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Simple Summary: Nosema ceranae is a highly prevalent intracellular parasite of honey bees’ midgut
worldwide. There is a lack of studies addressing the influence of climatic and beekeeping factors
on the dynamics of its infection. A long-term study has been carried out in six apiaries in four
Mediterranean countries (France, Israel, Portugal, and Spain), monitoring a total of 103 colonies. The
lowest prevalence of infection was observed in mainland France, while the highest percentage of
infected honey bees per colony was detected in Israel. The location and beekeeping management were
shown to influence the infection levels. The percentage of infected honey bees negatively affected the
colony strength in the apiaries located in Spain and mainland Portugal, whereas queen replacement
had a positive effect on these same apiaries, reducing infection levels. The highest colony losses
occurred in mainland France, which had the lowest levels of N. ceranae. It was followed by Spain,
an apiary with high levels of N. ceranae, so no correlation between infection and mortality could be
established. These results suggest that complementary studies on interactions with other pathogens
and honey bee genetics are needed in order to develop management strategies for its control.

Abstract: Nosema ceranae is a highly prevalent intracellular parasite of honey bees’ midgut worldwide.
This Microsporidium was monitored during a long-term study to evaluate the infection at apiary
and intra-colony levels in six apiaries in four Mediterranean countries (France, Israel, Portugal, and
Spain). Parameters on colony strength, honey production, beekeeping management, and climate
were also recorded. Except for São Miguel (Azores, Portugal), all apiaries were positive for N. ceranae,
with the lowest prevalence in mainland France and the highest intra-colony infection in Israel. A
negative correlation between intra-colony infection and colony strength was observed in Spain and
mainland Portugal. In these two apiaries, the queen replacement also influenced the infection levels.
The highest colony losses occurred in mainland France and Spain, although they did not correlate
with the Nosema infection levels, as parasitism was low in France and high in Spain. These results
suggest that both the effects and the level of N. ceranae infection depends on location and beekeeping
conditions. Further studies on host-parasite coevolution, and perhaps the interactions with other
pathogens and the role of honey bee genetics, could assist in understanding the difference between
nosemosis disease and infection, to develop appropriate strategies for its control.
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1. Introduction

The conservation of the abundance and diversity of insect pollinators is a decisive
action to avoid the negative impact that the lack of these insects can have on agriculture,
food production and security, and environmental sustainability. In this regard, managed
honey bees are a suitable species that can easily be located in areas where they serve as a
central pollination structure for a wide range of crops and a variety of wild flowers, which,
in their absence, are not sustainable [1,2].

During the last few decades, there has been an alarming increase in honey bee colony
losses where pathogens like Varroa destructor mites, the Microsporidia Nosema spp. and
viruses contribute actively [3–6]. Pathogen spread within honey bee colonies is a dynamic
process and is sometimes the result of the invasion of a new virulent pathogen and/or the
combination with other pathogens and parasites that may be present in the colony [7–9].

Two Nosema species have been identified as honey bee pathogens: Nosema apis
and Nosema ceranae, and nowadays, both species infect Apis mellifera colonies worldwide.
However, N. ceranae is the species that has become one of the most prevalent honey bee
pathogens globally [10–12]. This microsporidium is an obligate intracellular parasite of
the ventricular cells of honey bees [13] and it is implicated in honey bee colony losses in
some regions, especially in warm areas [12,14–18], probably due to the higher resistance
of N. ceranae spores to heat and desiccation [19]. In A. mellifera honey bees, infection
by this microsporidium induces damage to the ventriculus (midgut), which is the main
site of nutrient absorption of the digestive tract and the target tissue of this pathogen.
In this tissue, the infection causes degeneration of the epithelial cells, which are full of
microsporidia in different stages of development (i.e., meronts, sporonts, sporoblasts, and
spores), causing the weakening and death of infected honey bees [13,14]. In fact, the
infection has been reported to shorten the lifespan [20–22], induce oxidative stress and
changes in the metabolism and hormonal regulation of the honey bee host [21,23], or
immune modulation [24–27], among other effects.

The prevalence of N. ceranae varies widely among locations. A common feature is
that this pathogen is widely distributed regardless of the climatic conditions, ranging
from desert climates [28–30] to very cold ones [31,32]. In some areas, this microsporid-
ium is present in more than 50% of the colonies sampled [18,33–39], whereas in others
the prevalence is lower than that percentage [40,41]. However, most studies consist of
occasional surveys to determine the prevalence of infected colonies at a specific point in
time [18,32,37,38,40,42–46]. Other studies carried out longitudinal surveys to determine
the prevalence in selected apiaries and how it fluctuates across the study period. The
findings varied among the studies, with countries such as Serbia [35], Germany [47], or
New Zealand [48] showing a higher prevalence in spring and Uruguay showing a higher
prevalence from the beginning of the winter until the end of the spring [49].

