lynch, 2018; see details at the
end of this section). Modeling approaches based on more
complex models that are usually designed for the purpose of
disentangling eco-evolutionary causal feed-back in the wild

(typically: Ellner et al., 2011) are consequently not relevant for
our purpose here.

We first distinguished “evo-to-eco” approaches in the
literature according to the concepts they use to interface the two
biodiversity scales: the population-level response to selection
and a community-level variable. Thus, for each approach, we
start by providing the assumed underlying statistical equation
for interfacing the community variable with quantitative
genetic effects. We then discuss whether each approach is
potentially “practically operational” when used by practitioners
to manage crop genetic resources (i.e., breeders, but also
certain farmers and crop conservationists). Here, we define
“practically operational” as fulfilling three criteria: first, model
parameters are expected to be estimated or approximated from
data routinely obtainable by practitioners or with reasonable
additional experimental efforts and no loss of effectiveness
in their breeding activities; second, these models should be
meaningful in the sense that they rely on biologically realistic
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FIGURE 1

The context of the present survey and its scope (represented by red arrows and texts in the figure). Current plant breeding activities can be
viewed as lying under a double-constraint between, on the one hand, technological advances that favors predictions at the genotypic level
(black arrow pointing left) and, on the other hand, broad-scale agroecological stakes requiring predictions of plant breeding effects at much
higher biological levels (red arrows pointing right). Population level, as the level of evolutionary changes (i.e., the whole set of genetic resources
that can be controlled by breeders), lies at the core of this double-constraint. The bold red arrow indicates the focus of the present survey, i.e.,
models predicting changes in the performances of a complex crop community resulting from any type of breeding-induced evolutionary
changes.

assumptions and make predictions based on a theoretically
sound framework (sensu Houle et al., 2011), here, the breeder’s
equation; third, we expect the modeling approaches to provide
practitioners with anticipatory predictions.

Description of the modeling
approaches

Epistemological remark
Below we follow Maris et al. (2018)’s enlightening

distinction between anticipatory and corroboratory predictions.
Corroboratory predictions are hypothesis-derived predictions.
Their goal is to be compared to observations for the purpose
of understanding. They are necessary for corroborating or
invalidating a hypothesis. In this paper, we analyze how
quantitative genetic models of selection across two levels of
diversity can provide operational anticipatory predictions.
Anticipatory predictions consist in the application of extant
knowledge. They can be used to achieve a transformative goal
(Maris et al., 2018), i.e., the essence of plant breeding. Indeed,
breeders usually have to act on a genetic system before knowing
exactly how the system they are acting on will react (i.e., before
knowing its response to selection). In this context, anticipatory
predictions are expected to fuel a decision-making process by
improving the intelligibility of the potential effects of breeders’
practices on complex, multispecies genetic systems. For this
purpose, the three criteria mentioned in the previous section
are tightly interlinked.

Notation
The breeder’s equation and its equivalent forms (Walsh and

Lynch, 2018) predict the mean population change in a trait
z from the product of a measure of genetic variation (such

as heritability) by a measure of selection strength (such as a
selection differential, S):

1z̄ = h2S (1)

with the heritability h2
=

σ 2
G
σ 2
P

, i.e., the ratio of the (additive)
genetic to total phenotypic variance of the measured trait. This
simple formula is widely used by breeders and evolutionary
biologists but under several equivalent forms (cf. Walsh and
Lynch, 2018; Bijma, 2020). Breeders emphasize the selection
intensity ī and the accuracy of selection h:

1z̄ = σG(
σG

σP
)(

S
σP
) = σGhī (2)

while the equivalent version by Lande (1979) is most commonly
used in evolutionary biology:

1z̄ = σ 2
G

(
S
σ 2
P

)
= σ 2

Gβ (3)

with β the linear selection gradient, i.e., the slope of the linear
regression of the relative fitness w on trait z (β = cov[z,
w]/var[z]). This last version (eq. 3) can be extended to predict
the change in the multivariate case through the concepts of
G-matrix and multivariate selection gradient β (Lande, 1979):

1z̄ = Gβ (4a)

or, under a developed matrix form for l traits:

1z̄ =


G11 G12 . . . G1l

G21 G22 . . . G2l
...

...
...

Gl1 Gl2 . . . Gll




β1

β2
...

βl

 (4b)

with Gii the genetic variance for the ith trait and Gij its genetic
covariance with the jth trait, and βi the selection gradient for
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the ith trait. By focusing on the case of artificial selection for
plant breeding, we assume that selection is strong, and that β is
controlled by the breeder, therefore known with high accuracy.
Consequently below, the error due to the incidental influence of
natural selection on potentially unmeasured traits (synthesis in
Walsh and Lynch, 2018, Chapter 20) is treated as negligible.

In the following, depending on the approach described,
we refer to each or all of the three equivalent formulations
mentioned above (eqs. 1, 2, 3, or 4) to extend the effects
of genetic evolution (in response to artificial selection) on a
community-level variable. Below, this community-level variable
is labeled c (refer to Box 1 for a definition and refer to
Box 2 for biological examples). c potentially encompasses several
components of community functions such as the total biomass
yield of mixtures of perennial forage crops, or the yield of cereal
grain when a cash crop and a companion forage legume are
selected together, or any other ecological functions such as weed
suppressing effects among grain legumes when a cereal species
is intercropped for this purpose (refer to the example of faba
bean in Box 2). As we will see below, c can be a community-
level index including weighted performance components from
several species and functions.

Our focus is on the links between the population and the
community levels. Thus, we do not distinguish between the type
of breeding scheme or methods, which are well summarized
elsewhere (cf. Walsh and Lynch, 2018). We thus made our
analytical framework as general as possible, so it can be used
for different artificial (i.e., intentional) multispecies selection
approaches based on randomized trials with available estimates
of genotypic or phenotypic values for selection candidates to
produce the next generation. It is therefore able to cover a
wide a range of breeding strategies and tools depending on how
the quantitative genetic parameters are estimated (e.g., mass,
family-based, genomic selection). Our analytical framework can
therefore be easily adapted to account for breeding cycle length,
plant reproductive systems (self- and cross-pollinated crops), or
any other parameters that affect breeding efficiency, for instance
in simulation approaches (Bančič et al., 2021).

Approach 1: Estimating the heritability
of interspecific indirect genetic effects

Generalities and theoretical grounding
The most straightforward and intuitive approach to examine

how genetic variation affects a variable c at the community level
is to apply the standard quantitative genetic expression to the
variable concerned:

cik = µ+ gBi + eik (5)

This assumes that the value of c for the ith community
comprised of associated species (refer to definition in Box 1) will
deviate from its mean µ, under the influence of the genotype

gBi of a focal species B (Box 1) and under the influence of
environmental effects eik (which might include genetic effects
originating from other species not controlled for here, see
below). This is the basic rationale in community genetics:
genetically related individuals belonging to a focal species (also
termed “foundation species” in the ecological literature) will
favor similar patterns and similar values for the community-
level variable (Whitham et al., 2003).

