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ABSTRACT:

With the increasing availability of optical and synthetic aperture radar (SAR) images thanks to the Sentinel constellation, and
the explosion of deep learning, new methods have emerged in recent years to tackle the reconstruction of optical images that are
impacted by clouds. In this paper, we focus on the evaluation of convolutional neural networks that use jointly SAR and optical
images to retrieve the missing contents in one single polluted optical image. We propose a simple framework that ease the creation
of datasets for the training of deep nets targeting optical image reconstruction, and for the validation of machine learning based
or deterministic approaches. These methods are quite different in terms of input images constraints, and comparing them is a
problematic task not addressed in the literature. We show how space partitioning data structures help to query samples in terms of
cloud coverage, relative acquisition date, pixel validity and relative proximity between SAR and optical images. We generate several
datasets to compare the reconstructed images from networks that use a single pair of SAR and optical image, versus networks that
use multiple pairs, and a traditional deterministic approach performing interpolation in temporal domain.

1. INTRODUCTION cloud removal and the synthetic cloudy optical images gener-
ation problems, concluding that the networks trained over real

11 Context data were performing the best.

1.2 Problematic
The Sentinel constellation is composed of different coupled

SAR and optical sensors with short revisit period (five to ten
days). However, optical images are frequently polluted by
cloud cover. To leverage the problem of optical image re-
construction, various approaches have been proposed over the

Our purpose is to lead the evaluation of several approaches
based on convolutional neural networks trained on real data,
that reconstruct optical images impacted by clouds. We com-
pare these approaches with a popular traditional deterministic

years. First, approaches based on mathematical, physical or
statistical model, have been extensively used to reconstruct the
missing parts of the images. A review of these traditional ap-
proaches are summarized in (Shen et al., 2015). Among them,
we can distinguish multispectral based (Hu et al., 2015) meth-
ods, multitemporal (Cheng et al., 2014) (Li et al., 2014), and
methods using optical and SAR data fusion (Eckardt et al.,
2013). Lastly, machine learning and particularly deep learn-
ing have become popular to achieve the task of cloudy images
reconstruction, thanks to the unprecedented ability to fuse im-
ages of different modalities, and accompanied with state of the
art results. In recent years, deep neural networks have proven to
be effective for image reconstruction from time series of same
modality (Zhang et al., 2018) or from timely available images
at coarser spatial resolution (Liu et al., 2019), or from joint
optical and SAR time series (Scarpa et al., 2018)(Cresson et
al., 2019). (Sarukkai et al., 2020) have casted the problem of
cloud removal as a conditional image synthesis challenge, and
have proposed a network to remove clouds from a single op-
tical image or from a triplet of optical images. In (Meraner et
al., 2020), a cloudy optical image is reconstructed with the help
of a single SAR, using a convolutional neural network with a
residual correction performed on the input cloudy optical im-
age. Conversely, (Ebel et al., 2020) have jointly modeled the

* Corresponding author

approach, the gap-filling (Inglada et al., 2015). While the exist-
ing literature covers mostly the comparison of approaches that
consume the same inputs, comparing approaches consuming
various forms of inputs, e.g. single or multiple, optical and/or
SAR images or pairs of images, remains an interesting topic
from an operational perspective. In this paper, we address the
comparison of the following kinds of methods, which consume
one or more input pair of optical and SAR images acquired in
various conditions to reconstruct or generate one single output
optical image:

1. Reconstruct a cloudy optical image using an additional
SAR image acquired at the same date,

2. Reconstruct a cloudy optical image using an additional
SAR image acquired at the same date, and two other
cloudy optical/SAR images pairs acquired before and
after,

3. Generate an optical image at one given desired date using
two clean optical images acquired before and after.

1.3 Method

In this paper, we provide an insight into various optical image
reconstruction methods. In particular, we address the question
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of which approach to employ for a specific availability of re-
mote sensing products, in comparing a few selected single date
based and multiple dates based methods. Since these methods
employ inputs of different nature (single optical or SAR image,
or optical and SAR images pair), number (single or multiple
image or pair or images), and cloud coverage (clean or cloudy
images), their comparison is not straightforward. To leverage
this, we introduce the acquisitions layout, a descriptor of the
available inputs and their properties, for a specific approach.
We then use space partitioning data structures to ease the gen-
eration of various datasets from specific acquisitions layouts.
These datasets are then used to train networks, and also at in-
ference time for the comparison of the different methods when
a common set of inputs can be shared and matches the expected
constraints, e.g. cloud coverage. This simple yet generic frame-
work allows to produce datasets tailored for a specific problem
and suited to the data availability, i.e. inputs and targets images.
We carry out the benchmarks of representative state of the art
methods for optical image reconstruction, namely the network
presented in (Meraner et al., 2020), which uses a single pair of
optical and SAR image acquired near the same date, and a con-
volutional network that inputs three consecutive pairs to recon-
struct the central optical image (Cresson et al., 2019)(Scarpa et
al., 2018). In (Scarpa et al., 2018), an additional DEM is used
as input of the network, and we also investigate the contribution
of such ancillary data in the single date network. To better dis-
entangle the benefits of the different modalities, we perform an
ablation study removing the DEM, and the SAR inputs.

