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Abstract  20 

Background 21 

There is a growing need to improve robustness characteristics in fattening pigs, but this trait is 22 

difficult to phenotype. Our first objective was to develop a robustness proxy on the basis of 23 

modelling of longitudinal energetic allocation coefficient to growth for fattening pigs. 24 

Consequently, the environmental variance of this allocation coefficient was considered as a proxy 25 
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of robustness. The second objective was to estimate its genetic parameters and correlation with 26 

traits under selection as well with phenotypes routinely collected on farms. A total of 5848 pigs, 27 

from Piétrain NN paternal line, were tested at the AXIOM boar testing station (Azay-sur-Indre, 28 

France) from 2015 to 2022. This farm was equipped with automatic feeding system, recording 29 

individual weight and feed intake at each visit. We used a dynamic linear regression model to 30 

characterize the evolution of the allocation coefficient between cumulative net energy available, 31 

estimated from feed intake, and cumulative weight gain during fattening period. Longitudinal 32 

energetic allocation coefficients were analysed using a two-step approach, to estimate both its 33 

genetic variance and the genetic variance in the residual variance, trait LSR. 34 

Results 35 

The LSR trait, that could be interpreted as an indicator of the response of the animal to 36 

perturbations/stress, showed low heritability (0.05±0.01). The trait LSR had high favourable genetic 37 

correlations with average daily growth (-0.71±0.06) and unfavourable with feed conversion ratio (-38 

0.76±0.06) and residual feed intake (-0.83±0.06). The analysis of the relationship between 39 

estimated breeding values (EBV) LSR quartiles and phenotypes routinely collected on farms shows 40 

the most favourable situation for animals from quartile with the weakest EBV LSR, i.e., the most 41 

robust. 42 

Conclusions 43 

These results show that selection for robustness based on deviation from energetic allocation 44 

coefficient to growth can be considered in breeding programs for fattening pigs. 45 

Background 46 
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The pig industry faces new challenges related to rapidly changing environmental conditions, 47 

especially related to global warming (Hansen et al., 2012), and to growing societal concerns. For 48 

several decades, breeding objectives were mainly focused on increasing animal productivity 49 

(growth, feed efficiency…) at the expense of non-productive functions, i.e., fitness (Puillet et al., 50 

2016; Rauw et al., 1998). These unfavorable consequences could be explained by trade-offs in 51 

resource allocation between biological functions (Rauw, 2009). Indeed, when animals cannot obtain 52 

more resources, i.e., in limiting environments, allocation of these resources to a high priority 53 

function must be to the detriment of another function (Stearns, 1992). In this situation the animal is 54 

unable to maximize the expression of each biological function simultaneously. This changing 55 

context requires having animals able to adapt to new environmental conditions with more limiting 56 

resources, which can be associated with an improvement of robustness. Knap (2005) defined 57 

robustness as “the ability to combine a high production potential with resilience to stressors, 58 

allowing for unproblematic expression of a high production potential in a wide variety of 59 

environmental conditions”. Generally, the production potential is associated to a phenotype of 60 

interest, such as growth, feed efficiency or milk production, egg production. Incorporating one or 61 

several traits to evaluate robustness of growing pigs in genetic evaluation would therefore be of 62 

value for the development of more sustainable breeding goals (Berghof et al., 2019b). Accordingly, 63 

when targeting robustness as a breeding objective, it is important to maintain simultaneously a high 64 

level of production to meet industry’s economic expectations. However, until recently to it was very 65 

difficult to phenotype traits such as robustness in farm animals and therefore on the way to improve 66 

it. 67 

In parallel, the increasingly common use of sensors in farms, especially automatic feeding system 68 

(AFS) in pig industry, allows continuous individual recording of weight or feed intake over a long 69 

period. This offers the possibility to characterize the dynamics of those phenotypes for each 70 
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individual in the face of variations in the environment. Several studies have used such longitudinal 71 

data to quantify resilience indicators based on deviation between an expected trajectory of each 72 

individual for a given non-perturbed environment and its observed trajectory on feed intake 73 

(Nguyen-Ba et al., 2020) or body weight (Revilla et al., 2022). Definition and modelling of 74 

individual potential trajectory are challenging issues in these approaches. Other studies developped 75 

several resilience indicators based on the within individual variance of time series mesurments 76 

related to production, such as feed intake of growing pigs (Putz et al., 2019), milk yield for dairy 77 

cows (Poppe et al., 2021) or egg production in laying hens (Bedere et al., 2022). These modeling 78 

approaches have mainly addressed the characterization of robustness or resilience through the 79 

analysis of one production variable. They are a substantial contribution in the phenotyping of 80 

resilience but do not address the underlying biological mechanisms and the potential trade-offs in 81 

the use of available resources between production and other functions. A robust animal can be 82 

considered as an animal able to allocate a proportion of its resources to the right function at the right 83 

time (Friggens et al., 2017). To our knowledge, the characterization of robustness based on the 84 

temporal evolution of the allocation pattern has been little explored in growing pigs. 85 

The acquisition of temporal data of feed intake and weight in growing pigs made it possible to 86 

consider the development of allocation model based on these two variables to caracterize 87 

robustness. With this objective, we developed a conceptual model to represent the temporal pattern 88 

of allocation of energy intake to growth in fattening pigs (Lenoir et al., 2022).  89 

In the present study, the first objective was to develop a robustness indicator on the basis of 90 

modelling of longitudinal energetic allocation coefficient to growth for fattening pigs. 91 

