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The rumen ecosystem harbours a galaxy of microbes working in synthrophy to carry out a metabolic cascade of hydrolytic and fermentative reactions. This fermentation process allows ruminants to harvest nutrients from a wide range of feedstuff otherwise inaccessible to the host. The interconnection between the ruminant and its rumen microbiota shapes key animal phenotypes such as feed efficiency and methane emissions and suggests the potential of reducing methane emissions and enhancing feed conversion into animal products by manipulating the rumen microbiota. Whilst significant technological progress in omics techniques has increased our knowledge of the rumen microbiota and its genome (microbiome), translating omics knowledge into effective microbial manipulation strategies remains a great challenge. This challenge can be addressed by modelling approaches integrating causality principles and thus going beyond current correlation basis approaches applied to analyse rumen microbial genomic data. However, existing rumen models are not yet adapted to capitalise on microbial genomic information. This gap between the rumen microbiota available omics data and the way microbial metabolism is represented in the existing rumen models needs to be filled to enhance rumen understanding and produce better predictive models with capabilities for guiding nutritional strategies. To fill this gap, integration of computational biology tools and mathematical modelling frameworks is needed to translate the information of the metabolic potential of the rumen microbes (inferred from their genomes) into a mathematical object. In this review, we discuss computational biology tools to analyse the rumen microbiome and two modelling approaches for the integration of microbial genomic information into dynamic models. The first modelling approach explores the theory of state observers to integrate microbial time series data into rumen fermentation models. The second approach is based on the genome-scale network reconstructions of rumen microbes. For a given microorganism, the network reconstruction produces a stoichiometry matrix of the metabolism. This matrix is the core of the so-called genome-scale metabolic models which can be exploited by a plethora of methods comprised within the constraint-based reconstruction and analysis (COBRA) approaches. We will discuss how these methods can be used to produce the next generation models of the rumen microbiome.

Introduction

Forage-fed ruminants have the highest efficiency for net production of human-edible protein among livestock. This contribution is the result of the capability of ruminants to transform fibrous feedstuffs. Fibre degradation occurs predominantly in the rumen thanks to the action of a complex microbial community (microbiota) constituted by hundreds of species that include bacteria, archaea, protozoa and fungi. The rumen microbes encode a repertoire of enzymes for degrading plant carbohydrates allowing the animal host to harvest nutrients that are otherwise inaccessible. Due to its metabolic capabilities, the rumen microbiota can be viewed as an organ within the host. Ruminants and their microbiota have co-evolved in an intimate and symbiotic relationship, which makes us consider them as holobionts. The close connection between the ruminant and its rumen microbiota shapes key animal phenotypes such as feed efficiency and methane emissions [START_REF] Wallace | A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions[END_REF] and suggests the potential of reducing methane emissions and enhancing feed conversion into animal products [START_REF] Huws | Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future[END_REF] manipulating the rumen microbiota. However, only few examples of direct microbial manipulation have shown beneficial outcomes [START_REF] Huws | Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future[END_REF]. The design of successful manipulation strategies for sustainable ruminant production requires a better understanding of the dynamic interactions between the diet, the animal and its rumen microbiota. Disentangling this triad interplay requires to elucidate firstly central dynamic features of the rumen microbiota ecosystem such as interspecies interactions and resilience [START_REF] Weimer | Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations[END_REF]. Whilst significant technological progress in omics techniques has increased our knowledge of the rumen microbiota within international projects such as the Global Rumen Census [START_REF] Henderson | Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range[END_REF] and Hungate 1000 [START_REF] Seshadri | Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection[END_REF], a great challenge needs to be overcome for translating omics knowledge into effective microbial manipulation strategies. Most of the findings derived from genomic studies are mainly descriptive and follow a correlation basis. To enhance our system-level understanding of the rumen ecosystem and translate genomic data into predictive tools for sustainable ruminant production, modelling approaches integrating causality principles that shape rumen metabolism are needed. Rumen modelling started in the seventies with empirical and mechanistic developments which can be either static or dynamic [START_REF] Tedeschi | The evolution and evaluation of dairy cattle models for predicting milk production: an agricultural model intercomparison and improvement project (AgMIP) for livestock[END_REF]. In the category of dynamic models, three modelling structures namely Molly, Dijkstra models and Karoline have been incrementally improved over the years [START_REF] Gregorini | Development of an improved representation of rumen digesta outflow in a mechanistic and dynamic model of a dairy cow[END_REF][START_REF] Huhtanen | Nordic dairy cow model Karoline in predicting methane emissions: 1. model description and sensitivity analysis[END_REF][START_REF] Van Lingen | Bayesian mechanistic modeling of thermodynamically controlled volatile fatty acid, hydrogen and methane production in the bovine rumen[END_REF]. Recent modelling efforts have been done to include the dynamics of methanogens [START_REF] Muñoz-Tamayo | Mechanistic modelling of in vitro fermentation and methane production by rumen microbiota[END_REF][START_REF] Van Lingen | Bayesian mechanistic modeling of thermodynamically controlled volatile fatty acid, hydrogen and methane production in the bovine rumen[END_REF], thermodynamic control and the impact of methane inhibitors on the rumen fermentation pattern and methane production [START_REF] Muñoz-Tamayo | Modelling the impact of the macroalgae Asparagopsis taxiformis on rumen microbial fermentation and methane production[END_REF][START_REF] Van Lingen | Inhibited Methanogenesis in the Rumen of Cattle: Microbial Metabolism in Response to Supplemental 3-Nitrooxypropanol and Nitrate[END_REF]. Modelling works have also been developed to study ecological interactions within the methanogen rumen community [START_REF] Lynch | Modelling thermodynamic feedback on the metabolism of hydrogenotrophic methanogens[END_REF][START_REF] Muñoz-Tamayo | Hydrogenotrophic methanogens of the mammalian gut: Functionally similar, thermodynamically different-A modelling approach[END_REF]. However, despite the model improvements before mentioned, existing rumen fermentation models do not integrate microbial genomic information of the rumen microbiome. This gap between the rumen microbiota available omics data and the way microbial metabolism is represented in the existing rumen models needs to be filled to enhance rumen understanding [START_REF] Bannink | The contribution of mathematical modeling to understanding dynamic aspects of rumen metabolism[END_REF]. Filling this gap can lead to novel mathematical models with better predictive power and capabilities for guiding nutritional strategies. This can be done by incorporating the framework of genome-scale metabolic models (GEMs) into rumen modelling efforts [START_REF] Huws | Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future[END_REF]. A GEM is a detailed model of microbial metabolism that links the metabolites and biochemical reactions that an organism is able to perform as a result of its genetic potential. While the GEM approach has been applied to study the human gut microbiota [START_REF] Kumar | Modelling approaches for studying the microbiome[END_REF][START_REF] Magnúsdóttir | Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota[END_REF], genome-based modelling of the rumen microbiota is at an infant stage.