1.4 Overview

In section 2, we present the remote sensing data used in this
study. In section 3, we detail the implemented models. In sec-
tion 4, we detail our framework for the creation of datasets,
which is a crucial aspect of our work. In section 5 we detail the
methodology used to train the models and carry out the compar-
ison of the different approaches. Finally we discuss the results
in section 6.

2. DATA

2.1 Sentinel images

We use 10 tiles of Sentinel-2 images acquired over the Occit-
anie area in France (figure 1), from january 2017 to january
2021, that represents a total of 3593 optical images. We also
use every available Sentinel-1 images acquired in ascending or-
bit over the Occitanie area during the same period, that we su-
perimpose over the Sentinel-2 images pixels grids (more details
are provided in section 2.1.1), which represents a total of 5136
SAR images. We believe that since a large part of the earth
is covered only with single orbit (i.e. ascending or descend-
ing), our study results would be more easily reproducible with
a single orbit for SAR images, hence we use only the ascending
orbit over our study area. Table 1 summarizes the number of
Sentinel images used for this study. The total area covered by
the Sentinel tiles is 106.7 x 103km?2. The following sections
details the Sentinel-1 and Sentinel-2 products.

2.1.1 Sentinel-1 images We have used the so-called

S1Tiling tool' to automatically download and process the
Sentinel-1 images. The tool performs the orthorectification and

! https://gitlab.orfeo-toolbox.org/s1-tiling/s 1tiling
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Figure 1. The region of interest, located in the Occitanie area
(south of France mainland). Sentinel-2 images envelopes are
plotted in black. Map data © OpenStreetMap contributors, CC
BY-SA

the calibration in sigma nought of the VV and VH SAR im-
ages channels. It also projects and resamples the final images
over the same coordinate reference system and pixel grid as the
Sentinel-2 images, at 10m physical spacing resolution.

2.1.2 Sentinel-2 images The Theia Land data center’
provides Sentinel-2 images in surface reflectance. The products
are computed using MACCS (Multi-sensor Atmospheric Cor-
rection and Cloud Screening), a level 2A processor which de-
tects the clouds and their shadows, and estimates aerosol op-
tical thickness, water vapour and corrects for the atmospheric
effects (Hagolle et al., 2015). While level 1C processing level
could have been used in this study, we chose level 2A products
because they include cloud masks that are useful meta-data.
Indeed these information suffice to derive a cloud coverage
percentage over patches. Figure 2 shows the cloud coverage
computed for each location from the number of cloudy pixels
among available ones in the temporal dimension. The average
cloud coverage over the area is 39.1% and the standard devi-
ation 6.8%. An evaluation of the cloud masks is provided in
(Baetens et al., 2019). To discharge storage and computational
requirements, we used only the 10m spacing bands, i.e. spectral
bands number 2, 3, 4 and 8.

Tile S1 S2
3ITCH | 684 | 374
31TC) | 456 | 380
31TCK | 454 | 273
31TDH | 462 | 370
31TDJ | 462 | 302
31TDK | 462 | 286
3ITEJ | 672 | 512
31TEK | 595 | 311
31TF] | 443 | 408
31TFK | 446 | 377

Table 1. Number of Sentinel-1 (S1) and Sentinel-2 (S2) images
used over the Occitanie area (France)

2.1.3 Digital Elevation Model The Digital Elevation
Model (DEM) from the Shuttle Radar Topography Mission
(SRTM)(Farr and Kobrick, 2000) is used to perform the
processing of Sentinel-1 images. It is also used in our
SSOPynet+pEM and M SO Pynet+ pE M networks, introduced
in the following sections.

3. ARCHITECTURES

The implemented deep learning based models are detailed in the
subsections below. The number of trainable parameters, batch

2 https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
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_—
Cloud coverage (%)

Figure 2. The cloud coverage over the area. Left: the percentage
of cloud-free pixels in computed at each location. Right:
histogram of the values. Mean cloud coverage: 39.13%,
standard deviation: 6.80%. Map data © OpenStreetMap

contributors, CC BY-SA

size used per GPU, and training time is summarized in table 2
for each model.

Model Nb. params | Batch | Training time
SSOPrer 18,905M 8 3136h.GPU
SSOPunet 16.652M 64 104h.GPU
MSOPypne: | 29.272M 32 149h.GPU

Table 2. Number of parameters in the trained models, batch size
used, and training time (in hours.GPUs) for the training step on a
NVIDIA V100 GPU with 32Gb RAM. The training time
corresponds to the duration required to computed the best model.