The value of c is treated as a “community phenotype”
or a community-level variable (Box 1): the phenotype of
one or several associated species with a genetic variance σ 2

g
and “community heritability” H2

c = σ
2
g /(σ

2
g + σ

2
e ) (Fritz and

Price, 1988; Whitham et al., 2006). We use uppercase H
to denote the broad sense heritability usually estimated in
community genetics. Community genetics usually investigates
the effect of the genetic variation in a focal plant species
on its associated arthropod community. The experimental
settings typically consist in a common garden with randomized
replicated clones of the focal species and measurements taken
at the community level such as arthropod abundance or species
richness (reviews in Haloin and Strauss, 2008; Genung et al.,
2011; Tack et al., 2012).

In such biological systems, the variable c only considers the
IIGE on the arthropod community traits, excluding DGE on the
plant species. Community heritability is therefore a measure of
IIGE variance (which would not be true if c was, e.g., the total
biomass of the whole plant-arthropod system). Thus, we now
refer to IIGE heritability, H2

IIGE . The notion of IIGE heritability
as presented above presents an analogy with population-level
heritability without assuming that communities can be selected
as a whole (Collins, 2003). It is thus a matter of some debate.
Could H2

IIGE be predictive of the response to selection of
the community trait according to the breeder’s equation, i.e.,
1c̄ = H2

IIGESc ? (with Sc a hypothetical selection differential on
c). Community ecologists who quantified this parameter warned
against such interpretation (Whitham et al., 2006; Genung et al.,
2011). Whitham et al. (2006) asserted that this approach does
not imply that communities have a fitness in the wild or evolve as
populations do. Rather, they called for an interpretation of H2

IIGE
as an integrative measure of the cascading effects of genes of
the focal species at the community level. This means that H2

IIGE
should be taken as a measure of an association to estimate how
much of the variance in the community variable results from
genetic variation in the focal species.

Practical application for breeding
The notion of IIGE heritability was designed to investigate

the strength of IIGE of host plants on other taxa. To what
extent could it be useful for breeders interested in improving
plant communities? The first practical advantage over a more
fine-grained approach (see below) is that it is trait free: it does
not investigate the effect of the phenotype of the focal species
on the community variable (Figure 2A) and instead quantifies
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FIGURE 2

Causal pathways between genetic effects, g, and a community
variable, c, as assumed in the quantitative genetic models
described in the main text. (A) IIGE heritability approach: a
genetic variance component of a focal species (gF) is used to
quantify the genetic basis of variation in a community trait. The
direct genetic effect on the focal species trait are ignored
(dotted line). (B) Joint phenotype approach: the genetic
variation of two species is treated symmetrically, considering for
each their respective direct and indirect genetic effects. This is a
variance component analysis that might either decompose on
each species phenotype or directly on the community variable,
the joint phenotype, if the two species are harvested together
and not sorted. (C) Community-level index for traits: the
community variable is regressed on the l traits of the focal
species. The regression coefficients are then used to project
genetic changes of these traits onto the community variable
using a standard linear selection index approach.

IIGE as a whole, thus limiting the need for trait phenotyping.
For estimating IIGE heritability, a breeder would first have
to choose a focal species and control for its genetic variation
within a standard range of experimental crop communities.
H2

IIGE would provide insights into the expected efficiency of
selection of the focal species with respect to the improvement
in the community variable.

The only example we found of H2
IIGE estimates in a crop

community in the literature was provided by Maamouri et al.
(2015). These authors grew 46 contrasted lucerne genotypes
(Medicago sativa) with a grass (Festuca arundinacea) grown as
a companion crop. While they found strong average broad-
sense heritability for the direct genetic effect on lucerne biomass
(H2 = 0.76, range across sampling rounds: [0.64 – 0.83]), the
broad-sense heritability on the grass biomass was much lower
(H2

IIGE = 0.05 [0.00 – 0.17]). This suggests that selection on
lucerne biomass would have at most minor consequences for
the grass biomass.

Heritability estimates of IIGE or at the community level
are exposed to the same flaws as heritability estimates at
the population level (Hansen et al., 2011), including high
dependency on the study context and assumptions and
computation preferences (Wilson, 2008; Firmat et al., 2017).
When the community variable is on an arithmetic scale
such as yield, this can be partly improved by computing the
coefficient of genetic variation for IIGE (i.e., the IIGE standard
deviation standardized by the mean value of c, refer to Hansen
et al., 2011). Such mean standardized estimates could help to
perform meaningful comparisons across breeding populations
and testing sites to adjust community-level selection strategies.

Although in nature, the value of c is not directly associated
with a value of fitness (genetically based selection does not act at
the community level), this might be the case in a breeder’s field
if artificial selection is performed among isolated and genetically
controlled communities. In this case, H2

IIGE estimates might
become interpretable within the breeders’ equation. However,
DGE and IIGE can sometimes be selected as a whole. This is
the situation addressed by the breeder’s version of the joint
phenotype approach described in the following section.

Approach 2: Joint phenotype

Generalities and theoretical grounding
Summing the genetic contributions of several species in

a community trait is an alternative approach to interfacing
responses to selection between the population and the
community-level. The simplest is to sum the genotypic values
of each interacting species (Queller, 2014):

cijk = gAi + gBj + eijk (6)

where gAi and gBj are the breeding values for individual i of
species A and individual j of species B, respectively. According
to this statistical expression, the joint phenotype c is defined
by Queller and Strassmann (2018) as “a trait or outcome that
can be affected, and potentially evolve, under the influence of
two or more parties.” Both species are treated symmetrically
and the joint phenotype results from the potential interaction
between species, but the details of these interactions (values
of interacting traits, complex feedbacks, etc.) are treated as a
black box (Figure 2B). The evolutionary properties of joint
phenotypes were investigated by Queller (2014) by applying
the Robertson-Price equation (Frank, 2012). Queller (2014)
showed that the change in c is predicted by the sum of the
genetic variance for each species, respectively multiplied by their
selective effects on c, i.e., the covariances σ(wA, c) and σ(wB, c).
A non-zero covariance between fitness w and c indicates that
natural selection acts on species’ traits that affect the community
variable (Johnson et al., 2009). When the two covariances for
each species are of opposite signs, a change in c results from
an evolutionary conflict between the two species: an increase
in fitness in one species is constrained by increased fitness in
the other species.