Consequently, the environmental variance of this allocation coefficient was considered as a proxy 92 

of robustness. This proxy should reflect the ability of an animal to express or adapt its production 93 

potential in the face of changes in the environment relative to other animals that have been raised 94 
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under the same conditions. Our objective was to estimate its genetic parameters and correlation with 95 

traits under selection as well as with phenotypes routinely collected on farms and associated to 96 

robustness or heatlh status. 97 

Methods 98 

Study population 99 

A total of 25745 pigs from Piétrain NN Français paternal line (Pie NN), free from halothane-100 

sensitivity, of the AXIOM company were used in this study. Individuals from the Pie NN line were 101 

born in 3 different farms integrated into the AXIOM breeding scheme and that comply with 102 

AXIOM’s biosafety and health requirements. A part of the males were selected before weaning and 103 

then raised at the boar testing station of the breeding company AXIOM Genetics (Azay-sur-Indre, 104 

France). The animals considered in the present dataset were 6885 entire males and 13012 females 105 

raised and individually tested at their farm of birth from April 2014 to April 2022 and 5848 entire 106 

males raised from September 2015 to April 2022 at the boar testing station.  107 

The animals raised on their birth farm were born from 3943 litters, 6.5±2.9 piglets per litter, and 108 

from 321 sires, 80±53.8 piglets per sire. To limit the risk of confounding between environmental 109 

(i.e., fattening group) and genetic effects, the sires were used at least in two mating groups in each 110 

farm and in two different farms. Animals were transferred to fattening rooms when they were 75.7 111 

±3.4 days of age (33.8±7.8 kg body weight (BW)). Pigs were raised in fattening rooms for 68.6 112 

±4.9 days until the individual testing at around 142.4±4.6 days of age (103.4±11 kg BW).  113 

For males raised at the boar testing station, they were transferred every three weeks from birth farm 114 

to the station at an average age of 27.3±2.2 days with an average BW of 8.5±1.7 kg. They were 115 

raised in pens of 14 animals from the same birth farm. These groups of 14 pigs were never modified 116 

at the different stages of breeding. Each fattening group consisted of animals sourced from between 117 

one or three farrowing farms. These animals came from 2048 litters, 2.6±1.5 piglets per litter, and 118 
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were born from 238 sires, 22.1 ±15 piglets per sire. They were raised in quarantine and post-119 

weaning rooms for five and two weeks respectively and transferred to fattening rooms when they 120 

were 76.4±2.9 days of age (34.4±5.4 kg BW). These pigs were raised in fattening rooms for 69 ±4.7 121 

days until the individual testing at around 145.4 ±3.6 days of age (104.5±11.1 kg BW). Fattening 122 

rooms were equipped with AFS: Nedap pig performance testing feeding station (Nedap N.V.; 123 

Groenlo, the Netherlands). Animals were fed ad-libitum with commercial diets adapted to their 124 

physiological needs. The provided diets were non-limiting in amino acids. The boar testing station 125 

environmental and technical conditions are described in detail in Lenoir et al. (2022a). The 126 

pedigrees contained 27276 animals across 20 generations.  127 

Information recorded during the fattening period  128 

The performances recorded were the same in farrowing farms testing and boar testing station. Each 129 

animal was individually weighed on arrival in the fattening room (initial body weight: IBW). When 130 

the average weight of the group was approximately 100 kg, individual tests were performed for 131 

animals weighing more than 70 kg (Institut Technique du Porc, 2004). Measurements made during 132 

the test were: body weight (TBW), average ultrasonic backfat thickness (BF = mean of three 133 

measurements in mm) and ultrasonic longissimus dorsi thickness (LD = one measurement in mm). 134 

The BF and LD measures were transformed to correspond to their values at 100 kg liveweight 135 

(BF100 and LD100 respectively) to compare animals at equivalent weight. This transformation was 136 

done by applying linear coefficients that multiply the difference between 100 kg and TBW. 137 

Coefficients used are 0.04 mm/kg for BF100 and 0.27 mm/kg for LD100 (Sourdioux et al., 2009). 138 

The average daily gain (ADG) was calculated as the difference between TBW and IBW divided by 139 

the number of days elapsed between the two weighings.  140 

Additionally, at the boar testing station, BW (kg) and feed intake (FI; kg per visit) were recorded 141 

each time the animal went into the AFS. The feed conversion ratio (FCR) was calculated as the ratio 142 
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between the total FI during the fattening period and the weight gain (TBW-IBW), expressed in 143 

kg/kg. The average daily feed intake (DFI) was calculated as the total FI during the period divided 144 

by the number of days elapsed. The residual feed intake (RFI) was also estimated for each animal as 145 

the deviation between the recorded DFI and the potential average daily feed intake (PDFI) predicted 146 

from requirements for maintenance and production. Based on the method proposed by Labroue et 147 

al. (1999), the PDFI was estimated by linear regression, with the lm function in R (R Core Team, 148 

2018), of DFI on average metabolic weight (AMW), ADG and BF100. The AMW was estimated 149 

for each animal using the formula proposed by Noblet et al. (1991), ��� �  
�����.������.��

�.
���������
.  In 150 

addition, all medical treatments received by the animal were recorded. A visual observation of the 151 

animals was carried out by the technician in charge of the measurements in order to note any 152 

morphological defects, anomalies and clinical signs of disease according to a frame of reference 153 

(Institut Technique du Porc, 2004), noted as "observable defects". These observations were made by 154 

the same person within any given fattening group. The medical treatments and individual 155 

observations were recorded from January 2019 to April 2022 on 3028 males fattened at the boar 156 

testing station.  157 

Longitudinal data pre-treatment 158 

A pre-treatment process was performed on BW and FI, recorded each time the animal went into the 159 