3.1 Single SAR/Optical pair (SSOP)

We denote SSOP, the approaches that input one SAR image and
one optical image polluted by cloud, and which reconstruct the
missing parts of the optical image. Introduced in (Meraner et
al., 2020), this kind of approach is trained and evaluated from
samples composed of (S1¢, S2:, S2,/) triplets, where S2; is
an optical image potentially polluted by clouds, with S1; and
52 acquired close together and 52,/ a cloud-free optical image
acquired close to the (S1¢, 52;) pair. Figure 3 illustrates the
architecture of this family of networks.

~~2M S1

58S . SQ‘ [Network | — S2, j -
-”""’”" 52y — Loss/Metrlcs

Figure 3. SSOP network. S1; and S2; denotes the input pair of
Optical and SAR images acquired at date ¢. The S2;/ denotes
the reference image used to compute the loss (during training)

and the metrics (at inference time from teit\data) from the
reconstructed optical image S2;.

311 SSOPper We implement the network described in
(Meraner et al., 2020), which uses a residual correction from
a ResNet backbone (He et al., 2016) to reconstruct the output
optical image from a pair of one SAR image and one cloudy op-
tical image. However, the authors of (Meraner et al., 2020) did
not have S2;/ acquisitions systematically close to S2;, there-
fore they use an additional loss based on cloud masks to en-
courage the identity transformation of cloud-free pixels. Since

our goal is to use a simple information about the presence of
clouds, namely an approximation of the cloud cover percent-
age in a Sentinel-2 image or a set of patches, we don’t use such
pixel-wise cloud-mask based loss. Moreover, as we control the
gathering of samples matching the acquisitions layout described
in table 4, a cloud-free S2,, image acquired close to S2; is al-
ways available. We hypothesize that the contribution of such
loss is likely marginal since none or very little changes should
happen between S2,, and S2;. Hence we train the network us-
ing only the /1 loss. We denote SSO Py, the implementation
of this network.

3.1.2 SSOPune: We implement a modified version of the
previously described architecture, employing a U-Net backbone
(Ronneberger et al., 2015) instead of ResNet. Our motiva-
tion behind this modification is that the ResNet backbone has
two disadvantages compared to U-Net: (i) convolutions are ap-
plied without any stride, which consumes a lot more memory
and requires much more operations since all convolutions ap-
ply over the entire images at their native resolution i.e. without
any downsampling of the features, (ii) all inputs have to be res-
ampled at the smallest input images resolution, i.e. a physical
spacing of 10 m, since all the network features are computed at
the same resolution and no downscaling is performed across the
network, which is computationally counterproductive. We de-
note SSO P,y our implementation of this modified network.
To illustrate the advantage of additional inputs at a lower res-
olution, we use an additional Digital Elevation Model (DEM)
as input, resampled at 20m, as shown in figure 4. Our modified
network is illustrated in figure 5. We denote SSO Pynet+DEM
the model with the input DEM. It can be noted that such a model
could also generate outputs of different resolutions, typically
the Sentinel-2 spectral bands at 20m.

[ d

512

64 128 256 12 256 198 64 4

S1@10m
52@10m —|

64 /
DEM@20m=—- [

Figure 4. Proposed architecture for encoder (£) and decoder
(D), enabling the use of inputs of different resolutions. First and
last convolutions use a unitary stride and a kernel of size 5.
Other convolutions use strides 2 and a kernel of size 3. Skip
connections between the encoder and the decoder perform the
concatenation of the features from the encoder with the decoder
outputs. All convolutions except the last k5s/ convolution are
followed with a ReLU activation function. No batch
normalization is used.

- 52@10m

Legend conv. ksl
conv. k3s2

tr. conv. k3s2

concatenation m=—m
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Figure 5. Our modified SSOP network. S1: and S2; denotes the
input pair of Optical and SAR images. The 52,/ denotes the
reference image used to compute the loss (during training) and
the metrics (at inference time/fiom test data) from the
reconstructed optical image S2:. (E) and (D) denotes
respectively the encoder and the decoder of the U-Net backbone.

3.2 Multiple SAR/Optical pairs (MSOP)

A number of approaches using multiple pairs of optical and
SAR images have been presented in the literature. For instance,
(Scarpa et al., 2018) use two pairs of SAR/optical acquired be-
fore and after date ¢, a Digital Elevation model (DEM), and an
additional SAR image acquired at date ¢ to estimate radiometric
indices at date ¢. Conversely, (Cresson et al., 2019) use multiple
optical and SAR images to generate a synthetic optical image
at date t. While these works were carried on input cloud-free
images, a similar network architecture can also be applied on
cloudy input images to retrieve the missing contents of the op-
tical image at date ¢.

