

Retour sur l'expertise scientifique collective INRAE/Ifremer: Impacts des produits phytopharmaceutiques sur la biodiversité et les services écosystémiques

Christian Mougin, Laure Mamy, Stéphane Pesce, Wilfried Sanchez, Sophie Leenhardt

▶ To cite this version:

Christian Mougin, Laure Mamy, Stéphane Pesce, Wilfried Sanchez, Sophie Leenhardt. Retour sur l'expertise scientifique collective INRAE/Ifremer: Impacts des produits phytopharmaceutiques sur la biodiversité et les services écosystémiques. Journées Francophones de Nutrition, Nov 2022, Toulouse, France. hal-03860694

HAL Id: hal-03860694

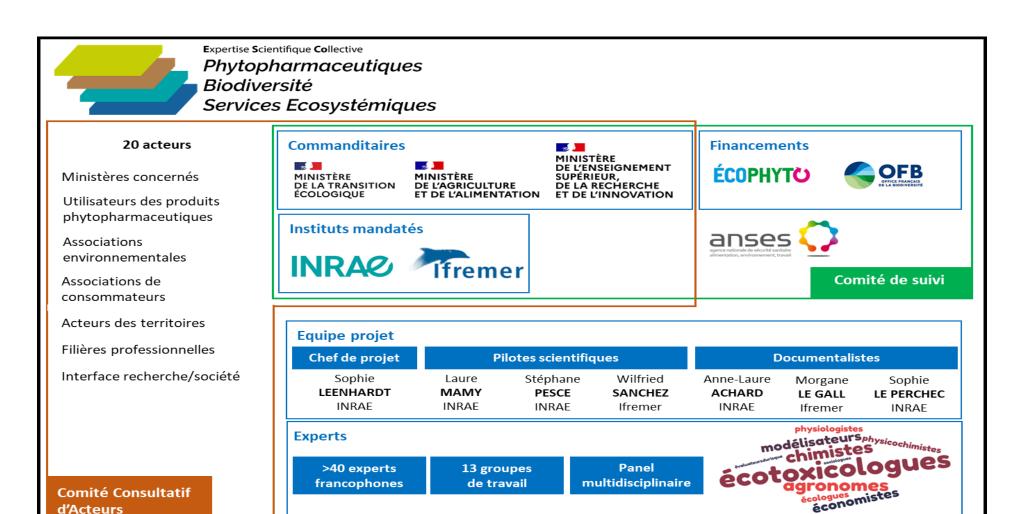
https://hal.inrae.fr/hal-03860694

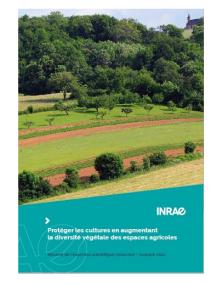
Submitted on 18 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Retour sur l'expertise scientifique collective INRAE/Ifremer : Impacts des produits phytopharmaceutiques sur la biodiversité et les services écosystémiques

<u>Christian Mougin</u>
INRAE, UMR 1402 ECOSYS, Campus Agro Paris-Saclay, 91120 Palaiseau <u>christian.mougin@inrae.fr</u>


Laure Mamy, Stéphane Pesce, Wilfried Sanchez, Sophie Leenhardt Un collectif de 43 scientifiques francophones du domaine académique



> Le contexte et les acteurs

Livrables

Disponibles sur sites web

Rapport

>1 000 pages

Contexte et enjeux

Méthode et sources bibliographiques

Cadrage scientifique

Synthèses thématiques

Conclusions générales

Annexes

- Glyphosate
- Néonicotinoïdes
- SDHI
- Perturbateurs endocriniens
- Chlordécone
- Cuivre
- Pollinisation

https://hal.inrae.fr/hal-03777257

Synthèse >100 pages

https://hal.inrae.fr/hal-03759553

Résumé 10 pages

https://hal.inrae.fr/hal-03697952

≈ 4500 références citées

Etat des lieux de la contamination par les PPP

Tous les compartiments de l'environnement sont contaminés par des mélanges de PPP issus principalement de l'activité agricole

> Une cartographie de plus en plus précise

En métropole

- Des mélanges de PPP, variables selon milieux
- Une contamination majoritairement agricole
- Des concentrations en baisse pour les PPP les plus préoccupants

Dans les territoires ultra-marins

- Des contaminations multiples et diversifiées selon les territoires
- Une connaissance variable selon les pratiques de surveillance
- > Besoin de connaissance sur ces territoires