AFS, to validate them, identify quality issues and convert them on a daily scale. This process 160 

followed the procedure proposed by Revilla et al. (2022) and modified by Lenoir et al. (2022a). In 161 

summary, on the scale of the visit, a quadratic regression of BW on age + age² for each animal was 162 

applied to eliminate aberrant BW. For a given animal and a given visit, if the ratio between the 163 

residual value and the fitted value was > 0.15, the BW measurement was considered to be null. This 164 

step was repeated a second time. Following this step, the body weight (BWit; kg) was estimated 165 

from the median of the non-null weights for each pig (i) and each fattening day since the transfer to 166 
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fattening room (t). For feed intake, if for a given animal the feed intake rate at a visit was lower or 167 

higher than its mean take rate over the fattening period ±4 standard deviations, the FI measurement 168 

was considered to be missing. This missing value was estimated using a linear regression of FI on 169 

feeding duration. The daily feed intake (FIit; kg) was calculated as the intakes during the visits of the 170 

day t. Then BWit and FIit were validated at the pen scale to detect inconsistencies linked to the AFS 171 

machine. When a control day was missing (due to a mechanic problem of AFS or loss of a RFID 172 

tag), the missing BWit and FIit were estimated separately by using local regression model, “proc 173 

loess” implement in SAS (SAS Institute Inc., 2013). Data recorded on day t=0 were excluded from 174 

the dataset due to AFS calibration and animal adaptation. After data pre-treatment, the file included 175 

405983 daily records associated to the 5848 males fattened at the testing station. 176 

Model for analysis 177 

Modelling energetic allocation coefficient to growth 178 

As shown on Figure 1, the feed intake, i.e input of the system, is transformed in net energy intake 179 

and allocated to several functions: maintenance, body development (protein deposition), body 180 

reserves (lipid deposition) and other functions (van Milgen et al., 2005). The body weight gain, i.e., 181 

output of the system, is directly related to the protein and lipid depostion. Resource allocation is 182 

regulated during the fattening period for each individual according to deterministic factors: genetic 183 

potential and degree of maturity (Lewis and Emmans, 2020). Over the time, resource allocation 184 

coefficient is also impacted by changes in environmental conditions, i.e., pertubations (Friggens et 185 

al., 2017). 186 

A dynamic regression model (DLM; West and Harrison, 1997) was used to estimate daily energetic 187 

allocation coefficient to growth (αit; Lenoir et al., 2022b). First, FIit was converted in net energy 188 

intake in MJ (EIit), using the net energy density of the feed of 9.85 MJ of NE/kg. Then, the net 189 

energy available for growth at day t (NEAit) was calculated as the difference between EIit and the 190 
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net energy maintenance requirements at day t (MRit), estimated according to Noblet et al. (2016). 191 

The DLM to estimate the allocation coefficient of energy to weight gain for a given pig i at day t 192 

(αit) was built with two equations : an observation equation (1), relating cumulative weight gain at 193 

day t (CWit in kg) and cumulative net energy available at day t-1 (CNEAit-1 in MJ), a system 194 

equation (2), describing the changes in αit (unobserved state variable) from day to day according to 195 

a stochastic process. 196 

CW�� �  α�� 	 CNEA���� 
 ���      �
 ~N�0, Iσ��
� �    (1) 197 

α�� �  α���� 
  ���                        �
 ~N�0, Iσ��
� �    (2) 198 

Where ���  was a random observation error for animal i; σ��
�  is the observational variance i; ��� 199 

represented random and unpredictable changes in level between time t−1 and t; and σ��
�  was the 200 

system variance. The model was built using the R package dlm (Petris et al., 2009). The values of 201 

αit were calculated independently for each animal with a Kalman smoother algorithm. The value of 202 

αit at t=1 was not estimated because the consumption at t-1 was unknown. 203 

Estimation of genetic variance in environmental variance 204 

Longitudinal energetic allocation coefficients (αit) were analyzed with ASReml 4.2 software 205 

(Gilmour et al., 2009) to estimate both its genetic variance and the genetic variance in the residual 206 

variance (i.e., environmental variance) using a two-step approach (SanCristobal-Gaudy et al., 1998; 207 

Garreau et al., 2008). 208 

First step: estimation of genetic variance in the energetic allocation coefficient 209 

The energetic allocation coefficient was analyzed by a random regression model (RR) with first 210 

order Legendre polynomials (Robson, 1959) for the genetic and permanent environmental effects. 211 

The common litter was significant as a random effect, tested using likelihood ratio (LRT) test, �-212 

risk of 5%, and included in the model, in addition to additive genetic and permanent environmental 213 

effects. Fixed effects included in the model were selected at an p-value of 5% using the Wald F 214 
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statistic. The significant fixed effects were the fattening group (103 levels), as contemporary group, 215 

and the joint effect of fattening group and the fattening pen (517 levels). The age k in days of the 216 

animal at day t was include as a covariate. The residual variance was assumed constant over time.  217 

Second step: estimation of genetic variance in residual variance 218 

In the second step of the analysis, the residuals (��� , residuals of animal ' at time )� of the RR 219 

model were used to compute log transformed squared residuals: *+,�� � -.����
� � as an indicator of 220 

animal robustness. A lower LSR value is assumed to be an indication of a higher animal robustness 221 

to environmental perturbations, related to a smaller deviation from expected allocation of energy to 222 

growth. To follow the assumption of the BLUP (best linear unbiased prediction; Henderson, 1977) 223 

method, which should be applied to a non-selected base population, and to estimate the covariance 224 

between traits, a multi-traits animal model including the four traits under selection (ADG, BF100, 225 