The prevalence of infection varies among colonies, and it is unclear how climate
and beekeeping management affect the development of the pathogen and the resultant
disease. Although variations at colony or apiary level throughout the year have been
reported occasionally [14,50], comparisons among studies are difficult due to the diverse
sampling and methodology employed, which hinder understanding of the true impact that
climatic factors and beekeeping management have on the infection. Therefore, long-term
research conducted using standardized protocols is needed to investigate these issues.
To that end, this study aimed to compare Nosema spp. infection and its development in
apiaries with very different climates and beekeeping practices during a 2-year period in
four Mediterranean countries.
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2. Materials and Methods
2.1. Study Design

The study was carried out simultaneously in four Mediterranean countries: Portugal,
Spain, France, and Israel. Six apiaries were selected to conduct the survey, namely, four
locations where V. destructor is present, including CIAPA (Spain), INRAE (France), ARO
(Israel), and CIMO (Portugal), and two others where V. destructor was absent, including
the Ouessant (OUE, France) [51,52] and the São Miguel (SMI, Azores, Portugal) [53,54]
islands. The exact locations of the apiaries and the total number of colonies involved in the
study are shown in Figure 1 and Table 1. All colonies were prescreened to detect N. ceranae
as described later. All the apiaries except São Miguel contained positive colonies at the
beginning of the study. The São Miguel apiary was negative, although there is a history of
N. ceranae presence on the island [55].
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Figure 1. Apiary locations: Bragança, Portugal (CIMO), Fuente la Higuera, Spain (CIAPA), Avignon,
France (INRAE), Zrifin, Israel (ARO), Ouessant Island, France (OUE), and São Miguel Island, Azores,
Portugal (SMI). Red—V. destructor present, Green—V. destructor absent.

Table 1. Location of the apiaries, number of colonies (n = 103) and mitochondrial DNA (MtDNA)
lineages of honey bees.

Country Apiary Name Coordinates
(Latitude/Longitude) Locality Total No.

Colonies per Apiary MtDNA Lineages 1 [56]

Spain CIAPA 40.751389/−3.303889 Fuente la Higuera
de Albatages 22 A and M

France INRAE 43.946941/4.862223 Avignon 21 C
France OUE 48.477008/−5.067211 Cadoran 11 M
Israel ARO 31.966979/34.843588 Zrifin 24 C

Portugal CIMO 41.808791/−6.711865 Bragança 15 A and M

Portugal SMI 37.752648/−25.588381 Ribeira do
Guilherme 10 A

1 A–African lineage; M–western European lineage; C–eastern European lineage.

The colonies of the six apiaries were monitored for 20 months. Samplings started
in February 2018 and ended in October 2019. On the islands (OUE and SMI), sampling
started later in April 2018 due to weather conditions. Samplings were carried out every
two months, except for December 2018 in most locations, due to the low temperatures.
Colonies that died during the 20-month sampling period were replaced by spare colonies
that were kept in the monitored apiaries under identical conditions (except in ARO) from
the onset of the study.
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2.2. Detection of N. ceranae Infection

In each sampling, adult workers were collected from each colony by brushing off
the first comb with no brood surface from the brood chamber. This procedure was done
to avoid collecting newborn workers. Samples were taken to the laboratory and kept at
−80 ◦C for further analysis. All the apiaries were sampled using the same standardized
protocol to allow comparisons.

The Nosema spp. infection was determined at apiary and intra-colony levels. At the
apiary level, the presence of N. ceranae was determined for each colony from 60 adult
workers that were processed as a pool. The pools prepared from each colony were placed
in a sterile container (tubes or bags with a filter) and 15 mL or 6 mL of RNase-free water
were added, respectively. The pools were homogenized using Stomacher® (Qiagen, Hilden,
Germany) and 180 µL of the macerates were transferred to 96-well plates (Qiagen, Hilden,
Germany). The plates were shaken two times in a Tissuelyser (Qiagen, Hilden, Germany)
for 1 min at 30 Hz, changing position between shacking rounds, followed by a short
centrifugation. At ARO, the homogenization was performed with 50 mL tubes via Geno-
grinderTM at 1550 rpm for 3 min, followed by a spin at 800 rpm 4 ◦C for 2 min. Afterwards,
50 µL of each homogenate was transferred to a 96-well plate, mixed with 50 µL TE buffer,
and incubated at 95 ◦C for 20 min following the protocol [57] with a slight modification
without the addition of Proteinase K [57].

At the intra-colony level, the prevalence of N. ceranae (percentage of bees infected per
colony) was determined by individually analyzing 25 workers per colony, as described
previously [14], which allowed us to establish the detection threshold at 4% (1 worker
positive out of 25). Each worker was placed in a well of a 96-deep well plate with 500 µL of
nuclease-free water and two steel beads. The plates were homogenized in a Tissuelyser
(Qiagen, Hilden, Germany) for 1 min at 30 Hz four times or spun at 800 rpm 4 ◦C for 2 min
in ARO. DNA extraction was performed in 50 µL of each homogenate, as explained above.