Etat des lieux des effets des PPP sur la biodiversité

Les PPP contribuent au déclin de la biodiversité à travers la combinaison d'effets directs et indirects

> Les PPP sont une des causes majeures du déclin de certaines populations

L'analyse de la littérature concerne l'ensemble des milieux le long du continuum terre mer

Le lien de causalité est principalement établi dans des études menées dans des **espaces agricoles (milieux terrestres et aquatiques)**

Les analyses sont faites à larges échelles spatiales et/ou temporelles *(PPP de synthèse et cuivre)*

Pas de connaissance spécifique concernant le biocontrôle et l'Outre-mer

> Les PPP sont une des causes majeures du déclin de certaines populations

Invertébrés terrestres

En particulier:

Lépidoptères (papillons), Hyménoptères (abeilles, bourdons, etc.) Coléoptères (coccinelles, carabes, etc.)

Macro-invertébrés aquatiques

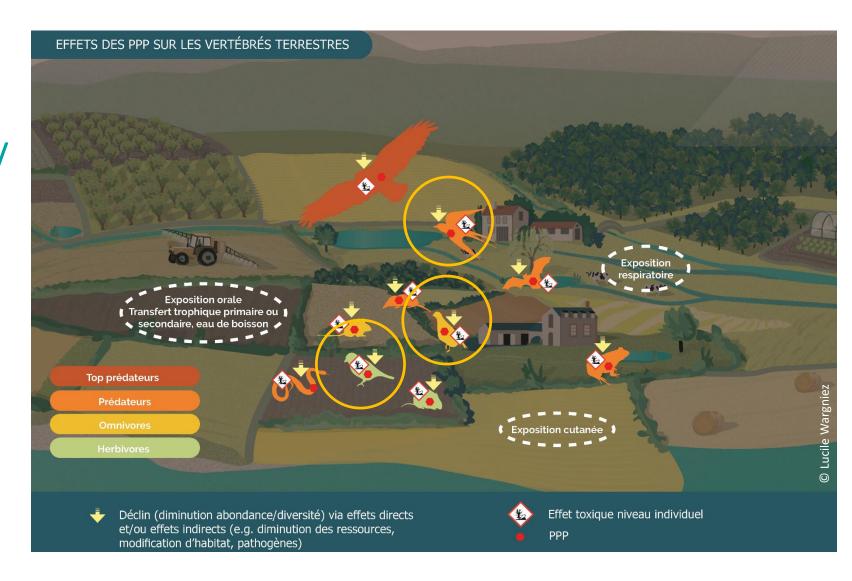
Larves d'insectes, vers, crustacés, etc.

Amphibiens

Chiroptères

(chauves-souris)

Les PPP impactent ces différents organismes de manières directes et indirectes



> Le cas des Néonicotinoïdes chez les oiseaux

Effets:

- Directs (létaux et sublétaux) sur oiseaux granivores (ingestion semences enrobées) et
- Indirects sur oiseaux insectivores / omnivores (diminution de la ressource en insectes indispensable pour élevage des jeunes) (principalement)

NB: des effets similaires sont constatés lors de toute utilisation large d'insecticides... y compris pyréthrinoïdes et Bacillus thuringiensis (Bt). Et sur d'autres taxons!

Etat des lieux des effets des PPP sur les fonctions écosystémiques

Les PPP impactent directement et indirectement différentes fonctions écosystémiques

> 12 catégories de FE identifiées comme potentiellement vulnérables aux PPP

F1	Régulation des échanges gazeux
F2	Dissipation des contaminants dans les écosystèmes terrestres et
	aquatiques
F3	Résistance aux perturbations
F4	Rétention d'eau dans les sols et les sédiments
F5	Régulation des flux d'eau
F6	Albédo et réflexion
F7	Production et apport de matière
	organique dans les écosystèmes
	terrestres et aquatiques
F8	Régulation des cycles de
	nutriments dans les écosystèmes
	terrestres et aquatiques
F9	Formation et maintien de la
	structure des sols et des sédiments
F10	Dispersion des propagules dans
	les écosystèmes terrestres et
	aquatiques Fourniture et maintien de la
F11	biodiversité et des interactions
	biotiques dans les écosystèmes
	terrestres et aquatiques
F12	Fourniture et maintien des
	habitats et biotopes dans les
	écosystèmes terrestres et
	aquatiques