LD100 and FCR, single measurement for all the animals) and the non-selected traits LSR (repeated 226 

data for animal in station) and RFI was applied. For the LSR trait, the same fixed effects were fitted 227 

as for αit and the random effects included were common litter, permanent environmental and animal 228 

additive genetic effects. For the four traits under selection, the fixed effects tested at an α-risk of 5% 229 

using the Wald F statistic were the gender (2 levels), the fattening farm (4 levels) and the fattening 230 

group within the fattening farm (443 levels). The significant random effects were common litter and 231 

animal additive genetic. At this step, heritability (h²) was calculated as the ratio of animal genetic 232 

variance to the total phenotypic variance, i.e., the sum of the genetic additive variance, 233 

environmental variances (common litter, permanent environmental if necessary) and the residual 234 

variance. 235 

Relation between LSR and routinely collected phenotypes 236 

To evaluate whether the LSR phenotype could be considered as a robustness proxy, the relationship 237 

between estimated breeding value (EBV) for LSR and health phenotypes was studied. The 3028 238 
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males with LSR phenotype and known information over the fattening period (observations, 239 

injections…) were divided into 4 quartiles according to their EBV for LSR, from Q1 for the most 240 

favorable values (lower EBV LSR) to Q4 for the most unfavorable values (higher EBV LSR). We 241 

studied the distribution of other phenotypes associated with animal health and robustness according 242 

to the EBV LSR quartile. To compare the differences and frequencies in the scores among the four 243 

EBV LSR classes, a Chi-square was performed. Statistical significance was set a priori at P less 244 

than or equal to 0.05. These phenotypes are derived from measurements made during the animals 245 

performance evaluations, and from the medical treatments recorded during the testing period. In 246 

each class, we differentiated animals that can be selected (Selectable) from those that are dead or 247 

weighing less than 70 kg at the day of the individual test or weighing 70 kg or more and with an 248 

observable defect on the day of testing. We considered as an observable defect on the day of testing, 249 

factors such as weak development and similar that were estimated to relate to the robustness of the 250 

animal (Appendix 1). A second trait differentiated pigs that received at least one antibiotic or anti-251 

inflammatory injection during the testing period from those that didn’t receive any injection (No 252 

injection). We also differentiated pigs that were “Selectable” without receiving any antibiotic or 253 

anti-inflammatory injection during the testing period (Selectable without injection) from the others.  254 

Results 255 

Observed allocation coefficients and robustness indicators 256 

The descriptive statistics for the dataset used in this study are shown in Table 1. The observed 257 

means and LSR were 0.099±0.027 kg/MJ NE and -12.62±2.50, respectively. The phenotypic 258 

correlations, estimated with cor.test function on R (R Core Team, 2018), for trait αt were positive 259 

with ��  (0.241±0.002) and LSR (0.23±0.002), which means that a higher energetic allocation rate to 260 

growth was related to a higher variability. The phenotypic coefficients of variation were greater 261 
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than 20% for IBW, αt and LSR, and between 10 and 20% for TBW, ADG, DFI and BF100, 262 

indicating large phenotypic variation for these traits.  263 

Figure 2 displays the αt trajectories of two animals exhibiting different patterns. The first animal on 264 

Figure 2a had a smoothed allocation trajectory over time close to its prediction from RR model 265 

(Figure 2a), its average LSR value for was -14.6±1.7. The second animal on Figure 2b had higher 266 

deviation between smoothed allocation and prediction likely in response to an environmental 267 

perturbation, its average LSR value was higher than for the first individual (-12.3±1.9). 268 

Accordingly, the parameter LSR looks to be a useful indicator to quantify the effect of perturbation 269 

of an animal and allows comparison within a population.  270 

Genetic parameters of allocation coefficients, production and robustness indicator traits 271 

The changes in heritability for αt over time estimated with the RR model are shown in Figure 3, 272 

ranging from 0.20±0.03 to 0.30±0.03. The heritabilities obtained with the RR model were stable 273 

from 67 to 100 days of age, around 0.30±0.03, then decreased up to 150 days of age and then 274 

stabilized around 0.20±0.03 toward the end of the control period. The permanent environmental 275 

ratios ranged from 0.51±0.03 to 0.64±0.03. The estimates obtained decreased up to 128 days of age 276 

and then increased again toward the end of the period.  277 

Heritability estimates of the traits under selection, ADG, BF100, LD100 and FCR, were moderate, 278 

ranging from 0.27±0.03 to 0.45±0.02 (Table 2). Heritability estimates for RFI and FCR were not 279 

significantly different from each other, 0.29±0.03 and 0.27±0.03 respectively. The robustness 280 

indicator LSR was lowly heritable, 0.05±0.01. The proportion of variance due to common litter 281 

effects was similar for all traits, ranging from 0.04±0.01 to 0.06±0.01, except in the LSR estimation, 282 

which had a proportion of phenotypic variance explained by litter effect close to 0. The proportion 283 

of phenotypic variance explained by permanent environment effect for LSR was moderate, 284 

0.22±0.01. 285 
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The trait LSR had high negative genetic correlations with ADG, FCR and RFI, ranging from -286 

0.83±0.06 to -0.71±0.06 (Table 3). Estimates of genetic correlations of LSR with BF100 were low 287 

and negative, and not significantly different than from 0 with LD100. The trait FCR had a high 288 

genetic correlation with RFI, 0.90±0.02, and moderate genetic correlations with ADG and BF100, 289 

0.52±0.06 and 0.50±0.05, respectively. Estimates of the genetic correlations of ADG with BF100 290 

and RFI were positive and moderate to high, 0.43±0.04 and 0.61±0.05 respectively.     291 

Relation between EBV LSR classes and collected phenotypes 292 

The percentage of “Selectable” animals was significantly related to the EBV LSR quartile (Figure 293 

4). The quartile Q1, including animals with the lowest EBV LSR value, had the highest value with 294 

91.7% of “Selectable” animals, and the quartile Q4 had the lowest percentage, 61.2%. The 295 

difference between each quartile were significant. In the quartile Q1, 75% of the animals didn’t 296 

receive any antibiotic or anti-inflammatory injection (“No injection”) over the control period. This 297 

percentage was not significantly different than those observed for Q2 and Q3, 74.1% and 70.9% 298 

respectively. The difference of percentage animals with “No injection” was significant between Q4, 299 