321 MSOPunee We build a multitemporal network in-
spired from the architectures presented in (Scarpa et al., 2018)
and (Cresson et al., 2019). We generalize to multitemporal the
approach of (Meraner et al., 2020) with a new architecture that
inputs mutliple SAR/optical images pairs at t—1, ¢ and ¢+ 1 and
a DEM, aiming to reconstruct the potentially damaged optical
image at £. We use a similar architecture as the encoder/decoder
U-Net backbone of the SSO P, model, except that encoder
weights are shared for ¢ — 1, ¢ and ¢ + 1 inputs, and features
from three encoders (£) are concatenated before being pro-
cessed with the decoder (D), which outputs the reconstructed
optical image at ¢. Unlike (Meraner et al., 2020), our model
does not employ residual connections to generate the recon-
structed optical image (figure 6).

’;f; S1
o

t-1 — .

Cloudy S 2t—1 —

ol Sy —
et -
SESE Goudy Szt —
- )
Cloudy Sthrl—
Concat.

-(‘/um!—ﬁw S2; —— | Loss/Metrics

~[]-=.- Wl

Figure 6. M SO Pyt network. (S1¢—1,52¢-1), (S1¢, S2¢)
and (S1¢41, S2¢+1) denotes the input pairs of optical and SAR
images. S2; denotes the reference image used to compute the

loss (during training) and the metrics (at inference time from test
data) from the reconstructed optical image S2;.

We denote M SO Pynet+pem the MSOP model using the input
DEM in (E) as shown in figure 4.

3.3 Gap-filling

The Gap-filling consists in interpolating temporally close op-
tical images to approximate one target image (Inglada et al.,
2015). While gap-filling is not a reconstruction method, i.e.
the input image at ¢ is not used, it is commonly used as such,
in estimating the parts of the image that is polluted by clouds.
Gap-filling is restricted to cloud-free input images, and do not
use SAR images. In the case of a linear model, the generated
output image 52, can be written using the following formula:

52, Ty —Tp
52, =521 4 (52441 — 524-1) X [l 2l (1
Tir1 —Tia

Where 7' is the timestamp, in seconds, of the dates.

4. DATASETS
4.1 Acquisitions layouts

The so-called Acquisitions layout describes inputs and targets
of a specific use-case scenario. In the particular case of im-
age reconstruction addressed in this paper, the acquisitions lay-
outs presented in the following sections have one common item,
namely S2, the target cloud-free optical image. Depending on
the approaches, the acquisitions layout can include additional
items, for instance:

e A single SAR image
e A single optical image

e A pair of SAR + optical image

For each item, the acquisitions layout describes crucial proper-
ties:

e For each optical image: a range of cloud coverage percent-
age (e.g. [0, 10]),

e For each (SAR, optical) pair: the maximum temporal gap
between the two images acquisition dates, in hours,

e For each SAR or optical image: the acquisition date range,
relative to a reference item of the acquisitions layout (e.g.
[240h, 360h)).

This simple yet generic description formalizes of how the im-
ages are acquired for a particular use-case scenario. We have
carefully crafted acquisitions layouts that represents the oper-
ational context of use of the approaches, i.e. for which it is
possible to use them on every available images. For instance,
to chose the maximum temporal gap between the SAR and the
optical images acquisition dates, we have analyzed the distri-
bution of the temporal gap between the closest (S1, S2) images
(figure 7). Since more than 96% of the nearest (S1, S2) pairs
are close to 72 hours, we used this duration as the maximum
temporal gap in SAR-optical images pairs. We provide in sec-
tion 4 all acquisitions layouts suited for the training and testing
of the involved networks, and explain how the other parameters
(i.e. time ranges for each acquisition layout items) are chosen.
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Figure 7. Distribution of the temporal gap between the closest
(S1, S2) images from the available images.

4.2 Patches indexation

Figure 8 gives an overview of the dataset creation step. In or-
der to perform the query of samples, i.e. the search of groups of
patches that match the properties defined in the acquisitions lay-
out, we use an indexation structure. An R-Tree indexes all avail-
able patches. The space partitioning data structure describes the
following dimensions:

e Cloud coverage (ranging from 0% to 100%)
e Time from the reference image of the acquisitions layout
e Duration to the closest valid SAR patch

e Number of pixels different from the no-data value

A Kd-Tree is used to ease the computation of the duration to the
closest valid SAR patch. The R-Tree is built for each patches
of Sentinel tiles using the acquisition dates provided in the Sen-
tinel images metadata, and the following statistics collected on
the Sentinel images patches:

o For Sentinel-1 images: the number of valid pixels,

e For Sentinel-2 images: the number of valid pixels, and
the number of pixels impacted by clouds. To compute this
last, we use the cloud quality mask provided in the Theia
product.