If c is the amount of light captured within a plant
community (Queller and Strassmann, 2018), an increase in size
in species A will increase its competitive effect by negatively
affecting the fitness of species B, and vice versa. The conflict
can be resolved and c increased further if, for instance,
one species evolves a strategy of shade tolerance, generating
niche differentiation with respect to light. Recent studies in
multispecies grasslands showed that niche differentiation and
complementary resource use can evolve in a single generation
(van Moorsel et al., 2018; Meilhac et al., 2020). As such, the

Frontiers in Plant Science 06 frontiersin.org

https://doi.org/10.3389/fpls.2022.733996
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-733996 October 14, 2022 Time: 14:56 # 7

Firmat and Litrico 10.3389/fpls.2022.733996

concept of joint phenotype developed by Queller (2014) might
provide a relevant theoretical framework to investigate the
genetic determinants of such patterns. However, the analysis
by Queller (2014) assumes regulation processes under natural
selection in both species, which is of limited relevance for
guiding artificial selection at the community level, which
requires more specific modeling.

An analog version was coined for plant breeding many
years ago. Wright (1985) proposed a selection model relying on
the variance decomposition of a joint phenotype summing the
“economic yield” of each species. This approach was inspired
by factorial designs used to improve the parental population for
breeding schemes for hybrid maize. The scale shift here relies
on an analogy between the genetic combining ability of alleles
(i.e., within a genome) from inbred lines and the ecological
combining ability of genotypes (i.e., among distinct genomes)
from different species.

Practical application for breeding
Wright (1985) approach aimed at modeling genetic gain on

the joint phenotype when selection is performed at the scale
of the population of bispecific communities that differ in their
genotypic composition. Fully dissecting the genetic variation in
the joint phenotype across a population of genetically controlled
artificial communities requires a factorial design including a
large number of combinations of each genotype of species A
sown with each genotype of species B. Accordingly, two sorts
of variance components of c can be partitioned: (1) the average
or general effect of a genotype of one species on the joint
phenotypes c, i.e., the general mixing ability (GMA) including
both DGE and IIGE of this genotype on c; (2) the specific effect
resulting from genotypic interactions deviating from additivity
and quantifying the specific mixing ability (SMA) of individual
pairs of genotypes on c (for more details see: Annicchiarico et al.,
2019; Sampoux et al., 2020). Put simply, the GMA component
of variance includes both additive direct genetic effects and
effects of additive ecological interactions on c (average IIGE of
a genotype across the factorial), whereas the SMA component of
variance quantifies the contribution of non-additive effects on c.

Today, 35 years after Wright’s publication, no prediction
based on a full decomposition of the variance of c in a
bispecific community has yet been made. This is likely due
to the demanding experimental design required for such a
decomposition. For two species and a minimum of 30 candidate
genotypes each and three replicates per pair, the number of
plots would be 3 × 302 = 2,700, corresponding to a huge single
site experimental design beyond the reach of most breeding
programs. With a third species, the required experiment
becomes completely unrealistic (81,000 plots) (but refer to Haug
et al., 2021).

Specifically targeting the GMA variance of interacting
species (Hill, 1990) can substantially reduce experimental
requirements. This involves parallel selection of the GMA of the

two species, each with a specific (recurrent) selection process.
For each of the two species, candidate genotypes of the selected
species (let’s say species A) are sown in mixture with a mixture
of representative genotypes from the other (unselected) species
(let’s say species B), used in the mixture as a tester for genotypes
of A. In parallel, the same procedure is performed for species
B with a mixture of representative genotypes of species A used
as testers (i.e., selection in parallel for GMA, refer to Figure 2 in
Sampoux et al., 2020). According to Sampoux et al. (2020), when
targeting GMA variance for c by selecting on, e.g., species A, the
measurable component of the joint phenotype c is as follows:

cAij = µA + µB + vAi + aAi + Aij (7)

with µA and µB the mean value of species A and B contributing
to the community value c. Here, the controlled genetic variance
of c in the design is only due to species A, with vAi and aAi
the direct genetic (DGE) and the indirect genetic effects (i.e.,
IIGE, a for “associated effect” in breeding terms) of species A,
respectively. Together, these terms model the GMA of the ith
genotype of species A. From this expression, improving c by
selecting on speciesA only gives the following expected response
for the joint phenotype:

1c̄ =
īc
σc
[σ2

vA
+ 2σvA,aA + σ2

aA ] (8)

īc is the selection intensity on the value of c and σc the total
phenotypic variance for c. Under the procedure of selection in
parallel for GMA described above, the analogous expression can
be derived for species B (with A as a tester), also contributing to
genetic gain for c. The value between brackets is the variance of
the joint phenotype caused by genetic variation only in species
A on which selection is performed. This variance expression is
the sum of two components: the direct response to selection
on c for the contribution of species A (σ2

vA + σvA,aA ) and the
correlated response on the value of species B (σvA,aA + σ2

aA ) [for
a detailed argument including a release from the assumption of
the equal species weights, refer to Sampoux et al. (2020)]. Both
components include the covariance between the DGE and the
IIGE of the selected species. Interestingly, eq. 8 parallels the
results obtained by Griffing (1967) for the response to group
selection at the intraspecific level, when assuming unrelated
interacting individuals.

The main advantage of this joint phenotype approach is
that it emphasizes the constraining role of this covariance term
for community-scale genetic improvement. If σvA,aA < 0,
improving the contribution of species A (DGE) to the mixture
while not accounting for its IIGE on B (aA) is not possible
without weakening the contribution to the mixture of species
B (Wright, 1985). This typically happens when selection for
yield in A increases its competitive effect, thus weakening the
contribution of B. Breeders that has to cope with an evolutionary
conflict (sensu Queller, 2014) and manage a trade-off between
species vs. community performance. Performing two selection
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processes in parallel (one for each species), as proposed by
Sampoux et al. (2020) and described above, could be a promising
way to deal with such an evolutionary conflict.

By allowing integrative decomposition of the genetic
interactions underlying the variation in a community variable,
the joint phenotype approach provides quantitative genetic
expression of the among-species conflicts the plant breeder will
have to deal with. However, this approach enables prediction
across biological scales (from species quantitative traits to c)
through estimates of covariances (i.e., σvA,aA) between traits
measured in two different species (as the IIGE of species A
affects, e.g., the yield of species B). The nature of this parameter
exposes quantitative predictions to strong limitations of both
biological and methodological origins, as we will see below (refer
to section headed “Common limitations and links between the
three approaches”).