68.7%, and Q1 or Q2. The proportion of animals “Selectable without injection” was significantly 300 

higher in Q1 than in Q3 and Q4, 69.3%, 58.3% and 43.3% respectively. In summary, a lower EBV 301 

LSR, i.e., a higher robustness level, was associated with a better chance of being in good health, of 302 

being “selectable” and with a lower use of medicines. 303 

Discussion 304 

Our objective was to propose a robustness indicator for fattening pigs from the characterization of 305 

the energy allocation of the animal. This indicator is expected to be associated with the ability to 306 

cope with different types of environment perturbations encoutered, allowing optimal expresion of 307 

production potential. The originality of this work was to use two time-series variables measured in 308 

order to model longitudinal an energetic allocation coefficient, αt, over the fattening period. The 309 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.19.512827doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.19.512827
http://creativecommons.org/licenses/by-nc/4.0/


14 

 

LSR trait was estimated as the daily deviation of α between the observed values (i.e., calculated 310 

with the DLM) and the fitted values estimated by the RR model. Then, we studied the genetic 311 

background of LSR in order to assess its potential as selection trait for robustness in fattening pigs. 312 

This study indicated that LSR had a low heritability trait and showed strong favorable genetic 313 

correlation with growth and unfavorable with FCR and RFI. 314 

Energetic allocation to growth, from concept to model 315 

When faced with one or more environmental disturbances, we can assume that a fattening pig has 316 

two types of responses: a change in feed intake pattern or a modification in energy allocation, that is 317 

to say a trade-off. These modifications in feed intake or in allocation patterns can affect or not the 318 

body weight gain pattern of the animal. This study focused on the second hypothesis with the 319 

objective to quantify robustness with a proxy estimated from variations in the energetic allocation 320 

over time. To our knowledge, this approach has been little studied in pigs with a selection purpose. 321 

The effects of environmental conditions on feed intake have been widely studied in pigs, mainly the 322 

effects of temperature (Quiniou et al., 2000) and diseases (Kyriazakis et al., 1998). The 323 

quantification of robustness or resilience through the analysis of variations in feed intake have also 324 

been studied (Putz et al., 2019; Nguyen-Ba et al., 2020; Homma et al., 2021). With respect to 325 

robustness, the effect of disturbances on growth pattern has been studied on pigs after weaning 326 

(Revilla et al., 2019) or during the finishing period (Revilla et al., 2022). 327 

Conceptually, for a fattening pig, it can be assumed that net energy is allocated between several 328 

functions: maintenance, growth (daily protein and lipid deposition) and other functions such as 329 

health or thermoregulation (Figure 1). We can assume that the proportion of the total available net 330 

energy allocated to each function was regulated by a “valve” which increases or decreases 331 

allocation over time. This modulation supposed that there would be a regulation in the allocation of 332 

the net energy which would be linked on the one hand to a “desired allocation”, dependent on the 333 
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characteristics of the individual (genotype, age), and on the other hand to an “allocation permitted 334 

by the environment”.  335 

The model structure does not detail the full process as described in Figure 1, but provides a simple 336 

and biological way to represent energy allocation. Based on these assumptions and on data available 337 

in the context of the study, we built the model to estimate αt based on daily feed intake and live 338 

weight measurements over time. Energy allocation to maintenance was estimated from the 339 

metabolic body weight based on the equation proposed by Noblet et al. (1999), although this is an 340 

average estimate and we thus ignored any variability between sexes, breeds and individuals. The 341 

mobilization of lipid reserves, allowing an increase in the net energy available, was not integrated 342 

into the model. Indeed, the mobilization of body reserves, apart from glycogen, is rare in growing 343 

animals (van Milgen and Noblet, 2003). In this context, we used a pragmatic approach to estimate 344 

the energy available for growth at time t. This pragmatic approach is linked to the fact that it is not 345 

possible, in a large population, to evaluate precisely for a given pig at a given time, the net energy 346 

allocated to maintenance, to additional thermoregulation or physical activity, to protein deposition 347 

and to lipid deposition. 348 

In this study, we use DLM regression to model the relation between CNEAit-1 and CWit over time 349 

because the DLM makes it possible to characterize allocation coefficient dynamics by a stochastic 350 

process, without the requirement for a strong deterministic assumption. With this method, it is 351 

possible to determine whether the allocation coefficient was increasing, decreasing or stagnating, 352 

without assuming that it followed any given analytical trend, such as a linear, quadratic or cubic 353 

trend (Michel and Makowski, 2013). Our approach takes advantage of the available dlm package in 354 

R (Petris et al., 2009) which enabled processing of the full data in a small computation time (around 355 

35 min for the 405104 measurements). In addition, this simple DLM approach could ultimately be 356 

expanded to the development of multivariate models or the implementation of fixed (batch, herd…) 357 
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or random effects (Stygar and Kristensen, 2016). Another property of DLM is to produce one-step-358 

ahead forecasts of one or several variables especially to provide early warning to the farmer when 359 

forecast error increases (Jensen et al., 2017). Dynamic linear models look to be powerful tools for 360 

analyzing time-series variables. 361 

Estimation of genetic variance in allocation coefficient αt 362 

We assumed that the “desired allocation” of net energy to growth was driven by two components: 363 

the animal's genetic potential and its degree of maturity. In the first step, the objective was to 364 

estimate the genetic variance in allocation coefficient α as affected by degree of maturity, which 365 

evolves with the age of the pig. To achieve this, we used a RR model to estimate the genetic 366 

variance αt and the slope of allocation coefficient to growth over time for each individual. Random 367 

regression using orthogonal polynomials models have been widely used in genetics, for example to 368 

model feed intake or RFI in pigs or in rabbits (David et al., 2015; Shirali et al., 2017). The random 369 

regression of order one was chosen to fit the additive genetic and permanent environmental effects, 370 

there was no significant improve of the model, based on LRT test, with polynomials of higher 371 

order. If the end of the measurement period had been at a weight closer to the maturity weight, a 372 

quadratic random regression would probably be more suitable (Lewis and Emmans, 2020). 373 