All PCRs were done as multiplex reactions with primers that allow for the detection
of N. ceranae, N. apis, and an A. mellifera internal control (COI) in the laboratories of CIAPA
(Spanish and Portuguese samples), INRAE (French samples), and ARO (Israeli samples)
using a harmonized protocol [33]. PCR amplicons were revealed by agarose gels (French
and Israeli samples) or by using the QIAxpert system (Spanish and Portuguese samples).
Standard controls (Nosema spp. DNA and spores) were prepared by CIAPA and shared
with INRAE and ARO to assure that the same specificity and sensitivity level were reached
at the different facilities.

2.3. Beekeeping and Climatic Conditions

On every bimonthly visit to the apiary to collect samples, the colonies were inspected
using the same standardized protocol and forms across countries to allow comparisons.
Colony mortality, colony strength, colony management, the presence of pathogens (includ-
ing Varroa levels and brood diseases), and control treatments were recorded. Assessment
of colony strength was based on the type of hive, the number of combs covered by bees in
the nest and supers, and the number of combs with brood. The percentage of area covered
by honey bees was recorded on each side of the combs. Data were converted to the number
of honey bees per colony, as indicated in the BEEBOOK [58]. In each brood comb, the area
(in percentage) occupied by brood was visually estimated, and the quality of the brood
was inspected for the presence of brood diseases. At every sampling date, the presence
of the queen (color marked) was checked and, when the queen was not observed, the
presence of recently laid eggs was verified. The presence of an unmarked queen in the
colony was interpreted as a new queen born after a natural replacement, which was marked
in situ according to the accepted international color code. Colony management consisted
of recording any activity done. At the ARO apiary, a specific management of colonies was
conducted in October–November 2018, in which all the queens were replaced by young
mated queens and colonies were balanced through the exchange of brood combs and
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adults among the colonies of the apiary. Consequently, all colonies in 2019 were considered
new ones.

In each apiary, the percentage of V. destructor infestation was determined during
each sampling by using the sugar powder test, counting mite falls on 300 honeybees
(limit of detection 0.3%) [59]. Additionally, V. destructor was controlled following national
regulations (except in OUE and SMI, which were mite-free). In INRAE, two amitraz strips
(Apivar®) as active ingredient (a.i.) per hive were used at the end of September each year. In
ARO, 2–3 amitraz strips (Galvitraz®) per hive were applied in July and December each year.
In CIMO and CIAPA, two amitraz strips (Apivar® in 2018 and Apitraz® in 2019) per hive
were used in March and September 2018 and July 2019 (CIMO) or September 2019 (CIAPA);
in March 2019, colonies were treated with thymol as a.i. using ApiLifeVar® (CIMO) or
Apiguard® (CIAPA).

The presence of other pathogens in the colonies was inspected to detect any clinical
signs of adult or brood diseases and was recorded in case of detection.

In addition, honey production was recorded annually by differences in the weight
of honey combs from supers before and after honey extraction. The weather conditions
were also recorded throughout the study by using meteorological stations in the mainland
apiaries. Parameters recorded were mean, maximum, and minimum temperatures (◦C);
mean, maximum, and minimum relative humidity (%); mean wind speed (m/s); days with
mean wind speed ≥6.4 m/s; and height of precipitation (mm).

2.4. Statistical Analysis

To determine whether there were any significant differences in the number of colonies
infected by N. ceranae per apiary, all data from each site were analyzed together (cross-tabs,
chi-square, with Monte Carlo correction, p < 0.0001). Differences in the intra-colony preva-
lence (percentage of honey bees infected per colony) among apiaries were analyzed by
ANOVA. Homogeneity of variances was determined with a Levene test, and a post-hoc
Games Howell or a Bonferroni test (depending on whether the variances were homoge-
neous or not) were used to compare among apiaries and/or sampling dates within the
apiary. A Rho Spearman test was used to determine the correlation between the intra-colony
infection level and the Varroa levels, the meteorological data, the colony strength data,
and the honey production. The relationship between the levels of N. ceranae intra-colony
infection in the colonies that replaced the queen or not was assessed using a Mann–Whitney
U test. All p-values < 0.05 were considered significant, and all statistical analyses were
carried out using the IBM SPSS Statistics V24 software by the Statistics Unit of the Scientific
Computing Area at the SGAI-CSIC (Madrid, Spain).

3. Results
3.1. Nosema spp. Infection at the Apiary Level

Data on Nosema spp. infection was obtained from 103 colonies established at the
beginning of the study (Table 1). The total number of colonies analyzed for each sampling
round is shown in Table 2. As stated above, some colonies were added to replace the
losses in order to monitor a sufficient number of colonies. Both N. ceranae and N. apis were
analyzed in all the apiaries, but the latter was rarely found. Only one colony was positive
for N. apis in April 2018 at the CIAPA, and therefore the following analyses were only
performed on N. ceranae.