Approach 3: Community-trait genetic
gradient

Generalities and theoretical grounding
In contrast to the two previous approaches, this approach

relies on the functional trait assumption: a set of functional
traits, and not genotypes, affects the community variable
(Figure 2C). Investigating how a set of traits measured in
a single species affects community functioning requires a
multivariate approach linking the evolution of genetically
correlated functional traits to a community-level phenotype.
The multivariate selection model proposed by Johnson et al.
(2009) relies on the notion of a “community-trait gradient”: a
multiple regression of a single community trait c on a set of l
evolving traits for a focal species. Variation in the community
variable is therefore modeled as follows:

cik = µc +

l∑
j=1

αjgij + eik (9)

where αj is the partial regression coefficients for the jth trait
and gij its genetic value for the ith genotype at trait j. The
estimated vector of coefficients makes it possible to project
the multivariate evolutionary change in a focal species on the
ecological variable. This is a way of modeling the IIGE of a
complex, multivariate phenotype on a predefined community
variable. This “matrix projection model” therefore builds on
Lande’s (1979) formulation of the breeder’s equation to extend
it to a community variable (Johnson et al., 2009):

1c̄ = [α1, α2, . . . , αl]


G11 G12 . . . G1l

G21 G22 . . . G2l
...

...
...

Gl1 Gl2 . . . Gll




β1

β2
...

βl

(10a)

or, for a more synthetic notation:

1c̄ = αTGβ (10b)

The second and last terms are the elements of the standard
multivariate breeder’s equation, respectively, the G-matrix, and
the linear gradient of selection (Lande and Arnold, 1983),
i.e., the vector of partial regression coefficients of each j trait
on fitness, whose product gives the expected response to
selection in the vector of traits. The first term is the vector of
partial regression coefficients (estimated independently in eq. 9),
allowing the projection the genetic changes on the community
variable (the subscript T denotes the transpose of this vector).
This projection of evolutionary change corresponds to the sum
of the evolutionary changes for the l traits, weighted by the
αj coefficients (refer to Appendix 1, for a derivation of this
expression using the Robertson theorem). In ecological terms,
these coefficients represent the level to which each j trait is
“functional” (refer to Litrico and Violle, 2015), i.e., interact
with the species of the targeted community and affect the
community-level variable.

Johnson et al. (2009) originally used this model to investigate
the effect of functional trait variation in a wild species Oenothera
biennis (Onagraceae) on the associated arthropod community.
The model described above helped these authors formalize a set
of conditions for the evolution of IIGE on the focal plant species:
the trait j should be genetically variable (Gjj > 0), selection
should affect the trait (β j 6= 0), and the trait should cause
variation in the community variable (αj 6= 0).

Practical application for breeding
Johnson et al. (2009)’s approach is strictly analogous to a

linear selection index: it weights the sum of change in each
dimension of a multivariate phenotypes to project it on a single
variable, i.e., the selection index. The only – but nevertheless
significant – difference is that the coefficients of the index are
estimated statistically (eq. 9, refer to Appendix 1). Selection
indexes are widely used by breeders and their properties are well
known (Hazel et al., 1994). According to the properties of the
linear selection index (Lin and Allaire, 1977; Nordskog, 1978)
and using Johnson et al. (2009)’s notation, the heritability of the
community variable described by k underlying traits is given by:

h2
c =

αTGα

αTPα
, (11)

with P the phenotypic variance–covariance matrix among traits.
Thus, the response to selection in equation (10b) can be
expressed in the selection intensity form, which is more familiar
to breeders:

1c̄ = īc
αTGα
√

αTPα
, (12)

with īc the univariate intensity of selection applied to the
community variable.
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From a practical point of view, this approach includes two
independent steps. The first step aims to estimate how the
phenotypic trait values of the focal species affect the community
variable (i.e., estimating α). The second step aims to quantify the
genetic architecture of the ecologically relevant traits previously
identified (i.e., estimating G).

This approach has two potential advantages. First, by
explicitly modeling ecological functions in the first step, it avoids
the potentially problematic use of covariances between IIGE and
DGE, which play a central role in joint phenotype approaches,
as this covariance is suspected of strong variability among
experimental contexts (discussed in the following section).
Second, the main practical advantage of this trait-centered
approach is that it makes it possible to discard traits that
have no influence on the target community variable c and to
focus on the traits that have the main effects. From a multiple
traits-community variable regression (eq. 9), a standard model
selection procedure using information theoretical approaches
(review in Grueber et al., 2011) could be used in the first step
to discard traits that do not deserve to be taken into account
for the improvement of c. This would make it possible to
considerably reduce the size of the sample required for further
quantitative genetic predictions in the following prediction step
(eq. 10). Estimates of α could rely on biological and experimental
knowledge from functional (agro)ecology (Garnier and Navas,
2012). The analysis of α would provide an innovative way
to design for the focal species what we call “community-
ideotypes,” i.e., ideotypes that not only target the focal species’
own performance but also the expected performance generated
through IIGE by such an ideotype at the scale of the community.
However, one should keep in mind that a trait j with no
community-level effect (αj ≈ 0) may still be useful to define
the selection index due to its genetic correlation with other
ecologically relevant traits.

Another key advantage of this approach is that it allows
breeders to map the consequences of genetic constraints (i.e.,
genetic covariances among the focal species’ traits) in terms
of response at the community scale. Let us assume a simple
situation where the genetic covariance among two traits is
positive (G12 > 0) and both α1 and α2 for these traits are also
positive. Then, selecting for trait 1 alone is expected to improve
the contribution of both traits to the community performance
(i.e., as 1c̄ = α1G11β1 + α2G12β1 ). But if α1 and α2 are of
opposite signs (α1 > 0, denoting, e.g., a direct genetic effect on
total yield and α2 < 0, denoting, e.g., a negative competitive
effect on a companion legume that supplies nitrogen), selecting
for trait 1 alone is expected to reduce the value of trait 2
due to the positive genetic covariance. In other words, this
could enable breeders to easily objectivize the consequences
of their usual (i.e., species-centered) work at the community
scale, by generating anticipatory predictions at this level. For
instance, by extending the standard breeding indices based
on a series of traits measured in a pure stand to predict

performance in a mixed stand (e.g., Annicchiarico, 2003), this
approach would make it possible to predict the consequences of
this species-specific performance at the community scale. This
includes the quantitative genetic exploration of the promising
notion of “biological interaction function” coined by Haug et al.
(2021). To sum up, Haug et al. (2021) suggest correlating both
direct and indirect genetic effects with measured traits that
generate different types of species interactions in the mixture,
leading to the identification of traits that produce favorable
biological interactions at the community scale. To identify
suitable cultivars for cereal–legume mixtures, Kammoun et al.
(2021) argue for a simple statistical approach that predicts
reliable mixtures based on pure stand performances for both
components combined with a description of their interaction
function. We believe that such a basic set of variables would be
a reliable starting point for designing selection criteria for this
type of simple crop mixture.