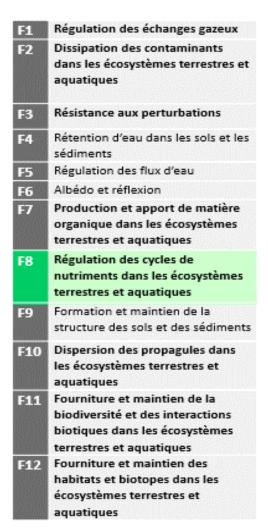
Des connaissances récentes qui confirment des impacts sur au moins 8 d'entres elles

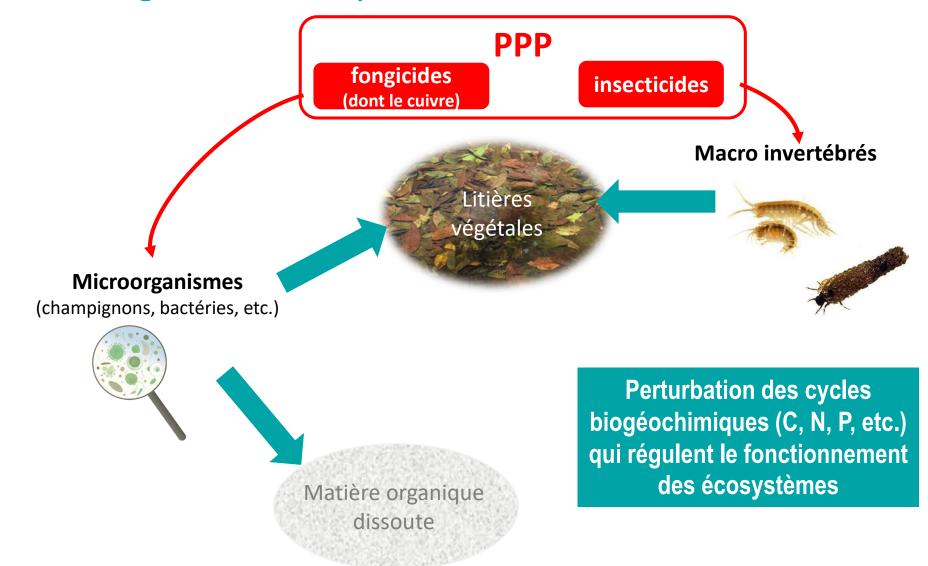

> Les PPP affectent la fourniture et le maintien des habitats

Régulation des échanges gazeux Dissipation des contaminants dans les écosystèmes terrestres et aquatiques Résistance aux perturbations Rétention d'eau dans les sols et les sédiments Régulation des flux d'eau Albédo et réflexion Production et apport de matière organique dans les écosystèmes terrestres et aquatiques Régulation des cycles de nutriments dans les écosystèmes terrestres et aquatiques Formation et maintien de la structure des sols et des sédiments F10 Dispersion des propagules dans les écosystèmes terrestres et aquatiques Fourniture et maintien de la biodiversité et des interactions biotiques dans les écosystèmes terrestres et aquatiques Fourniture et maintien des habitats et biotopes dans les écosystèmes terrestres et aguatigues

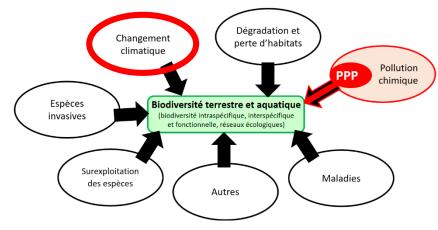
Dégradation/perte d'habitats et de zones refuges

Principalement invertébrés et oiseaux





> Les PPP affectent la régulation des cycles de nutriments



Les PPP augmentent la vulnérabilité à d'autres pressions environnementales (et vice versa)

Régulation des échanges gazeux Dissipation des contaminants dans les écosystèmes terrestres et aguatiques Résistance aux perturbations Rétention d'eau dans les sols et les sédiments. Régulation des flux d'eau Albédo et réflexion Production et apport de matière organique dans les écosystèmes terrestres et aquatiques Régulation des cycles de nutriments dans les écosystèmes terrestres et aquatiques Formation et maintien de la structure des sols et des sédiments Dispersion des propagules dans les écosystèmes terrestres et aquatiques Fourniture et maintien de la biodiversité et des interactions biotiques dans les écosystèmes terrestres et aquatiques Fourniture et maintien des habitats et biotopes dans les écosystèmes terrestres et

aquatiques

Vulnérabilité face aux conséquences du changement climatique*

* augmentation des températures moyennes et de leurs fluctuations, intensité accrue des précipitations et des périodes de sécheresse, acidification des océans, etc.