Insects 2022, 13, 844 6 of 18

Table 2. Percentage of colonies positive for N. ceranae per sampling and apiary and number of positive
colonies out of sampled colonies in parenthesis. SMI had 10 colonies where Nosema spp. were never
detected. ND: Not detected.

2018 2019

February April June August October February April June August October

CIAPA 100.00
(15/15)

100.00
(22/22)

95.24
(20/21)

100.00
(17/17)

100.00
(16/16)

100.00
(16/16)

100.00
(16/16)

100.00
(14/14)

100.00
(13/13)

100.00
(13/13)

INRAE 1 7.69
(1/13)

66.67
(4/6)

14.29
(1/7)

50.00
(5/10)

22.22
(2/9)

6.67
(1/15)

ND
(0/14)

20.00
(3/15)

60.00
(9/15)

20.00
(3/15)

OUE - 100.00
(10/10)

100.00
(10/10)

100.00
(10/10)

90.00
(9/10) - 30.00

(3/10)
100.00

(10/10)
80.00

(8/10)
40.00

(4/10)

ARO 100.00
(14/14)

100.00
(14/14)

100.00
(13/13) - 100.00

(9/9)
100.00

(12/12)
91.00

(10/11)
100.00

(11/11) - 100.00
(10/10)

CIMO 100.00
(15/15)

100.00
(15/15)

100.00
(15/15)

86.67
(13/15)

86.67
(13/15)

100.00
(12/12)

100.00
(12/12)

63.64
(7/11)

100.00
(11/11)

54.55
(6/11)

1 Only data from colonies from which it was possible to collect samples are shown. Data not available.

Most colonies were positive for N. ceranae in all apiaries throughout the study except
on SMI, where no colony was positive. When we jointly analyzed all the data of infected
colonies per apiary, the number of N. ceranae-positive colonies varied significantly among
the apiaries (chi-square with Monte Carlo correction, p < 0.0001). All the colonies located
in the CIAPA, ARO, and CIMO apiaries were positive for N. ceranae at the onset of the
study and remained so nearly across the entire study period (February 2018–October 2019),
and only on rare occasions, the microsporidium was not detected (Table 2). In contrast,
N. ceranae was not detected in most of the INRAE colonies at the onset of the study, al-
though the number of positive colonies increased in the following samplings, up to 66.67%
in April 2018. From this moment on, the number of positive colonies was below 23%,
except in August in both sampling years (50% and 60%, respectively). In the case of the
OUE apiary, an intermediate pattern was observed, as all the colonies were positive at
the beginning of the study and this was maintained during the first year with a low de-
crease (90% in October 2018), while in the second year, the number of N. ceranae-negative
colonies decreased.

3.2. N. ceranae Infection at Intra-Colony Level

A total of 13,907 individual honey bees were screened for N. ceranae during the study
(Table 3). The percentage of infected honey bees per colony (intra-colony prevalence) was
also significantly (ANOVA; p < 0.0001) different among apiaries (Figure 2) and it varied
across time (Figure 2), especially in ARO and CIMO. ARO had the highest mean prevalence
(Table 3; Figure 2), with 32.39%, and it was significantly different from the other apiaries
(Games–Howell test; p < 0.0001). ARO was followed by CIMO (17.17%), CIAPA (13.30%),
and OUE (11.11%), and these three apiaries were not significantly different from each other
(Games–Howell test; p > 0.05). Finally, INRAE had the significantly (Games–Howell test;
p < 0.0001) lowest mean level of intra-colony infection (1.37%).

Table 3. Intra-colony prevalence at each apiary. Percentage of N. ceranae infected honey bees per
colony during the study. ND: Not detected (<4%).

CIAPA INRAE OUE ARO CIMO SMI

No. bees analysed 4075 2369 1993 1888 3102 480
Mean (%) 13.30 1.37 11.11 32.39 17.17 ND
Std. Dev. 14.12 3.58 15.49 24.29 17.93 ND
Median 8.00 0.00 4.00 35.00 12.00 ND
Max. 96.00 20.00 70.83 90.00 79.17 ND
Min. ND ND ND ND ND ND
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the box represents 50% of observations. Outliers are shown as dots and asterisks.

Regarding N. apis, only 14 out of the 13,907 honey bees analyzed were positive
(two honey bees in CIAPA and 12 in CIMO), mostly found in coinfection with N. ceranae
(12 honey bees coinfected). Thus, the percentage of infection by this species is not included.