We note that cloud masks are only used as a single value for
each patch, representing the proportion of cloud coverage. We
have computed the R-Trees from non-overlapping, 256 x 256
sized patches in all Sentinel tiles. This indexation structure
is computed once. After that, any acquisitions layout can be
used to query all samples matching the defined properties of the
remote sensing acquisitions. One generated sample includes
data arrays containing pixels and ancillary data, e.g. acquisi-
tion date, for each items of the acquisitions layout. Finally, the
samples are restricted in the provided region of interest, to allow
the generation of mutually exclusive samples in the geograph-
ical domain, i.e. in training, validation and test datasets.

4.3 Generation of samples

For each network, samples are first extracted in the images from
the specific acquisitions layout. We split the samples in three
groups: training, validation, and test. We ensure that these three
groups are mutually exclusive by randomly selecting their loc-
ation in the geographical domain, without overlapping patches
of distinct groups. We have randomly selected 5% and 15% of
the area to form the region of interest for the validation and test

E Patches query ROI
Sentinel > et oo (518 v tl
images i
g / v
& P, o | Spatial |
Acquisitions | % %“‘%%,, filtering Dataset
layout

Figure 8. Workflow for the creation of datasets. The sample
query use a R-Tree indexing the available Sentinel-1 and
Sentinel-2 images patches.

datasets, and the other 80% has been used to form training data-
sets. Since the swath of Sentinel-1 and 2 does overlap in some
areas, the samples density is heterogeneous in spatial domain.
For this reason, we have limited the number of samples per spa-
tial location in the training and validation datasets, to guaran-
tee that models are trained with the same number of patches at
each location. Thus for the training and validation datasets, a
maximum amount of 50 samples has been collected at each loc-
ations. For the test dataset, all available samples are extracted.
Table 3 summarize the number of distinct samples for train-
ing, validation and test datasets. The differences in samples
number is due to the availability of images, or pairs of images,
depending on the properties defined in the acquisitions layout,
i.e. number and type of acquisitions, cloud coverage and tem-
poral constraints. All acquisitions layouts used to generate the
datasets are detailed in the following subsections.

Dataset Training | Validation | Test
SSOP 600.1% 35.3k 70.6k
MSOP 600.1% 35.3k 70.6k
MSOPyq / / 76k

Table 3. Number of samples in each datasets. The SSOP, MSOP
and MSOPq datasets are used respectively to train the
mono-temporal networks, the multi-temporal networks, and to
compare all models with the gap-filling over an acquisitions
layout matching all approaches validity domains.

In the following sections, we detail the properties of each ac-
quisitions layout of the datasets.

4.3.1 SSOP (Single date inputs cloudy optical image)
The acquisitions layout for SSOP networks training is presen-
ted in table 4. We chose the following parameters for the ac-
quisitions layout: the maximum gap between the acquisition
dates of S1 and S2 images is set to 72 hours and the maximum
spread between the cloud-free and the polluted optical images
is set to 10 days. With this settings, we reach a total number of
600k samples for training, which is approximately 4 times the
amount of samples used in the original paper of (Meraner et al.,
2020).

Name | S1(£At) | S2 (% clouds) | Time-stamp
t Yes (£72h) [0, 100] Reference
v / 0 [—10d, +10d]

Table 4. Acquisitions layout for the SSOP networks, depicting
the (S1;, S2;) images pair acquired close to a single cloud-free
optical image (52).

4.3.2 MSOP (Multitemporal inputs, any optical images i.e.
cloudy or not) The acquisitions layout for the training of the
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Name | ST (£A?) S2 (% clouds) Time-stamp
T—1 | Yes (£72h) 0 [—18d, —10d]
t Yes (£72h) 100 reference
t / 0 [—5d, +5d]
t+1 | Yes(£72h) 0 [+10d, +18d]

Table 6. Acquisitions layout enabling the comparison of the
gapfilling and the M SO P,,,¢: network. The cloud coverage at ¢
is 100%, all other optical images remain cloud free.

M SO Pynet network is presented in table 5. It consists of three
optical images at ¢ — 1, ¢t and ¢ + 1 that can be polluted by
clouds, and one cloud-free optical image at ¢’, used as the train-
ing target. As explained in section 4.1, we used 72 hours for
the maximum gap between the acquisition dates of S1 and S2
images. The cloud-free optical image is acquired at most 10
days from the optical image at ¢, to roughly falls within the less
frequent revisit cycle of the Sentinel-2 constellation everywhere
over our study area. Finally, we have selected a temporal range
for t — 1 and ¢ + 1 dates that avoids the cloud-free optical image
acquisition date, and that also falls within the revisit cycle of
the Sentinel-2 constellation, i.e. 10 to 18 days.

Name S1 (£A¢?) S2 (% clouds) Time-stamp
t—1 | Yes(+72h) [0, 100] [—18d, —10d]
t Yes (£72h) [0, 100] reference

t/ / 0 [—10d, +10d]
t+1 | Yes (£72h) [0, 100] [+10d, +18d]

Table 5. Acquisitions layout used to train the M SO Pynet
network.