The trait αt, describing the allocation of net energy in growth during fattening period, has moderate 374 

heritabilities in the same range as those estimated for FCR or RFI and was strongly correlated with 375 

them. In a previous study (Lenoir et al., 2022c), the trait considered was the average value of αt and 376 

not the repeated estimates, the heritability obtained was lower (0.16±0.05) but was estimated from a 377 

different dataset. For the trait RFI,  the study of David et al. (2021) showed heritabilities ranging 378 

from 0.19±0.06 to 0.28±0.06, using a RR model with weekly estimation over 10 weeks in pigs.  379 

Genetic parameters for LSR and production traits  380 
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The heritability of the trait LSR, which characterizes the environmental variance of αt, was low but 381 

non null. Generally, the heritability of environmental variance is lower than 0.10 (Mulder et al., 382 

2007). This estimate for LSR was in the same range as those published on different traits but with a 383 

similar REML method such as: 0.012±0.004 for rabbits birth weight (Garreau et al., 2008), 384 

0.024±0.002 for litter size in pigs (Sell-Kubiak et al., 2022), 0.029±0.003 to 0.047±0.004 for broiler 385 

chicken body weight (Mulder et al., 2009). Other studies have been based on the analysis of the log-386 

transformed variance (LnVar) of residuals resulting from a modeling of one time-series variable. 387 

This LnVar trait seems to have higher heritabilities than LSR: from 0.20 to 0.24 for milk production 388 

(Poppe et al., 2021) or from 0.10 to 0.12 for egg production (Bedere et al., 2022). Some authors 389 

have used the double hierarchical generalized linear model (DHGLM) allowing in the same 390 

structural model to estimate the mean of the trait and its residual variance (Rönnegård et al., 2010). 391 

In order to perform the multi-trait analysis, we chose to use a 2-step approach rather than the 392 

DHGLM. In theory, the DHGLM model would make it possible to estimate a residual genetic 393 

variance close to the results obtained by our two-step approach. However, it is much more complex 394 

mathematically and has convergence issues, making it difficult to use in an operational breeding 395 

program (Berghof et al., 2019a). 396 

Heritability estimates for ADG and RFI were consistent with those reported in literature for Pietrain 397 

or Large-White pigs raised in similar environmental conditions, which varied from 0.33 ±0.03 to 398 

0.48 ±0.06 and from 0.21 ±0.03 to 0.34 ±0.05 (Saintilan et al., 2013; Déru et al., 2020). For carcass 399 

traits (BF100 and LD100), heritabilities were also consistent with the values estimated by 400 

Sourdioux et al. (2009) and Saintilan et al. (2013) in the Pietrain breed (BF100: 0.38 to 0.48; 401 

LD100: 0.25 to 0.34). Our estimate of heritability for FCR was lower than the heritabilities 402 

presented by Saintilan et al. (2013), Gilbert et al. (2017) and Déru et al. (2020), which varied from 403 

0.30 ±0.0 to 0.47 ±0.08.  404 
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Genetic correlations between robustness and production traits 405 

The growth trait ADG was strongly correlated with LSR. In the present rearing conditions, an 406 

animal's ability to be robust, i.e., to have low LSR value, is strongly linked to its ability to express 407 

optimal growth regardless of the environment. Growth has been a major selection trait in the 408 

Pietrain breed for over 20 years, and lack of growth was a major cause of culling at testing or of 409 

non-selection. Nonetheless, even if the correlation was strong, it was not equal to 1, which implies 410 

that the trait LSR added an additional information regarding the robustness of the animal compared 411 

to ADG. Thus, if selection is made using these traits, they would allow us to improve animal’s 412 

robustness more than if the selection is made only on growth traits. 413 

There were strong and unfavorable relationship between LSR and feed efficiency traits, FCR and 414 

RFI. This could be related to the positive correlation between ADG and FCR, which was affected 415 

by the way these two traits were estimated (Lenoir et al., 2022a). The traits ADG and FCR used in 416 

selection were measured over an identical period for all pigs but were not standardized between 417 

starting and finishing weights. Accordingly, some of the animals tested reached their mature weight 418 

before testing, which led to a drop in feed conversion or residual feed intake even if they had 419 

previously a strong growth. Thus, there were two different types of finisher pigs with low FCR or 420 

RFI: those which had a strong growth but did not approach their mature weight during the testing 421 

period, and those with a low daily feed intake associated with a low, near maturity, growth (Lenoir 422 

et al., 2022a). We performed an additional analysis where we standardized the trait FCR between 40 423 

and 100kg, the genetic correlation with LSR remained unfavorable but less strong, -0.34±0.14. The 424 

standardization of the trait FCR modified the genetic correlation with ADG from moderately 425 

unfavorable, 0.52±0.06, to close to zero or slightly favorable, -0.08±0.09. The correlation between 426 