In all apiaries, there were colonies with no infected honey bees at some point in time
(Supplementary Table S1). On the other hand, the highest level of infection was detected
in one colony from CIAPA (96%) in April 2018. In this apiary, April was the month with
the highest mean intra-colony prevalence (27.64%; Figure 2, Supplementary Table S1) and
the mean values kept similar and below 16% from that moment on until the end of the
study (October 2019). The colonies of CIMO showed a similar pattern. The maximum level
of infection was also found in April 2018 (50%) and it decreased afterwards, maintaining
prevalence values below 20% until February 2019 (24.35%), decreasing again (circa 10%)
until the end of the study. The ARO apiary exhibited the highest mean intra-colony
prevalence, which was above 30% in all sampling rounds, except between October 2018
and April 2019. From that moment on, the prevalence increased gradually, reaching the
highest levels of infection in October 2019 (56%). The colonies of the OUE apiary started
with a relatively high percentage of infected honey bees (April and June 2018, >20%),
decreasing thereafter to remain at levels below 10% until the end of the study. The intra-
colony prevalence in INRAE showed the lowest levels of infection throughout the entire
study period, with no significant differences among the samplings, as the mean values
were below 2% in most of the samplings, and only in June and August 2019 did it increase
to 4%. The highest value (20%) was found in one colony in June 2019 and it became under
the detection level in the following sampling round. The SMI was in stark contrast to the
remaining apiaries, as no honey bees were detected as positive. The full set of results on
the significant differences in the percentage of infected bees for each sampling round and
apiary can be found in the Supplementary Table S2.
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3.3. Varroa Destructor Levels

A Varroa test was performed only in the apiaries of CIMO, CIAPA, INRAE, and ARO
as the islands of SMI and OUE were mite free. The infestation levels differed among
apiaries, with the highest mean percentage found in CIMO (1.09%) and ARO (0.9%), and
the lowest in CIAPA (0.18%; Table 4). It should be noted that, except for CIAPA, the
maximum levels of Varroa were over 9% at INRA, ARO, and CIMO but in just one colony
at each apiary. However, only 36 samples, out of the 419 analyzed, exceeded 2% (11 from
INRA, 12 from ARO, and 13 from CIMO).

Table 4. Statistics for the percentage of Varroa destructor in 300 honey bees per apiary across sampling
rounds (n = 419). Islands are not included as they were the mite free.

Apiary CIAPA INRA ARO CIMO

N 132 102 81 104
Mean 0.18% 0.71% 0.9% 1.09%

Std. Dev. 0.54 1.58 1.71 1.73
Min. 0% 0% 0% 0%
Max. 3.7% 9.7% 9.61% 9.61%

There was a positive correlation between the percentage of Varroa in the colony and
the N. ceranae intra-colony infection level (Spearman’s Rho, 2-tailed; p < 0.005), when all
the data were analyzed together. This correlation was maintained in the INRAE and ARO
apiaries when analyzed separately (Spearman’s Rho, 2-tailed; p < 0.005) whereas in the
CIMO and CIAPA apiaries, there was no correlation.

3.4. Climatic Conditions and N. ceranae Infection

The ARO apiary was located in the warmest region with the highest mean temperature
(22.16 ◦C) and mean relative humidity (67.17%). The INRAE apiary exhibited the highest
mean precipitation (1.82 mm), whereas CIMO showed the highest mean wind speed
(6.25 m/s) of all the studied apiaries (Figure 3; Supplementary Table S3).
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Figure 3. Representation of N. ceranae infection levels (percentage of infected honey bees) per apiary
and sampling round in relation to the mean temperature (◦C) and the mean relative humidity (%).

The analysis between the mean percentage of intra-colony infection per apiary across
samplings and the climatic conditions (monthly means) did not show significant correla-
tions with the recorded parameters (Spearman’s Rho, 2-tailed; p > 0.05). Only the number of
days with a wind speed higher than 6.4 m/s was positively correlated with N. ceranae levels
(Spearman’s Rho, 2-tailed; p < 0.005), which could be related with to number of days that
honey bees are inside the colony. However, these data were only recorded for the CIMO
and INRAE apiaries, and this correlation could not be confirmed at the other locations.
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When the mean temperature and mean relative humidity were represented together
in relation to the N. ceranae infection levels, the highest levels were found at the highest
mean temperature and mean relative humidity of over 65% (Figure 3). These values match
the ARO apiary, which exhibited N. ceranae infection levels significantly higher than in
the other apiaries (Games–Howell test; p < 0.0001) (see Section 3.2: N. ceranae infection at
intra-colony level).

3.5. Colony Strenght and N. ceranae Infection Levels

There was considerable variation in colony strength (number of adult honey bees per
colony) both among and within the apiaries (Figure 4). CIAPA exhibited the highest mean
(23,124.16) of colony strength and INRAE, the lowest (10,453.83; Table 5). ARO was the
first apiary where the population began to increase in spring, reaching maximum values in
April in both years. This pattern contrasted with that of the other apiaries, where colony
strength peaked in the summer (Figure 4).

Table 5. Estimation of colony strength for each apiary. Values represent an estimation of the number
of honey bee adults.