4.4 MSOP.q (Multitemporal inputs, with cloud-free op-
tical images at ¢ — 1 and ¢ + 1, and one cloudy image
at t)

Table 6 shows one acquisitions layout enabling the comparison
of the gap-filling with the SSOP and MSOP networks, thanks to
cloud-free optical images available at ¢ — 1 and ¢ + 1, and one
completely cloudy optical images at ¢, which intends to make
as fair as possible the comparison. We denote the correspond-
ing dataset MSOP_4. In this acquisitions layout, the cloud-free
optical image at ', acquired at most 5 days from the date ¢, is
used to compute the metrics over the reconstructed image.

We note that our settings make possible the extraction of a suffi-
cient number of samples, thanks to the availability of Sentinel-
1 and Sentinel-2 over our study site, but this setting might be
adjusted for other regions of the world where the Sentinel cov-
erage is less timely available.

5. BENCHMARKS
5.1 Protocol

We train all networks with their respective datasets presented
in section 2. The SSOP and MSOP models are trained over
the training dataset detailed in section 4.3.1, and evaluated over
the test datasets detailed in sections 4.3.2 and 4.4. The MSOP
models are trained over the dataset detailed in section 4.3.2,
and evaluated on the test datasets detailed in sections 4.3.2 and
4.4. We use the ADAM algorithm (Kingma and Ba, 2014) to
train all networks to minimize the Iy loss. For M SO Py,+ and

SSOP,net, we use a learning rate of ir = 0.00012, 5o = 0.9
and 81 = 0.999, with a batch of size 128 distributed across 4
GPUs. We train the SSO Py, network using the same setup
as described by the authors. All experiments are realized on
NVIDIA V100 GPUs with 32Gb RAM. We kept the trained
models that reach the smallest /; loss on the validation split.
To assess the performance of each approach, we compute the
following metrics between the reconstructed output optical im-
ages 52, and the reference cloud-free optical image S2;/ over
the test datasets:

e Peak Signal to Noise Ratio (PSNR):
2

d
Where MSE is the Mean Squared Error computed over n

patches:
1 e —
MSE = - § 152, — 52, |)° 3)

The higher is the PSNR, the closer are the values of the
estimated image to the target image.

e Spectral angle (SAM)(Kruse et al., 1993), representing the
mean spectral angle between the estimated image and the
target image, ranging in [0, ]

e The Structural Similarity Index (SSIM)(Wang et al.,
2004), measures the similarity in terms of structure,
between the estimated image and the target image. The
range is [0, 1], and values close to 1 correspond to the best
structural similarity between the images.

5.2 Ablation study

In order to assess the SAR, DEM, and optical modalities bene-
fits, we have performed an ablation study. For the SSOP and
MSOP networks, we have derived two modified architectures,
one without the SAR input, and the other without DEM and
without SAR. For a sake of computational budget, we only have
studied the ablation with the U-Net based networks.

5.3 Results

In the following section, we report the evaluation metrics com-
puted on all test datasets.

5.3.1 Comparison of SSOP networks The comparison
between SSOP networks is carried out on the test dataset
presented in section 4.3.1. We first report the metrics obtained
with SSOP networks in table 7. It can be noticed that the met-
rics from the modified network (SSOPynet) are close to the
original SSOP,,er. SSIM and SAM are slightly better for
SSOP,,.r and MSE and PSNR a bit better for SSOP,net.
While this result is not groundbreaking in terms of evaluation
metrics, we highlight the huge difference of required overall
processing time: to train both networks over the same data-
set with the same setup, SSOP,n.¢ needs ~ 30 hours and
SSOPy,er ~ 35 days. For this particular reason, we have
chosen to perform all other benchmarks only on SSOP, e,
since the metrics are quite similar to SSO P, but the pro-
cessing budget far lower and we could ran more experiment at
lower cost. It can be noticed that the SSO Pynet+prnm model
has the best PSNR, MSE and SAM, but the SSO P, still has
a slightly better SSIM. One explanation could be that in the
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SSOPy,er model, all convolutions are performed in the ori-
ginal resolution, and no downsampling is performed, which
might preserve the structural similarity, hence a better SSIM.
The lowest metrics are obtained with the SSOP, et w/054R
model, which does not use DEM and SAR inputs, showing the
benefits of these modalities for the reconstruction.

