

Natural fluctuation of metabolome and photosynthetic yield sensitivity of a periphytic biofilm exposed to a model herbicide

Arthur Medina, Mélissa Eon, Débora Millan-Navarro, Nicolas Mazzella,

Nicolas Creusot

▶ To cite this version:

Arthur Medina, Mélissa Eon, Débora Millan-Navarro, Nicolas Mazzella, Nicolas Creusot. Natural fluctuation of metabolome and photosynthetic yield sensitivity of a periphytic biofilm exposed to a model herbicide. 3rd International Conference in Microbial Ecotoxicology Ecotoxicomic 2022, Nov 2022, Montpellier, France. 2022. hal-03864023

HAL Id: hal-03864023 https://hal.inrae.fr/hal-03864023v1

Submitted on 21 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Natural fluctuation of metabolome and photosynthetic yield sensitivity of a periphytic biofilm exposed to a model herbicide

Arthur MEDINA⁽¹⁾, Mélissa EON⁽¹⁾, Débora Millan-Navarro⁽¹⁾, Nicolas MAZZELLA⁽¹⁾, Nicolas CREUSOT⁽¹⁾⁽²⁾

Introduction

- (1) INRAE, UR EABX, 50 avenue de Verdun, F-33612 Gazinet Cestas Cedex, France (2) Plateforme Bordeaux Metabolome, F-33140 Villenave d'Ornon, France
- In the context of increasing aquatic chemical pollution, the study of microbial communities such as periphytic biofilms (Fig 1) improves the ecological dimension of biomonitoring [1].
- Despite a growing knowledge on biofilms, there is a paucity of information about the seasonal fluctuation of their **sensitivity** to chemical stress [2].
- If classical endpoints often lack of sensitivity and focus only on one component of the biofilm (e.g. autotroph organisms) [2], untargeted metabolomics can provide a comprehensive and sensitive picture of the molecular response prior physiological/functional responses [3].

In this context, the present study aims to characterize the changes of sensitivity of freshwater periphyton over months through the combined Aim measurement of the photosynthetic yield (OPSII) and the metabolomics response based on high-resolution mass spectrometry (HRMS).

Results and Discussion

Physico-chemicals parameters (1)

Month	Temperature (°C)	рН	Conductivity (µS/cm²)	Disolved oxygene (mg/L)	DOC (ppm)	DP (mg/L)	VDP (%)	Concentration in [NH4] mg/L	Concentration in [Na] mg/L	Concentration in [K] mg/L	Concentration in [Ca] mg/L	Concentration in [Mg] mg/L	Concentration in [NO2] mg/L	Concentration in [NO3] mg/L	Concentration in [PO4] mg/L	Concentration in [SO4] mg/L	Concentration in [Cl] mg/L
April	20	7.5	234	5.5	9.7	9.3	79.6	0.6	10.8	3.6	28.9	2.7	0.0	0.1	0.0	6.3	18.7
May	23.45	7.4	243	6.8	12.4	3.7	91.9	<lq< td=""><td>11.5</td><td>4.0</td><td>32.3</td><td>2.8</td><td>0.3</td><td>0.1</td><td><lq< td=""><td>3.9</td><td>20.1</td></lq<></td></lq<>	11.5	4.0	32.3	2.8	0.3	0.1	<lq< td=""><td>3.9</td><td>20.1</td></lq<>	3.9	20.1

Fig 2 : Pond physico-chemical parameters, Dissolved Organic Carbon (DOC), Dissolved Particules (DP), Volatil Dissolved Particules (VDP)

Low fluctuations of physico-chemical parameters between months, except for the temperature with an increase of 3.4°C

Higher concentration of some nutrients with the decrease of water level

Benchmark dose (**BMD**_{1sd}) : statistical reference point using a level of change compare to a control using benchmark response composed by mean control response and z factor of

residual standard deviation (sd) [6]

Photosynthetic responses

Photosynthetic efficiency of periphytic biofilm under Terbuthylazine exposure

: Quadratic trend regression of photosynthetic inhibition under Fig 3 Terbuthylazine exposure (FDR < 0.05, Dose fitted, Log dose-scale, 10 fold, z =1, Confidence interval bootstrap 1E5 BMD_{1sd} April [8.2,25.3] and BMD_{1sd} May [6.8;17.8] [7])

BMD_{1cd} Φ PSII vary around 10 μ g/L

- **months** (10-fold change)

 Similar trends of photosynthet months 	tic inhibition between)1	0.1 BMD (μg/L)	ج 10			
 ✓ Low fluctuations of environmental parameters between the two months ✓ Between month sensitivity shift of metabolomic responses under chemical stress ✓ This work highlight higher sensitivity from metabolomic at low concentration 			These investigations v initial environmental Further identificatio environmental condit Additionnal metagen conditions	will be prolong parameters on n of metabo ions will suppo omic analyses	Next step ed along the year in order pro- sensitivity to chemical stress lites and pathways that a ort biomarkers discovery will highlight natural taxonor	ar in order provide insight on the influence of emical stress ways that are sensitive to fluctuation of scovery tural taxonomic shift according environmental	
Acknowlegdment The authors acknowledge the participation of this work as part of MICROBIOMIQ research project	 <u>Bibliography :</u> [1] L. Kergoat <i>et al.</i>, « Environmental Concentrations of Sulfonamides Can A 10.3389/fmicb.2021.643719. [2] I. Lavoie <i>et al.</i>, « Diatom teratologies as biomarkers of contamination: A [3] S. Lips, F. Larras, et M. Schmitt-Jansen, « Community metabolomics pro 10.1016/j.scitotenv.2022.153777. [4] S. Sabater, X. Timoner, C. Borrego, et V. Acuña, « Stream Biofilm Respondent Stream Biofilm Respondent Stream Biofilm Respondent Stream Stream Biofilm Respondent Stream Stream	Iter Bacte re all defo vides insig ses to Flo e–Respor overs nove	erial Structure and Induce Diatom Deformities ormities ecologically meaningful? », <i>Ecologica</i> ghts into mechanisms of pollution-induced co ow Intermittency: From Cells to Ecosystems », nse Framework for Omics Data in Ecological F el understanding of triclosan effects in the ch Response for Omics. Reference Manual. R Pa	s in Freshwater Biofilm Com al Indicators, vol. 82, p. 539-9 ommunity tolerance of perip <i>Front. Environ. Sci.</i> , vol. 4, 2 disk Assessment », <i>Environ. S</i> lorophyte Scenedesmus vac ackage Version 2.0 (Accessec	munities », Front. Microbiol., vol. 12, p. 643719, 2021, do 550, 2017, doi: 10.1016/j.ecolind.2017.06.048. hyton », Science of The Total Environment, vol. 824, p. 15 016, doi: 10.3389/fenvs.2016.00014. ci. Technol., vol. 52, nº 24, p. 14461-14468, 2018, doi: 10 uolatus », Journal of Hazardous Materials, vol. 397, p. 12 2nd October 2019).	oi: 53777, 2022, doi: 0.1021/acs.est.8b04752. 22727, 2020, doi:	Centre Nouvelle Aquitaine Bordeaux 50 avenue de Verdun, Gazine F-33612 Cestas Cede Tél. : + 33 (0)5 57 89 08 00 arthur.medina@inrae.f