CIAPA INRAE Ouessant ARO CIMO SMI

No. samples analyzed 1 163 119 80 107 132 80
Mean 23,124.16 10,453.83 11,778.84 13,352.70 18,717.05 15,870.75

Median 17,850 9808.40 12,610.80 13,078.13 16,590.00 16,800.00
Std. Dev. 18,946.79 4609.50 2238.07 4984.24 13,069.74 8216.15

Minimum 1050 2802 7006 5231 2100 6300
Maximum 91,560 32,386 14,012 22,494 60,060 33,600

1 Samples correspond to colonies analyzed across sampling rounds.
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honeybees (thousands). In OUE and ARO, there was no data collection in February and August,
respectively, due to weather conditions.

Colony strength, estimated at each sampling round, was analyzed to determine if
there was a relationship with the percentage of honey bees infected by N. ceranae (Figure 4).
When the data generated for each apiary were analyzed altogether, there was a positive
correlation (r = 0.179) between the two variables (Spearman’s Rho; p < 0.0001). However,
when the analysis was done individually for each apiary, a different pattern was observed.
While in the CIAPA and CIMO apiaries, a significant negative correlation (r = −0.299
and r = −0.257, respectively) between the percentage of N. ceranae infection and colony
strength was observed (Spearman’s Rho; p < 0.01), and in INRAE and OUE, the correlation
was positive (Spearman Rho; r = 0.252 and r = 0.299, respectively; p < 0.01). In ARO, the
correlation was not significant, although the trend was negative as in CIAPA and CIMO
(Spearman’s Rho; p > 0.05). SMI was not included in the analysis because N. ceranae was
not detected in any colony across time.

3.6. Honey Production and N. ceranae Infection Levels

The honey production (Kg) per colony was recorded only in the continental apiaries
(Table 6). CIMO and CIAPA had the highest mean of honey production (29.30 Kg and
27.64 Kg, respectively), followed by ARO (18.15 Kg) and INRAE (9.16 Kg, data available
only for 2019), which is consistent with colony strength. There was no significant correlation
between N. ceranae intra-colony infection and honey production (Spearman’s Rho; p > 0.05).

Table 6. Average honey production per colony (in Kg) at each apiary during the study period. Islands
are not included. Data not available.

Apiary No. of Colonies 2018 2019 Total Mean Median Std. Dev. Min. Max.

CIAPA 25 26.7 33.86 29.30 30.03 13.93 6.64 52.94
INRAE 15 - 9.16 9.16 9.00 5.78 0.00 17.60
ARO 52 17.50 18.93 18.15 18.18 10.62 0.00 35.90

CIMO 29 33.40 21.46 27.64 26.00 18.85 0.00 63.10

3.7. Queen Replacement and N. ceranae Infection Levels

In each sampling round, the presence of the queen was checked. Thus, every queen
replacement was recorded except on the islands, in which those data were not available.

The ARO apiary had a special colony management in autumn in which comb number
was equalized and the queens were artificially replaced. INRAE only registered one natural
queen replacement (June 2018), whereas CIMO registered seven (three colonies out of 15 in
2018 and four out of 12 in 2019) during the study period. However, in the CIAPA apiary,
all the colonies (n = 22) replaced their queen (naturally) at least once between March and
September 2018, and two colonies even did it three times. The queen replacement was
lower in the following year (five colonies out of 16). Therefore, the relationship between the
queen replacement and the percentage of infected honeybees per colony was analyzed only
for the CIAPA and CIMO apiaries (Supplementary Table S4). To do this, the percentage of
honeybees infected in the sampling previous to the queen replacement (detected in April,
August, or October 2018) was compared to the percentage of honey bees infected in the
following spring (April 2019). The comparisons were made between two groups: one
including the colonies that changed the queen and another group of colonies that did not
change the queen. The only significant (Mann–Whitney test; p < 0.05) difference was found
in the levels of intra-colony infection that were lower in the colonies that had replaced the
queen in the previous summer (detected in August 2018) as opposed to those that had not
changed it (Figure 5).
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Figure 5. Percentage of intra-colony infection in CIAPA and CIMO colonies in April 2019. The
comparison was made between colonies when the queen replacement (QR) was detected in (a) April
2019 (n = 5), (b) August (n = 5), or (c) October (n = 14) versus the colonies that did not replace the
queen (No QR) for the same periods (n = 16; n = 23; n = 14, respectively). * Denotes significant
differences (p < 0.05).