LSR and FCR or RFI could indicate that the most robust pigs during the testing period were not the 427 

most efficient because they allocate a part of energy to other functions or maintenance. Indeed, a 428 
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selection for low RFI could impact the ability of the animals to modify their allocation of energy to 429 

other functions to cope with environmental challenges (Gilbert et al., 2017). This antagonism 430 

between short-term efficiency and resilience has been put forward by Friggens et al. (2017). In this 431 

situation, it would seem that there is a compromise that does not make it possible to increase 432 

robustness relatively easily without loss of selection response in feed efficiency. In contrast, several 433 

studies have shown through divergent selection experiments on RFI, that animals from Low RFI 434 

line (LRFI) adapted better to environmental challenges or at least are not disadvantaged compared 435 

to animals from High RFI line (HRFI). Chatelet et al. (2018) showed that the health, growth 436 

performance and feed intake of animals from the LRFI line were less impacted than those of 437 

animals born from the HRFI line under poor hygienic conditions. In the same selection experiment, 438 

the risk of being culled between 70 days of age and slaughter was 1.8 times less in the LRFI line 439 

compared to the HRFI line (Gilbert et al., 2017). In another experience of selection Dunkelberger et 440 

al. (2015) suggested that pigs for LRFI were more robust to PRRSV challenges; their growth was 441 

less affected and they was less affected. These results seem to contradict the resource allocation 442 

theory and the genetic correlation estimated in our study. This study was carried out on Pie NN line, 443 

a sire line, and the different selection experiments on RFI were realized with animals from Large-444 

White (or Yorkshire), a dam line. The Pietrain sire line had been created and selected for several 445 

generations on objectives of improving feed efficiency, growth and carcass characteristics, 446 

potentially to the detriment of the other traits, such as robustness. Due to these characteristics and 447 

orientations, it can be assumed that there is a different allocation pattern between these lines.  448 

Genetic correlations between robustness and BF100 were slightly unfavorable. We can suppose that 449 

the capacity to be robust could be associated with more important body reserves allowing the 450 

animal to face perturbations. 451 

Relation between EBV LSR classes and collected phenotypes 452 
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Our study shows that model longitudinal energetic allocation to growth offers the opportunity to 453 

develop a proxy of robustness that is heritable. Further, this proxy has to meet the expectations of 454 

pig farmers, that is to say, it should identify animals that faced to environmental disturbances and 455 

were present for testing in good health and with the least amount of medical injections. The analysis 456 

of the relationship between EBV LSR quartiles and phenotypes routinely collected on farms shows 457 

the most favorable situation for the most robust animals, i.e., those from the quartile with the 458 

weakest EBV LSR (Q1). Including LSR in the breeding goal would be an opportunity to improve 459 

the robustness qualities of Pie NN line for the fattening period, in spite of the low heritability of 460 

LSR. However, these results are evaluated over a short period of animal’s life, it would be 461 

appropriate to investigate the effects of a selection on the LSR trait over the whole lifespan of 462 

related animals (dam, sire, pure or crossbred offspring). In a following step, it could be relevant to 463 

study the link between the LSR trait and the reproductive performances of boars (spermatic 464 

production) or females (fertility, productive longevity, survival). 465 

Environmental conditions 466 

This studied was carried out in a higher biosecurity environment than regular farms, related to the 467 

fact that a breeding company cannot take any risks with a purebred nucleus. The other 468 

environmental conditions (feed characteristics, barn design, density…) were close to those found in 469 

production farms in France, that is, designed to minimize exposure to environmental challenges. 470 

When designing the selection conditions there is a need to balance between conditions that allow 471 

full expression of performance and meet sanitary requirements versus conditions that favor 472 

expression of robustness. Even though these environments are qualified as favorable, the animals 473 

are subjected to stresses which can be chronic (social stress, heat wave). Rear animals under 474 

challenging conditions seems to allow better phenotyping of the robustness of the animals (Gunia et 475 

al., 2018). The difficulty of having conditions to evaluate robustness while evaluating production 476 
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potential could be partly overcome by the use of short-term challenges, such as feeding challenges. 477 

Indeed, offspring of these purebred pigs, selected in one type of environment, are likely to be reared 478 

in harder and more variable environments impacting robustness expression. This relationship 479 

between the robustness expression and diverse rearing conditions cannot be dissociated from 480 

Genotype x Environment (GxE) interaction (Falconer and Mackay, 1996). This interaction that may 481 

cause reranking of sires, has a greater impact on traits based on variances than on traits based on 482 

means (Bedere et al., 2022). The acquisition of data on related animals reared in farms newly 483 

equipped with AFS makes it possible to consider evaluating the effects of the GxE interaction.  484 

In this study, we proposed an approach for characterizing the robustness through the variability in 485 

the allocation. However, when studying the allocation pattern, it is important to also assess the 486 

acquisition trajectory (van Noordwijk and de Jong, 1986; Friggens et al., 2017). In a routine 487 

selection approach, it would be relevant to add to the LSR trait, a trait making it possible to 488 

characterize the robustness on acquisition 489 

Conclusions 490 

The trait LSR could be interpreted as an indicator of the response of the animal to 491 

perturbations/stress, that is to say a robustness proxy. This study shows that LSR has a low 492 

heritability but that it is possible to set up a selection on this trait. We found that this trait is 493 

favourably genetically correlated with a growth trait (ADG) and unfavourably with feed efficiency 494 

traits (FCR and RFI). Estimation of the economic value of LSR trait is a key issue before adding 495 

this trait in breeding goals. Furthermore, improving robustness qualities also meets societal 496 

expectations, the economic value of which is difficult to quantify. 497 

List of abbreviations 498 

αt: daily energetic allocation coefficient to growth 499 
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ADG: average daily growth  500 

AFS: automatic feeding system 501 

AMW: average metabolic weight 502 

BF: backfat thickness 503 

BF100: backfat thickness estimated at 100 kg liveweight 504 

BW: body weight 505 

CNEA : cumulative net energy available for growth 506 

CW: cumulative weight gain 507 

DFI: daily feed intake 508 

DLM: dynamic linear model 509 

EBV: estimated breeding value 510 

EI: net energy intake 511 

FCR: feed conversion ratio 512 

FI: feed intake 513 

IBW: initial body weight 514 

LD: longissimus dorsi thickness 515 

LD100: longissimus dorsi thickness estimated at 100 kg liveweight 516 

LSR: log transformed squared residuals, robustness indicator 517 

MR: net energy maintenance requirement 518 

NEA: net energy available for growth 519 

PDFI: potential average daily feed intake 520 

Pie NN: Piétrain NN Français free from halothane-sensitivity 521 

RFI: residual feed intake 522 

TBW: body weight at individual testing 523 
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 712 