This approach is based on the predictions of c from genetic
(co)variation in a single species. It therefore assumes that
one species needs to receive more attention than any other
species from the breeder. We observed that this is the most
frequently reported case in the plant breeding literature (for
recent examples: Annicchiarico et al., 2021; Ergon and Bakken,
2022; Moutier et al., 2022).

Common limitations and links between
the three approaches

Integrative expressions for community-level
selection response

The three approaches we identified are distinct in several
conceptual, statistical, and practical dimensions (Table 1).
These approaches rely on distinct strategies for modeling
causal pathways between genetic variation and community-level
variation (Figure 2). However, a general model linking all three
approaches is possible. The community-trait genetic gradient
approach could theoretically be extended to more than one
species. The evolution of c affected by two species A and B
represented by l traits each (kept equal for the sake of simplicity)
can also be modeled as the evolution of a linear index:

1c̄ =
l∑

j(A)=1

αAj1z̄Aj +

l∑
j(B)=1

αBj1z̄Bj (13)

This equation simply sums the ecologically weighted effects
of each evolving trait for each species. But note that changes
in traits in species A and B are not independent, but are
linked through genetic covariance across each pair of species
traits, caused by genetic interactions among species (IIGE)
mediated by interaction traits (sensu Litrico and Violle, 2015).
The sum of the trait’s specific α for each species corresponds to
their respective weights regarding their contribution to c. The
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TABLE 1 Main features of the three modeling approaches described in the main text.

Modeling
approaches:

(1) Heritability of
IIGE

(2) Joint phenotype (3) Community-trait genetic
gradient

Analogy/similarity with
standard breeding
concepts

Heritability Factorial designs for hybrid maize
breeding schemes

Linear selection index

Focal species-centered Yes No Yes

Trait-based No No Yes

Application to
multivariate phenotypes

By dimensional reduction Difficult Designed intentionally

Approach for
partitioning genetic
variance of c

Components of variance Components of variance Regression on species phenotypic
traits associated with an estimate of
the genetic (co)variances of the trait.

Key informative
parameter for breeding

Strength of IIGE for c
(σ2

aB or σ2
IIGEA for species B cf.

eq. 5)

Sign of the genetic covariance
between DGE and IIGE

(σvA,aA or σDGEA,IIGEA , i.e., the
genetic covariance of traits measured

among interacting species)

Sign of the product between the
expected genetic change for trait j and

its community-scale effect
(αj1z̄j )

generalization of equation (13) for m interacting species with l
traits each is:

1c̄ =
m∑
i=1

l∑
j=1

αj(i)1z̄ij (14)

with the first and second sigma summing effects over
species and over traits, respectively. Interestingly, obvious
links exist between this general expression and the integrative
functional parameters used to describe the trait-based diversity
of functional types in a plant community (refer to Violle
et al., 2007; Garnier and Navas, 2012). The issue, however, is
that full predictions of selection response for such an index
require a complex set of interacting parameters involving both
species-specific G-matrices and reciprocal cross-species genetic
covariance matrices (CSG), describing the interspecific, among
trait genetic relations between DGE and IIGE between pairs of
species (Figure 3). To our knowledge, the only estimate for such
a combined G-CSG-matrix, i.e., including both the direct and
indirect genetic effects for a focal species, was provided by Riedel
et al. (2018). However, these authors did not report estimate
uncertainties and did not compute the effect on an integrative,
index-like, community-level variable.

A CSG-matrix combines the covariance between the DGE
of a given species A with its IIGE (originating from A) on the
partner species’ traits. It thus involves the association between
traits measured in two different species (e.g., a biomass trait
measured in a forage crop species A [DGE], that through
IIGE, affects a grain yield trait measured in an associated
cash crop species B), i.e., in totally unrelated individuals.
This type of covariances is therefore distinct from standard
genetic covariances among traits measured in the same series of
individuals as well as for DGE and IGE measured in interacting
individuals of the same species (Griffing, 1967). These genetic
covariances among species’ traits are complex parameters that

include both genetic and ecological (i.e., species interactions)
causal pathways. They are pivotal parameters in the joint
phenotype approach (Wright, 1985; Sampoux et al., 2020) and in
some versions of multitrait approaches to community genetics
(Riedel et al., 2018) as they make it possible to link population
genetics to the community scale.

If the capacity of the general equation cited above (eq. 14)
to provide reliable predictions should be considered with great
caution, it is nevertheless useful for clarifying the statistical
and conceptual links between the three approaches described
above. With l measured traits in a single species (m = 1) eq.
(14) reduced to Johnson et al.’s. (2009) community-trait gradient
approach (eqs. 10a, 10b, and 12). With two species (m = 2), each
with a single measured trait (l = 1) and no estimated ecological
gradient (αA = αB = 1), this becomes Wright’s (1985) style joint
phenotype approach (eq. 8). If the latter assumption is further
reduced to one species, then the last remaining parameter is a
variance component analogous to IIGE H2 approaches. This is
also equivalent to a joint phenotype approach with only the IIGE
effect measured (i.e., in eq. 6, only σ2

aA is assumed to be non-
zero), underlining the fact that community H2 approaches are a
special case of the joint phenotype, with neglected direct effects.
Breeding based on the community H2 approach would then be
possible if the community is taken as the unit of selection (i.e.,
the breeder assigns a fitness value – whether or not the genotype
is selected – to the community-level performance of a genotype).

Cross-species genetic correlations and
inaccurate quantitative predictions

It will be recalled that when restricted to traits measured in
the same species, genetic correlations (a standard measure for
genetic covariances) are often the poor predictors of the actual
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FIGURE 3

(A) Structure of the compounded community-level G-matrix
that would be required to be able to predict genetic changes in
species traits in a community of m species potentially under
selection for their DGE. It includes both G-matrices (in green) on
the diagonal (G1, G2. . . Gm) for each species (equivalent to the
one in eq. 10a) and reciprocal cross species G-matrices (CSG)
(in dark red), representing genetic covariances among species
traits, i.e., covariances between DGE and IIGE for each pair of
traits belonging to different species. The figure depicts three
measured traits per species. See main text for a discussion on
the limits of the concept of the compounded community-level
G-matrix in relation to DGE and IIGE. (B) Same representations
for specific examples of the CSG-matrices that would be
required to predict the response to artificial selection at the
community level [with “s” indicating the trait(s) under selection].
Top: The particular case of the joint phenotype approach with
selection on the DGE of each species. The prediction of the
community variable c then requires the variance of DGE for
each species and the covariances between DGE and IIGE
affecting the other species. Bottom: Example of a trait-based
approach with selection only applied to trait A1 of species A, and
predictions focused on three traits of species B (B1–B3) one trait
of species C (C1), all being potential components of the
community-level target c (refer to main text for details). In cases
where the magnitude of the genetic covariance between DGE
and IIGE is non-null, the evolution of this first trait is expected to
affect the magnitude of IIGE on other species’ traits, hence the
mean value of other species traits. The notation σDGEA1,IIGGEA1|B1 ,
for instance, denotes the covariance between the DGE of
species A associated with trait A1 vs. its IIGE affecting the trait B1

of species B.

correlated response to selection (Gromko, 1995), and obtaining
reliable predictions of the correlated response to recurrent
artificial selection in plants seems very challenging (Pélabon
et al., 2021). It has also been shown that estimates of species-
specific G-matrices are environment-dependent (Wood and
Brodie, 2015), i.e., the environment in which they are measured
influences their estimation, which can introduce a strong bias
in predictions that were made for another environment. Taken
together, what precedes might explain why below a few hundred
measured individuals, it seems reasonable to draw qualitative
instead of quantitative conclusions (Lynch and Walsh, 1998),

that is, to determine whether correlations are significantly
negative, positive, or non-different from zero.