3.8. Colony Mortality and N. ceranae Infection Levels

The mortality of colonies was recorded across the 20-month period (Table 7). The
highest percentage of losses was observed in INRAE (47.6%) and CIAPA (40.9%), and the
lowest on the islands, with one colony lost in OUE and none in SMI. The level of N. ceranae
infection of a colony could not be correlated with its mortality. Only one colony (in CIAPA)
had 96% of honey bees infected (Supplementary Table S1), which died a month later after
infection assessment. When N. ceranae intra-colony infection in the two months prior to
colony death was analyzed, a large proportion of the dead colonies were found to have a
level of infection greater than or equal to 20% (Supplementary Table S4). Studying all the
data together, 46% of the deceased colonies exceeded this value. However, this condition
was not fulfilled in OUE or INRAE, so the data were analyzed by grouping the dead
colonies from CIAPA, ARO, and CIMO. Thus, 76.5% of the colonies had ≥20% of honey
bees infected in the previous two months (CIAPA: 77%, ARO and CIMO: 75%, respectively).
Still, some colonies in CIMO or ARO reached over 75% of infection and did not die, having
a remarkable decrease of infected honey bees at the following sampling round (below 40%;
Supplementary Table S4).

Table 7. Total number of colonies studied per apiary and colony mortality.

Apiary No. Colonies in the Study No. of Dead Colonies Percentage of Losses
No. of Dead Colonies

≥20% of
Intra-Colony Infection 2

CIAPA 22 9 40.9% 7
INRAE 21 10 47.6% 0

OUE 11 1 9.1% 0
ARO 24 5 1 20.1% 3

CIMO 15 4 26.7% 3
SMI 10 0 0.0% 0

1 One colony with no data of N. ceranae intra-colony infection in the two months prior to death. 2 Data corresponds
to two sampling rounds prior to death.
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4. Discussion

The prevalence of N. ceranae infection was determined at the apiary and intra-colony
levels in six apiaries, covering a wide range of Mediterranean environmental and bee-
keeping conditions in a long-term study conducted on a large batch of data (103 colonies
across 20 months; 13,907 individual worker honey bees). This allowed us to determine the
differences in N. ceranae infection among the different environments, confirming that the
epidemiology of the infection by the microsporidium varies geographically and temporally.
Nosema ceranae infection was confirmed in all the apiaries studied except in SMI, indicating
that the microsporidium is widely spread.

The number of colonies infected by N. ceranae in the INRAE (France) apiary was
significantly lower than that of the other apiaries. In OUE (France), ARO (Israel), CIMO
(Portugal), and CIAPA (Spain), a high number of positive colonies were detected in the four
apiaries throughout the sampling rounds, although the intra-colony infection levels varied
greatly among apiaries, with ARO exhibiting the highest percentage of infected honey bees.
This finding could be partly explained by the climatic conditions at each site, which were
different. However, in our study, there was no correlation between the climatic parameters
alone and the infection levels, and just the number of days with high wind speed increased
the percentage of bees infected per colony. Only a visual and non-significant correlation of
the combined effect of high mean temperature and high mean relative humidity with higher
levels of infection could be intuited. As opposed to our results, temperature and humidity
were correlated positively with N. ceranae incidence (spore density) but negatively to
N. apis incidence in Turkey [60] and the levels of N. ceranae were negatively correlated with
high temperatures in Serbia, [61]. Another study in China also showed higher N. ceranae
prevalence in the more humid regions (South) when compared with apiaries in dryer areas
(North) [45]. Moreover, in a previous study carried out in CIAPA [14], monthly rainfall
was positively correlated with the percentage of interior honey bees infected by N. ceranae
and the percentage of foragers infected was negatively correlated with the mean maximum
temperature. Therefore, our results suggest that other factors than climatic conditions could
play a role in the prevalence of the N. ceranae infection.

A higher level of N. ceranae infection found in CIAPA, CIMO, and ARO (not statistically
significant in the latter) was correlated to a lower adult honey bee population, as opposed
to the positive correlation found in INRAE and OUE apiaries. The different relationships
between those two groups in colony strength and the percentage of honey bees infected by
N. ceranae could be explained by the low level of infection in INRAE (for all samplings) and
OUE (2019). On the other hand, the relationship observed in Iberia (CIAPA and CIMO) and
Israel (ARO) between the N. ceranae infection level and colony strength seem to confirm
previous findings in Spain [14,62,63], where infection has been shown to be detrimental to
honey bee colonies.

Beekeeping management in ARO was different from that of the other apiaries. Given
that this apiary had the highest levels of infection but had only 20.1% colony mortality, it
could indicate that the management was able to control the mortality associated with the
high percentage of infected honey bees per colony [64]. Beekeeping management, and, in
particular, queen replacement with a younger queen, has been identified as a biotechnical
method to control nosemosis [65,66]. This recommendation is consistent with our results
as the levels of intra-colony infection in spring were lower in colonies that had replaced
the queen in the previous summer. Other authors found that one-year-old queens are able
to compensate for the effects of Nosema infection, with this ability gradually decreasing in
subsequent years [66]. As well, the infection by N. ceranae has been reported to reduce honey
production [67], although in this work we could not establish any correlation between the
intra-colony infection level and the honey produced.