Figure 1.  Conceptual model of resource allocation  in growing pig.  713 

In red : Variables recorded by AFS  714 

 715 

 716 

Figure 2. Example of two dynamic trajectories of the allocation coefficients αt during the whole 717 

fattening period for two animals: smoothed with DLM model (orange line) and its prediction from 718 

RR model (blue dotted line). 719 
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 721 

 722 

Figure 3. Changes of heritability (�²�; blue) and permanent environmental (�²�; yellow) estimates 723 

for energetic allocation coefficient αt over age in days under the random regression model (RR) 724 

using Legendre orthogonal polynomials. Shaded area: 95% confidence interval 725 

  726 
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 727 
Figure 4. Distribution of percentages of pigs that can be selected (Selectable), that didn’t receive 728 

any antibiotic or anti-inflammatory injection (No injection) or that were “Selectable” without 729 

receiving any antibiotic or anti-inflammatory injection during the testing period (Selectable without 730 

injection) depending of their estimated breeding value for robustness indicator (LSR) quartile.  731 

Q1: pigs with lowest EBV LSR values, i.e., higher robustness genetic potential; Q4: pigs with 732 

highest EBV LSR values, i.e., lower robustness genetic potential. Bars with different letters are 733 

significantly different (P < 0.05). 734 
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Tables 736 

Table 1. Descriptive statistics of the variables recorded or estimated on fattening pigs 
737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 
 746 
 747 
 748 

1IBW: initial body weight; TBW: terminal body weight; ADG: average daily gain; FCR: feed conversion; DFI: daily 749 
feed intake; RFI: residual feed intak; BF100: backfat thickness estimated at 100kg liveweight; LD100: longissimus 750 
dorsi thickness estimated at 100 kg liveweight; αt : allocation coefficient to growth; et : residual of RR model; LSR= 751 
log-squared residual, robustness indicator. 752 

Table 2. Estimates of heritability (h²), common litter effect ratio (c²), permanent environmental 753 

effect ratio (p²) and phenotypic variance (Vp) for the traits recorded (± standard error) 754 
 755 
 756 
 757 
 758 
 759 
 760 
 761 
 762 
 763 

1BF100= backfat thickness estimated at 100kg liveweight; LD100= longissimus dorsi thickness estimated at 100 kg 764 
liveweight; ADG= average daily gain; FCR= feed conversion ratio; RFI: residual feed intake; LSR= log-squared 765 
residual, robustness indicator 766 

Table 3. Estimates of genetic correlations (r²a ± standard error) between robustness trait (LSR) and 767 

production traits 768 
 769 
 770 
 771 
 772 
 773 
 774 
 775 
 776 

Trait (unit)1 
Number of animals / 
records if repeated 

measures 
Mean SD 

IBW (kg) 25745 33.8 7.8 

TBW (kg) 25365 103.7 11.1 

ADG (kg/d) 25322 0.977 0.109 

FCR (kg/kg) 8675 2.25 0.21 

DFI (kg/d) 8675 2.19 0.29 

RFI (kg/d) 8675 -0.005 0.169 

BF100 (mm) 25323 7.66 1.19 

LD100 (mm) 25320 68.26 6.34 

αt (kg/MJ) 5848 / 405104 0.099 0.027 

�� (kg/MJ) 5848 / 405104 0 0.0096 

LSR  5848 / 405104 -12.62 2.50 

Trait1 h² c² p² Vp 
BF100 0.45 ±0.02 0.04 ±0.01 /   1.02     ±0.02 
LD100 0.29 ±0.02 0.04 ±0.01 / 15.78     ±0.20 
ADG 0.37 ±0.02 0.06 ±0.01 /   0.01     ±0.0001 
FCR 0.27 ±0.03 0.04 ±0.01 /   0.0222 ±0.0004 
RFI 0.29 ±0.03 0.04 ±0.01 /   0.034   ±0.0006 
LSR 0.05 ±0.01 0.004 ±0.004 0.22 ±0.01   5.56     ±0.033 

Trait1 LD100 ADG FCR RFI LSR 
BF100 -0.13 ±0.05  0.43 ±0.04  0.50 ±0.05  0.32 ±0.06 -0.19 ±0.07 
LD100  -0.24 ±0.05 -0.09 ±0.05 -0.08 ±0.07  0.02 ±0.07  
ADG    0.52 ±0.06  0.61 ±0.05 -0.71 ±0.06 
FCR     0.90 ±0.02 -0.76 ±0.06 
RFI     -0.83 ±0.06 
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1BF100= backfat thickness estimated at 100kg liveweight; LD100= longissimus dorsi thickness estimated at 100 kg 777 
liveweight; ADG= average daily gain; FCR= feed conversion ratio; LSR= log-squared residual, robustness indicator 778 

 779 

Additional information 780 

Appendix 1. List of individuals observations performed during the individual test from Lenoir et al. 781 

(2022a). 782 

 783 
 

Observation 

Observations taken into account to 
define the robustness traits 

Abcess  
Cannibalism 
Capelet 
Weak development / Low body condition 
Callus 
Shortness of breath 
Necrotic ear 
Out of test (testing body weight < 70kg) 
Shaker 

Observations not taken into account 
to define the robustness traits 

Lack of leg soundness 
Low and short 
Conformation / Body development 
Culard 
Important conformation 
Fat animal 
Asymmetric hooves 
Teats default 
Incorrect conformation 
Hernia 
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