These limitations are expected to be even stronger for the
covariances between DGE and IIGE, by definition measured on
traits from two ecologically interacting species. First, the IIGE
includes ecological interactions that are not explicitly accounted
for in quantitative genetics models. This may introduce a
strong bias resulting from external environmental factors that
affect both species. Second, the evaluation and selection of
genotypes within experimental plant communities typically
requires reducing intra-plot genetic diversity for the selected
species to the single genotype under evaluation. It has been
shown that when genetic diversity is low, the traits of bi-
specific experimental communities are more strongly exposed
to experimental stochasticity and are hence less reliable (Milcu
et al., 2018). Third, in certain experimental cases (e.g., in
perennials), natural selection may co-select genotypes among
species (van Moorsel et al., 2018). If not accounted for, this
could bias the level of genetic covariance between DGE and
IIGE due to processes analogous to linkage disequilibrium (cf.
Wade, 2003).

Consequently, as it includes ecological causalities, the
genetic (co)variances among species’ traits (the elements
of CSG) are not of the same nature as species-specific
covariances (the triangle elements of G-matrices) and are
not exposed to exactly the same sources of bias. Thus,
they should neither evolve nor drive the evolution of c
according to the same processes. We suggest that this is the
main limitation of the biological scale-coupling approaches
from a quantitative genetic viewpoint. To sum up, accurately
predicting selection response at the community scale might
be challenging as prediction is contextual at this level. This
suggests that breeders looking for anticipatory predictions will
have to choose the “least bad” assumptions for their breeding
context and targets.

Future directions

Our analysis of extant models underlines the fact that
predicting the effects of artificial selection performed
simultaneously on more than one species is technically
challenging. This is first due to the size of the factorial
experimental designs required (but refer to suggestions
from Haug et al., 2021), especially if several functional
traits need to be measured in each species. However,
the need for estimates of genetic covariances between
traits measured both within and among species (for
IIGE) is a further obstacle. Reliable parameter estimations
(e.g., for genomic selection) might therefore require
an unusually large number of test environments (refer
to Annicchiarico et al., 2021).
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Mobilizing the modeling approaches
for community-level breeding
strategies

The complexity of mixed ecological and genetic systems
reminds us that these different modeling approaches should
probably not be merged into an ideal, all-purpose integrative
modeling approach. Instead, we suggest that they should serve
as an adaptable toolkit for breeders to obtain the anticipatory
predictions they need. We now present some situations and
strategies in which these modeling approaches could be used.

A frequent pattern observed in plant communities is
that all species do not contribute equally to community-level
performance (Mahaut et al., 2020), which is, as pointed above,
often assumed in the plant breeding literature for mixture.
The respective contribution of each species is contextual and
depends on both the agronomic context and the breeding
objectives (Box 2). Once the species composition of the target
community to be improved is established, a reasonable breeding
strategy should start by identifying the key species to breed
as a priority to achieve the highest possible community-level
genetic gain with the minimum breeding effort (note that
the relevance of the focal species might not be determined
by relative biomass of each species in the cover). Such focal
species should be economically relevant and/or should have a
major ecological effect on community performance, and the
genetic variance in the indirect genetic effects should be strong
(typically H2

IIGE > 0.5). The breeding potential of this species
could be identified through gross estimates of IIGE heritability
(“Approach 1” above) for the available genetic resources and
within the targeted community.

If genetic improvement requires the simultaneous selection
of several species (i.e., if the breeder assumes there is no
obvious single “focal species” to reach a breeding goal), the
joint phenotype approach (“Approach 2”) could be used to
identify the strength of negative correlations between DGE
and IIGE and to select the appropriate breeding scheme to
overcome these constraints (Sampoux et al., 2020). This strategy
then resembles the intra-specific breeding context where the
magnitude of the negative (hence constraining) correlation
between DGE (i.e., individual genotype performance) and IGE
is estimated and accounted for (e.g., at the population level :
Costa e Silva et al., 2013).

If a focal species has been clearly identified, one possible
strategy is to identify the key traits of this focal species for
performance at the community level. The community gradient
approach of Johnson et al. (2009) described above (“Approach
3”) appears to be a suitable integrative theoretical framework
for this purpose. In practical terms, the goal was to identify the
traits of the focal species with both: (1) high absolute values for
their α coefficients (eq. 10a), i.e., with strong (or non-negative)
effects on the community-level performance and (2) substantial
standing genetic variation in the pool of available breeding

candidates. However, the limitation of this trait-based approach
is that it does not account for reciprocal interactions with
other species potentially under selection. Reciprocal interactions
may bias estimates of the partial regression coefficients α, as
shown with the interaction coefficient of models for intra-
specific genetic effects (Bijma, 2014). This could be overcome by
coupling this quantitative genetic model with recently developed
of ecophysiological models of crop mixtures (Louarn et al.,
2020). These models could be adapted to provide the values
of the α coefficients for a given context and with respect to a
given breeding target, while accounting for reciprocal species
interactions (for further discussion on this topic, see Bourke
et al., 2021 in this special issue).

If the reciprocal interactions are shown to have negligible
effects on the selection process, this trait-based approach
is similar to basic selection index theory extended to the
community scale and could be readily implemented by breeders
(e.g., leading to the design of “community level ideotypes”
for the focal species). Conversely, under strong reciprocal
interactions, the best pair(s) of the few best performing
genotypes identified in the previous selection efforts could be
finally selected using a full factorial design of reasonable size,
with a limited number of genotype entries (e.g., design of
Moutier et al., 2022), which makes it possible to account for
both GMA and SMA (cf. Wright, 1985) (however, note that
there is no clear evidence for the importance of SMA variance
in the experimental literature; Annicchiarico et al., 2019). Such
an optional final selection step could be particularly useful if
fine-tuned co-adaptation of genotypes is required (i.e., requiring
well-defined and stable growing conditions, which might not be
much frequent in a low input agroecological future).