<u>ex</u>. effets des PPP et d'une hausse de température amplifiés dans >80% des études lorsque ces 2 facteurs sont combinés

> Besoin d'innovations conceptuelles et méthodologiques pour aborder la question « PPP et changement climatique » de manière plus globale

> Effets des PPP sur les services écosystémiques

Une approche novatrice et à consolider qui présente encore des limites

Les services écosystémiques

Production végétale cultivée

Régulation & Maintien

Lutte contre les ravageurs

Culturels

classification CICES (Common International Classification of Ecosystem Services)

Les services écosystémiques

Production végétale cultivée

Régulation & Maintien

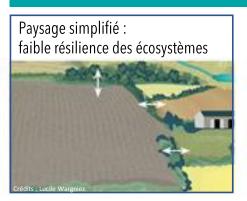
Lutte contre les ravageurs

Pollinisation

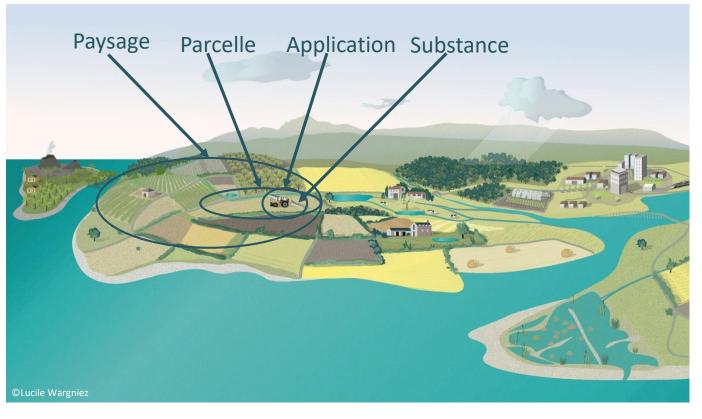
Culturels

classification CICES (Common International Classification of Ecosystem Services)

Leviers d'action


Un besoin de combiner différents leviers à plusieurs niveaux

Leviers d'action


Réduire les quantités de PPP appliquées

- ESCo « gestion des couverts végétaux pour la régulation naturelle des bioagresseurs »
- PPR « Cultiver et protéger autrement »

Multifonctionnalité du paysage

Mettre en place une approche paysagère pour atténuer les transferts de PPP

- Diagnostiquer les voies dominantes de transfert et les atténuer
- Optimiser l'occupation du sol (zones tampon...)
- Diagnostiquer le niveau de résilience de l'agro-écosystème
- Orienter les choix de gestion en conséquence

Besoin de recherche et perspectives

Malgré des résultats forts, des besoins de recherche persistent

Des besoins de connaissance

Substances & produits

- Récents
- Produits de transformation
- Adjuvants
- Co-formulants

Organismes

Effets

- Directs et indirects
- Jeux d'indicateurs

Milieux & territoires

Contamination de l'air, du sol, du biote

« Comprendre les effets des PPP sur la biodiversité et les services écosystémiques appelle un changement de paradigme dans la recherche »

Ouverture scientifique – Pluridisciplinarité – Transfert – Lien avec la société Etudes intégratives synchrones, développements méthodologiques et évolution de la surveillance

> Merci à l'ensemble des acteurs

Comité d'experts scientifiques

Laure Mamy (coord.) Stéphane Pesce (coord.) Wilfried Sanchez (coord.) Marcel Amichot Joan Artigas Stéphanie Aviron Carole Barthélémy Rémy Beaudouin Carole Bedos Annette Bérard Philippe Berny Cédric Bertrand Colette Bertrand Stéphane Betoulle Eve Bureau-Point Sandrine Charles

Arnaud Chaumot Bruno Chauvel Michael Coeurdassier Marie-France Corio-Costet Marie-Agnès Coutellec Olivier Crouzet Isabelle Doussan Juliette Faburé Clémentine Fritsch Nicola Gallai Patrice Gonzalez Véronique Gouy Mickael Hedde Alexandra Langlais Fabrice Le Bellec Christophe Leboulanger

Christelle Margoum
Fabrice Martin-Laurent
Rémi Mongruel
Soizic Morin
Christian Mougin
Dominique Munaron
Sylvie Nélieu
Céline Pelosi
Magali Rault
Sergi Sabater
Sabine Stachowski-Haberkorn
Elliott Sucré
Marielle Thomas
Julien Tournebize

https://pesti-ecotox.colloque.inrae.fr

Documentalistes

Anne-Laure Achard, Morgane Le Gall, Sophie Le Perchec

Place à la discussion !