Model MSE SSIM | PSNR | SAM
SSOPynetw/osar | 324508 | 0.8388 | 24.888 | 0.1595
SSOPper 277971 | 0.8656 | 25.560 | 0.1425
SSOPunet 261223 | 0.8568 | 25.830 | 0.1448
SSOPunet+pEM | 234410 | 0.8645 | 26.300 | 0.1401

Table 7. Comparison of SSOP networks performed on the SSOP
dataset

Figure 9 shows images from the test dataset, processed with the
different U-Net based SSOP networks. We can visually appre-
ciate the contributions of the input SAR and DEM. It can be
noticed the limits of the method with thick clouds in the op-
tical image, especially for the SSOPyyct,w/054r Network that
only use the input optical image. Figure 10 show the limits
of the SSOPyunet+pEn network with very thick atmospheric
perturbation.

(1) (2) (3) (4) (5) (6)

Figure 9. From left to right: input cloudy optical image S2; (1),
input SAR image S1; (2), output S2; from SSOP, et w/054R
(3), SSOPyunet (4), and SSOPynet+pEM (5), (6) reference
image

5.4 Comparison of SSOP and MSOP networks

The comparison of approaches that input one or more cloudy
images to reconstruct the optical image at ¢, is carried out. We
compare networks that consume different kind of inputs, i.e.
one single (S1, S2) pair for SSOP networks versus three pairs
of images for MSOP networks. We recall that, unlike the MSOP
networks, ¢ — 1 and ¢ 4 1 images are not used by the SSOP net-
works. We compare the networks on the test dataset detailed in
section 4.3.2, since its acquisitions layout fulfills both MSOP

Figure 10. Limits of the SSOP networks with thick clouds in
optical images. Top left: input cloudy optical image 52;, Top
right: SSOP network output S2,. Bottom: the reference image
S2y.

and SSOP models validity domains, in particular the maximum
SAR-optical temporal gap at t. Evaluation metrics are repor-
ted in table 8. While it can be observed the same outcome in
the comparison between SSOP networks, these quality metrics
differ a bit from the ones presented in table7, since the eval-
uated samples are just a subset of this last dataset. The qual-
itative inspection of the reconstructed images shows that the
MSOP,net+pEM network produces images better reconstruc-
ted than the M SO Pyner and M SOPyyct,0 /054 R NEIWOTKS, €5-
pecially under thick cloudy areas, highlighting the importance
of the SAR and DEM modalities (figure 11).

Model MSE SSIM | PSNR | SAM
SSOPynet,w/osar | 324099 | 0.8388 | 24.893 | 0.1595
SSOPynet 260827 | 0.8567 | 25.836 | 0.1448
SSOPynet+DEM 221909 | 0.8583 | 26.538 | 0.1390
MSOP,pet,w/osar | 141283 | 0.9249 | 28.499 | 0.1128
MSOPynet 138212 | 0.9267 | 28.594 | 0.1111
MSOPunet+penm | 133061 | 0.9277 | 28.759 | 0.1095

Table 8. Comparison between SSOP and MSOP networks, over
the MSOP test dataset detailed in section 4.3.2.

54.1 Comparison of deep-learning based approaches and
gap-filling In this setup, optical images acquired at ¢ — 1 and
t 4+ 1 are completely cloud-free, which enables the use of the
gap-filling. Also, the optical image acquired at ¢ is completely
covered by clouds or clouds shadows, according to the cloud
masks, helping toward a fair comparison between the approach
that consume the optical image at ¢t (M SO P,.:) and the gap-
filling. We perform the comparison of MSOP, SSOP models
and the gap-filling using the MSOP,4 test dataset detailed in
table 6, which matches the validity range of all approaches.
Table 9 reports the metrics obtained. We can observe that all
the metrics are in favor of the MSOP models. Also, in this par-
ticular use-case, the gap-filling leads to superior results to the
SSOP models. We can notice that all metrics are largely in fa-
vor of the M SO P,net+pEm model, showing the benefit of the
multitemporality, the SAR and the DEM modalities. Figure 12
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(1) (2) (3) (4) (5) (6) (7)

Figure 11. From left to right: input images 52,1 (1), 52¢ (2),
S52¢+1 (3), output reconstructed optical images S2; from
MSOPunet,w/oSAR (4), MSOPunet (5), MSOPunetJrDEM
(6) and the reference image 52,/ (7).

shows reconstructed images from the test dataset. We can no-
tice that the gap-filling fails to retrieve various details in the re-
constructed images, like sudden crops changes. Also, the input
images cloud masks are not always exact, and the gap-filling
might interpolates polluted images, unlike the MSOP models
which are capable of removing those clouds.

Model MSE | SSIM | PSNR | SAM
SSOPunetwjosan | 239238 | 0.7911 | 26212 | 0.1847
S5O Punet 178284 | 0.8187 | 27489 | 0.1472
SSOPunctipEn | 157663 | 0.8264 | 28.023 | 0.1422
gapfilling 79904 | 0.9249 | 30.974 | 0.1021
MSOP,erm/05ar | 63097 | 0.9338 | 32.000 | 0.0952
MSOPoner 61016 | 0.9345 | 32.146 | 0.0940
MSOPunersprn | 52814 | 0.9421 | 32.772 | 0.0901

Table 9. Comparison of the gap-filling and the SSOP and MSOP
networks. All approaches are compared on the MSOP 4 test
dataset detailed in table 6.