The realized response to selection:
Assessing the efficiency of modern
breeding for crop mixtures

Assessing and predicting the efficiency of current breeding
practices is of major concern to adapt breeding schemes to
agroecological objectives. Breeding efforts in the recent decades
aimed at pure stand performance might retain some efficiencies
for the focal species in mixtures (Annicchiarico et al., 2019).
However, intensive selection for monocropping performance
that has led to current elite varieties is suspected to have
reduced the relevant genetic variation for important traits at the
community level, with potentially negative IIGE resulting from
overcompetitive genotypes.

Several common garden experiments comparing cultivars
according to their registration years have documented
important genetic gains for monocropping yield traits (e.g.,
Sampoux et al., 2011; Laidig et al., 2014; Rose and Kage, 2019;
Voss-Fels et al., 2019; Herrera et al., 2020). Although some of
these studies investigated the effects of management conditions
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(e.g., low vs. high nitrogen fertilization, conventional vs. organic
management) on historical genetic trends, to our knowledge,
none estimated the extent to which pure stand breeding in
a focal species has affected community-level performance.
Thus, we do not know the long-term effects of modern,
monoculture-oriented plant breeding on the performance
of crop mixtures.

Filling this knowledge gap would require a randomized
experimental design comprising dozens of registered varieties
(with known registration years) for a given focal species,
each sown in a pure stand (experimental control) and in a
mixture (experimental treatment). This would make it possible
to measure (1) how genetic gain in pure stands is sustained
in mixtures (direct genetic effect) as well as (2) the effects of
the focal species on the community performance, i.e., IIGE
on yield or yield stability. Cereal–legume intercrops or forage
legume–grass mixtures would be the ideal candidate systems
for such a test.

Estimating the realized selection response of the target
species would be the ultimate test of the relevance of current
breeding strategies for agroecological practices and their effect
on plant–plant interactions. Having the realized selection
response to selection on a single focal species for a community-
level variable would exceptionally corroborate anticipatory
predictions (Maris et al., 2018) useful for breeding [e.g., the
parameters of Johnson et al.’s. (2009) model]. In addition,
comparing genetic gain in a pure stand and in crop mixtures
would help to identify cultivars and design ideotypes that
combine both species-level performance and good ecological
abilities. The community gradient approach proposed by
Johnson et al. (2009) is a relevant framework for interpreting the
results of such an experiment. Community-scale performance

could be formalized in terms of interaction traits (sensus Litrico
and Violle, 2015) by estimating the magnitude of their respective
α coefficients.

Investigating a blind spot: Genetic
variation in the sensitivity to species
interaction

Joint phenotype approaches assess genetic variation in
mixtures for two or more species. The resulting statistical
concepts such as GMA (Wright, 1985) make it possible to
avoid distinguishing between the direct genetic effect of a
species and its sensitivity to the IIGE of a companion species:
its performance corresponds to its (experimental average for
GMA) expression within a mixture of species, as measured in
the experimental design. However, to date, most experimental
breeding approaches used for mixtures have been focused on
a single focal species in which genetic variation in assessed
(review in Annicchiarico et al., 2019), likely due to the complex
implementation of full factorial designs. Such approaches
assume that IIGE variation only results from variation in the
interaction trait of the focal species, i.e., all genotypes of the
associated species affected by the IIGE react in the same way
to the influence of the selected species. In the model proposed
by Johnson et al. (2009), for instance, this is reflected in the fact
that the αi coefficients (eq. 10a) are constants, a feature inherited
from pioneering models on intraspecific indirect genetic effects
(Moore et al., 1997). A priori, this assumption only holds if the
IIGE of the focal species is estimated against a single genotype
of the associated species (i.e., there is no genetic variation in the
companion species, thus no genetic variation to its sensitivity to

FIGURE 4

Schematic representation of the reaction norm approach for a focal species A with an agronomic trait, zA, regressed on the interaction trait of a
second species B, zB. (A) Each species is influenced by its own genotype. zA deviates under the influence of zB times its sensitivity to this trait αA,
i.e., slope of the reaction norm to zB effect. The slope αA is itself a trait of species A, can be genetically variable and respond to selection. Both
traits can potentially contribute to a community variable c. (B) Graphical representation of the path diagram. Selection on zB (1) involves a
change in zA (3) through IIGE at αA constant. With the same amount of change in the interaction trait zB, if selection now also targets the
genetic value of the slope (2), the magnitude of the IIGE is modified, here increased (4).
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the effect of the focal species). If the focal species interacts with
several associated genotypes, they may be more or less sensitive
or robust to this interaction and a relevant source of variation in
IIGE would be ignored in this case.

This variation can be modeled by assuming that α

coefficients (in eq. 10a) are genetically variable. The graphical
model in Figure 4 illustrates how the distinction made by
Litrico and Violle (2015) between agronomic and interaction
traits can be made operational to explore such an assumption
(refer to Navas and Violle, 2009). Instead of estimating species
interaction as a factorial design combining individual genotypes,
a trait of major agronomic value for species A can be regressed
against a trait of species B involved in species interaction (e.g.,
biomass or an estimate of competitive effects). Assuming that
the sensitivity of A to this interaction is genetically variable
makes it possible to investigate specific genetic effects in a crop
mixture (refer to section headed “Approach 2” above), while
avoiding the need for a huge factorial design.

We suggest that the sensitivity of A can be modeled using
a reaction norm approach, taking the value of the interaction
trait of B as the environmental predictors for the agronomic
trait of A. The properties of reaction norms under artificial
selection have been well modeled (Kolmodin and Bijma, 2004).
Modern statistical tools and concepts to analyze the genetics of
reaction norms in plants, such as genetically informed random-
regression models (Arnold et al., 2019), could easily be extended
to interspecific interactions. This would make it possible to
compute the genetic variance for the slope G (αA) and its
genetic covariance with the genetic value of the agronomic
trait G

(
αA, gA

)
. As the ecological interaction is modeled by

a genetic-by-functional trait(s) interaction, this strategy would
help to avoid the huge factorial experiments (Wright, 1985)
required to estimate IIGE variance when the species genetic
background interacts. In situations where the slope of the
reaction norm is genetically variable, breeding for increasing
(or decreasing, if IIGE is dominated by, for instance, negative
competitive effect) the value of this slope could be a relevant
target to achieve breeding goals by acting on the “leverage effect”
of the slope illustrated in Figure 4B.