The highest colony mortality was recorded in INRAE, which had the apiary with the
lowest N. ceranae infection levels. It is very likely that the microsporidium infection was not
related to the mortality in this apiary and that other biotic and abiotic stressors contributed
to colony mortality and possibly to the lower honey production. One of these biotic



Insects 2022, 13, 844 13 of 18

stressors could be Varroa. However, this trial was not designed to monitor Varroa levels
but only to detect high infestations so that control measures could be taken. Moreover,
infestation levels were below 2% in most of the cases, so their influence on the colony
mortality seems to be limited. Despite this, a significant correlation between the percentage
of honey bees infected by N. ceranae and V. destructor levels was found in two apiaries
(INRAE and ARO) out of four analyzed. The correlation between the two pathogens is
unclear as, such as in this study, there are studies that both confirm [68] and fail to find a
correlation [15,69]. In addition, the Varroa treatments made in each country could have any
influence, as oxalic acid has shown an effect on N. ceranae infection [70] and, conversely,
infection by Microsporidium could reduce the efficacy of the results [71]. Hence, it is
possible that there are factors yet to be determined that may influence the interaction
between them. It is well known that V. destructor is an effective vector for Deformed wing
virus (DWV), which was frequently detected in INRAE (unpublished data) and probably
impacted colony losses in this apiary. On the other hand, the apiaries located on the V.
destructor-free islands registered the lowest mortality levels. Thus, the presence of the mite
seems to complicate the pathological consequences caused by other pathogens [68,72], as
the intensity of these pathogens (N. ceranae and viruses) seems to increase when they appear
together [73]. The overall mortality at the CIAPA (40.9%), CIMO (26.7%), and ARO (20.1%)
apiaries could be considered high, when compared to the percentage of winter mortality
rate of 10.7% reported in 35 countries for the same time frame (2018–2019) [74], although
overall mortality is expected to be higher than during overwintering. In this way, although
no infection rate could be established as a marker for colony mortality, it is possible that the
N. ceranae infection plays a role in the losses, as this microsporidium can cause the death of
the infected honey bees [14], impacting on the viability of the colonies [14,15,18,29,75–77].
High levels of infection have been reported as a cause of colony losses [14,62]. In our study,
the 76.5% of dead colonies from CIAPA, ARO, and CIMO had ≥20% of honey bees infected
in the previous two months. These high levels recorded in our study in CIAPA, ARO, and
CIMO imply a sustained stress on the colonies. It has been published that an infectious
disease causing mortality in foraging bees is very dangerous for the survival of a honey
bee colony [78]. In addition, Nosema ceranae infection decreases the energy status of honey
bees, leading to changes in their foraging behavior, which have a strong adverse effect on
energetic gain efficiency [79]. This will have an effect on food availability and it could lead
to colony failure when the forager mortality rate reaches a critical threshold [80].

In addition to the presence of N. ceranae infection, other stressors such as pathogens
and pollutants have been shown to impact colony losses [81–84]. In fact, coinfection
of microsporidia with very common viral pathogens might contribute to the death of
the colony, even for asymptomatic infections [9,85]. Moreover, stress factors affecting
honey bee immunity may trigger latent viral infections to become overt infections. Thus,
insecticides [83,86,87] or infestation with other pathogens or parasites like V. destructor
may activate dormant virus infections in the colony and even promote selection of virulent
strains, such as in the case of DWV [88–91]. Moreover, the host genetics may influence the
development (or the consequences) of the infection since the levels of N. ceranae infection
have been noticed to be significantly different between lineages and colonies for both
Russian and Italian honey bees, and in the case of the Russian lineage, the patriline-based
variance was also found to be significant [92]. Therefore, the differences in the dynamics
and the levels of N. ceranae infection here observed could also be related to the different
honey bee lineages studied. Nevertheless, it has been suggested that genetic diversity
cannot compensate and reduce alone the levels of infection [61].

Our results obtained from apiaries set in several Mediterranean countries confirm
the high variability of N. ceranae prevalence. Nosema ceranae has been shown to be a very
adaptable parasite and the effects of beekeeping management (such as queen replacement)
were found to influence the prevalence, probably more linked with the colony biology adap-
tations than with the parasite itself. Clinical signs related to N. ceranae’s high prevalence
and climatic conditions, such as lower honey production rate, depopulation, and death,
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were detected in some Mediterranean countries during initial reports [14,15,29,62,93] when
the epidemic wave was at its highest. The comparison among different countries after
several years in similar conditions, together with the fact that some highly infected colonies
did not die, seems to indicate the initial lethal effect of the new parasite for Apis mellifera is
downgrading, as coevolution contributes to establishing host–parasite equilibrium. Further
studies on this topic, including the role of honey bee genetics, could assist in understanding
the difference between nosemosis disease and infection, in a rather similar way to varroosis
and Varroa detection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects13090844/s1, Table S1: Mean levels of infection per month
in each apiary; Table S2: Statistical differences of infected honey bees for each sampling and apiary;
Table S3: Climatic conditions recorded per in mainland apiaries; Table S4: Colony losses and queen
replacement per apiary.
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