6. DISCUSSION

We have compared various single date SAR/optical networks,
with an ablation study to analyze the contribution of the SAR,
optical, and DEM inputs. We have modified the original net-
work from (Meraner et al., 2020), which is considerably greedy
in term of computational resources, replacing the ResNet back-
bone with a U-Net backbone. This has two advantages: first,
it is less computationally extensive since convolutions are per-
formed on downsampled features maps. The processing time is
diminished with a factor greater than 30, and leads to similar
image quality metrics, with a slightly higher PSNR, but slightly
lower SAM and SSIM. Secondly, using a U-Net backbone in-
stead of a ResNet backbone enables input images at lower res-
olution that the 10m bands of Sentinel images: we have shown
that a 20m spacing DEM can be injected after the first down-
sampling of the network without prior spatial re-sampling, im-
proving the reconstruction of optical images. However, we only
have trained all single date based networks using the only the

Figure 12. From left to right: input images S2;—1 (1), 52¢ (2),
52:+1 (3), output reconstructed optical images S2; from
MSOPynet+pEM (4), the Gap-filling (5), and the reference
image S2,s (6). In violet are circled details in the reconstructed
images that the gap-filling fails to retrieve, or artifacts caused by
wrong could masks in input images.

Iy loss, and future works could investigate other objective for-
mulations. We have carried out the comparison of single date
networks and the multitemporal networks over the MSOP test
dataset, which represents the nominal operational context of
both networks, e.g. using every available input images, cloudy
or not. Our results shown that the multitemporal networks lead
to superior image reconstruction. We believe that more avail-
able input images improves the retrieval of the missing contents
of the cloudy optical image at ¢t. The comparison between the
deep learning based networks and the gap-filling is performed
over the MSOP,4 test dataset, which contains samples where
the ¢ optical image patches are covered by clouds at 100%. The
gap-filling performs better than the single date network with
a significant margin in this particular setup. However, even
though the multitemporal network is not primarily designed for
this task, it has outperformed the gap-filling. Finally our abla-
tion study shows that the SAR and the SAR+DEM contribute
in the optical image reconstruction process in both single date
based networks, and multitemporal based networks. For future
works, we believe that a further investigation of the SAR signal
contribution should be carried out. For instance, it could be in-
teresting to study if feeding geometrical information (e.g. local
SAR incidence angle) in networks would help, and if physical
based SAR pre-processing (i.e despeckeling or target decom-
position) benefit the optical image reconstruction task.
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7. SUMMARY AND CONCLUSION

In this paper, we sought to provide a comparison of single date
based and multitemporal convolutional networks with the tradi-
tional deterministic temporal interpolation between two images.
We have introduced a framework to generate various datasets
to train and evaluate various methods for cloudy optical im-
age reconstruction. Our simple yet convenient method relies
on space partitioning data structures indexing the crucial para-
meters of the remote sensing acquisitions, i.e. how SAR and
optical remote sensing images must be acquired in the datasets,
in term of cloud coverage, SAR/optical maximum gap, num-
ber and type of acquisition, and relative acquisition time. We
have built several datasets to train single date based networks
and multitemporal networks, and to evaluate the different selec-
ted approaches, representing various operational contexts. The
studied single date based network take their roots in an existing
architecture that uses a ResNet backbone, and we have shown
how it could be improved using a U-Net backbone, increasing
its training and inference speed and enabling to input additional
image of different scale. We have built a multitemporal network
that generalize the single date image reconstruction from three
input pairs of images, and which uses the same backbone shared
across the inputs. Our model inputs three cloudy optical and
SAR images pairs acquired at dates t—1, ¢t and ¢t+1, and a DEM.
We have lead the comparison between the single date networks,
the multitemporal networks, and the gapfilling in various con-
texts, showing that the gapfilling performs better than the single
date based networks in the context of Sentinel-2 time series.
We have analyzed the contribution of the different kind of in-
puts, namely optical, SAR and DEM with an ablation study,
showing how the reconstructed image benefits from these mod-
alities. Also, we have shown that, even if the primary design
of the multitemporal convolutional network is not focused on
image interpolation in temporal domain, it leads to similar even
better results than the gap-filling. However, we should inter-
pret our results carefully regarding the ancillary data available
for cloud coverage characterization, since our cloud coverage
information per patch depends from it, and the bias it can intro-
duce. Finally, we lead our study over a small area that do not
represents the various atmospheric conditions all over the earth.
With the continuous stream of synchronized SAR and optical
acquisitions thanks to the Sentinel constellation, it is expected
that future data driven multitemporal models will help to deliver
more exploitable data. Our dataset generation framework and
our models are available as open-source software >
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