Conclusion

It is now clear that major chapters of quantitative genetic
theory must be adapted to align current plant breeding
efforts with increasing sustainability challenges. Quantitative
genetics provided plant breeders with a scientific framework
depicting the complex systems they needed to transform by
both managing genetic variation and selection intensity. In the
future, plant breeders will have to manage the consequences
of their efforts for the improved functioning of complex crop
communities. While breeding and evolutionary ecology evolved
from the same theoretical background (Bijma, 2020), most

relevant models to link the population to the community level of
biological diversity have been designed in evolutionary ecology.
Our review stresses that inputs from evo-to-eco models have the
potential to shed light on the relevant properties of this scale
shift to guide the development of future breeding activities. We
now conclude by underlining the main practical implications of
our survey:

(1) Identifying species with major effects on the breeding
target will facilitate the prediction procedure. However,
when the total number of species to be considered at
once increases, quantitative genetic modeling will quickly
reach its limits in providing meaningful anticipatory
predictions, as the system becomes poorly controllable by
artificial selection.

(2) Context dependence is expected to increase with diversity,
rendering any anticipatory prediction of the response
to artificial selection extremely unreliable. Furthermore,
for such complex systems, empirical approaches based
on evolutionary processes might be more cost-effective
(Annicchiarico et al., 2019) and could represent valuable
“stopgaps” (Hill, 1996) in the absence of efficient breeding
schemes that can be implemented at the community level.
The models we reviewed here could serve as baselines for
ex-post interpretation of these empirical results and help
to made them more reproducible in practice.

(3) Each of the three types of models we identified can be
treated as a particular case of a multispecies-multitrait
selection index approach. However, shifting the scale
of quantitative genetics toward community performance
involves dealing with genetic covariance among traits
measured both within (DGE vs. DGE) and among
species (DGE vs. IIGE), which have an intrinsically
distinct biological nature. They consequently evolve and
constrain community-level genetic change according to
different processes that are not fully accounted for
in the estimation procedure, which could finally drive
anticipatory predictions away from reality.

We have provided a first synthesis of extant models
linking quantitative genetics to community variation, identified
knowledge gaps and inherent limitations, and suggested some
directions for future research. We focused on the operationality
of the modeling approaches to provide anticipatory predictions
(Maris et al., 2018) for breeders. This review emphasizes
the potential complexity of fine-grained interactions among
genotypes of different crop species. Coupled with the generally
low predictability of short-term selection response in plants
(Pélabon et al., 2021), this should encourage the search for
robust qualitative evidence to facilitate the choice of breeding
strategies. The overview we provided (summarized in Table 1)
of the available models and their parameters should be useful
in this regard. Such models could be incorporated in the
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framework of the complex experimental pipelines currently
being developed to articulate farmers’ field experiments and
plant breeding stations (Wolfe et al., 2021). This would
facilitate the critical assessment and monitoring of such large-
scale strategies in the future. More generally, plant breeders,
possibly in interaction with evolutionary ecologists, could use
this theoretical framework to design appropriate experimental
settings and community-level breeding strategies. We have no
doubt that this scenario has the potential to improve plant
breeding practice to cope with current agroecological challenges.
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Appendix

Appendix 1 | Using selection theory to recover the extended breeder’s equation proposed by
Johnson et al. (2009) for a community variable

Johnson et al. (2009) provided a theoretical formulation to extend the breeder’s equation to a community variable, with selection
affecting l traits of a focal species. The authors did not provide a formal derivation. As we will show, this equation can be derived from
the standard multiple regression of traits on fitness on the one hand, i.e., the definition of the multivariate linear selection differential
describing the individual fitness (Lande, 1979; Lande and Arnold, 1983):

w = µw +

l∑
j=1

βjzj + ew

And, on the other hand, the “evo-to-eco” multiple regression of the community variable c on the population traits:

c = µc +

l∑
j=1

αjzj + ec

The response to the selection of traits on the community variable can be derived from the Robertson (1968) secondary theorem
of natural selection (refer to Walsh and Lynch, 2018), i.e., by developing ∆c̄ = covA (w, c). For the sake of clarity, we keep the linear
notation, as follows:

∆c̄ = cov(β1g1 + β2g2 + . . .+ βlgl,

α1g1 + α2g2 + . . .+ αlgl)

Then,
∆c̄ = α1β1G11 + α2β2G22 + . . .+ αlβlGll

+α1
∑
j 6=1

βjG1j + α2
∑
j 6=2

βjG2j + . . .+ αk
∑
j6=l

βjGlj,

with Gjj the (co)variance elements of the G-matrix. The first line encompasses direct response in the trait while the second line
encompasses the correlated selection responses. Factoring out by αj gives:

∆c̄ = α1

β1G11 +
∑
j6=1

βjG1j

+ α2

β2G22 +
∑
j6=2

βjG2j

+ . . .+ αl
βlGll +

∑
j6=l

βjGlj

 ,
which is the developed form of Johnson et al.’s. (2009) equation. The terms in parentheses are the sum of the direct and correlated
genetic changes due to directional selection on the jth trait of the focal species, i.e., its predicted response to multivariate directional
selection. This means that:

∆c̄ = α1∆z̄1 + α2∆z̄2 + . . .+ αl∆z̄l

∆c̄ =
∑

αj∆z̄j

This exercise clarifies the assumptions behind Johnson et al.’s. (2009) evo-to-eco model. It also illustrates that genetically-based
change in a community variable under the influence of a focal species corresponds to the sum of changes of each trait weighted by its
respective contribution to the community variable αj. This is a basically equivalent to a linear selection index (cf. Lin and Allaire, 1977;
Nordskog, 1978) except that the values of [α1, α2, . . . αl] are IIGE parameters estimated with error from data and not fixed a priori as
in selection indices.

Frontiers in Plant Science 18 frontiersin.org

https://doi.org/10.3389/fpls.2022.733996
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/

	Linking quantitative genetics with community-level performance: Are there operational models for plant breeding?
	Introduction
	Description of the modeling approaches
	Epistemological remark
	Notation

	Approach 1: Estimating the heritability of interspecific indirect genetic effects
	Generalities and theoretical grounding
	Practical application for breeding

	Approach 2: Joint phenotype
	Generalities and theoretical grounding
	Practical application for breeding

	Approach 3: Community-trait genetic gradient
	Generalities and theoretical grounding
	Practical application for breeding

	Common limitations and links between the three approaches
	Integrative expressions for community-level selection response

	Cross-species genetic correlations and inaccurate quantitative predictions

	Future directions
	Mobilizing the modeling approaches for community-level breeding strategies
	The realized response to selection: Assessing the efficiency of modern breeding for crop mixtures
	Investigating a blind spot: Genetic variation in the sensitivity to species interaction

	Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References
	Appendix
	Appendix 1 | Using selection theory to recover the extended breeder's equation proposed by BR46 for a community variable