It is yet unclear how these GEMs can be integrated into whole rumen models adapted to evaluate a wide range of nutritional conditions [START_REF] Bannink | A conceptual approach to the mathematical modelling of microbial functionality in the rumen[END_REF]. This review aims to foster the incorporation of genome-scale based approaches into rumen modelling efforts.

Brief overview of omic-based techniques and computational biology tools to study the rumen microbiome

The first application of omics to the rumen microbiota and still the most used, is metataxonomic analysis. It is based on next-generation sequencing (NGS) techniques and on single amplicon sequencing of a variable region of 16S rRNA gene, 18S rRNA gene or ITS for bacteria, protozoa and fungi, respectively. This time and cost-effective taxonomic profiling provides an accurate description of the microbial composition of the rumen microbiota and of its modulation by extrinsic or intrinsic factors such as the diet or the age of the animal for example, and has been widely used to correlate taxonomic profile and animal traits such as methane emission [START_REF] Wallace | A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions[END_REF]. However, accuracy of the results relies on efficiency of DNA extraction method, hypervariable region chosen for amplification, database used for sequence affiliation and pipeline applied for alpha and betadiversity analysis [START_REF] Almeida | Benchmarking taxonomic assignments based on 16S rRNA gene profiling of the microbiota from commonly sampled environments[END_REF]. Another limitation is the difficulty to achieve species-level accuracy as well as to have access to the rare biosphere. In spite of these biases, these approaches have been widely applied because they are easy to use and at low cost. They have led to the description of a relatively robust core rumen bacterial and archaeal microbiome and of its evolution with many different biotic and abiotic factors [START_REF] Henderson | Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range[END_REF]. For metataxonomic studies, microbial genes can be analysed using a variety of pipelines, with QIIME2 [START_REF] Caporaso | QIIME allows analysis of highthroughput community sequencing data[END_REF] being one of the most complete and flexible. In general, metataxonomics requires filtering the sequences for quality, clustering, classification and quantification. The end result of the process is an Operational Taxonomic Unit (OTU) table that expresses the abundance of microorganisms in the samples. While the approach is limited to abundance, it can be supplemented with tools such as CowPi [START_REF] Wilkinson | CowPI: A rumen microbiome focussed version of the PICRUSt functional inference software[END_REF] to extrapolate the functional capabilities of the microbiota examined. CowPi uses KEGG [START_REF] Kanehisa | KEGG: Kyoto Encyclopedia of Genes and Genomes[END_REF], mostly in the form of pathway data, but it can be customised to allow the use of modules, which offer a finer details. Metataxonomics is a reliable and well standardised approach that results in accurate and inexpensive taxonomic assignments, but its limit lies in the high-level functional prediction that can be extrapolated. Metagenomic analysis or shotgun sequencing, which consists of determining the whole rumen genome sequence, provides information about the microbial population and its relative (putative) function. The first rumen metagenomic study was published in 2011 [START_REF] Hess | Metagenomic Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen[END_REF] and since then the number of studies has increased to dozens to analyse, for example, polysaccharide degradation and impact of diet [START_REF] Li | A catalog of microbial genes from the bovine rumen unveils a specialized and diverse biomass-degrading environment[END_REF]. Metagenomics approaches differ in the level of computational complexity involved, but can be roughly divided into read and assembly-based analysis. Approaches based on reads can be used for taxonomic assignment using Kraken2 [START_REF] Wood | Improved metagenomic analysis with Kraken 2[END_REF] among others. Assembly-based approaches use assemblers such as MEGAHIT [START_REF] Li | MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices[END_REF] to reconstruct contigous fragments of the genomes from sequencing reads. The resulting assembly can then be further refined in a variety of ways, and one such approach is binning the assembled contigs with Metabat 2 [START_REF] Kang | MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies[END_REF], among others, into MAGs. These MAGs can then be taxonomically assigned with PhyloPhlAn [START_REF] Asnicar | Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0[END_REF]. While genome binning may offer extraordinary insights into the rumen microbiota, quantity and quality of sequenced data needs to be taken into consideration, since each step will involve discarding data that cannot be reliably used with this approach. However, with more MAGs collections publicly available [START_REF] Xie | An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants[END_REF], it may be possible to use these as reference, along with available cultured genomes. Functional annotation of MAGs and assembled sequences uses similarity search tools [START_REF] Altschul | BLAST Algorithm[END_REF][START_REF] Buchfink | Sensitive protein alignments at tree-of-life scale using DIAMOND[END_REF] against a variety of databases (Bateman et al., 2021;[START_REF] Huerta-Cepas | eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses[END_REF] of known function proteins. In general, gene calling is first performed to extrapolate Open Reading Frames (ORFs) from sequences using Prodigal [START_REF] Hyatt | Prodigal: Prokaryotic gene recognition and translation initiation site identification[END_REF] and passing the resulting ORFs to a variety of tools such as eggNOGmapper [START_REF] Cantalapiedra | eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale[END_REF] that will provide a function assignment and a variety of links to specialised databases such as CAZy [START_REF] Drula | The carbohydrate-active enzyme database: functions and literature[END_REF]. A certain level of expertise and high-cost machinery are necessary to process the huge amount of data generated by these approaches, but up to now, nearly 5000 putative bovine MAGs, including previously unknown rumen bacterial species, have been assembled [START_REF] Stewart | Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery[END_REF]. Metatranscriptomics allows to sequence the rumen transcriptome using NGS (RNA-Seq) and to obtain the gene expression profile getting access to functional activity. The main limitations are extraction of sufficient high-quality mRNA and removal of the rRNA, which represents the major part of the extracted RNA. Another difficulty for rumen studies is to obtain, on a same sample, RNA from prokaryotic and eukaryotic origins. As for metagenomics, the obtained reads must be aligned to reference databases. A limited number of rumen metatranscriptomic studies have been published until now. They have targeted, for example, methane emission [START_REF] Kamke | Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation[END_REF] and fibre-degrading function [START_REF] Comtet-Marre | Metatranscriptomics Reveals the Active Bacterial and Eukaryotic Fibrolytic Communities in the Rumen of Dairy Cow Feda Mixed Diet[END_REF]. These studies identified the most expressed glycosyl-hydrolase genes under specific diet, which varied according to the studies, and enlightened the role of protozoa in fibre degradation [START_REF] Comtet-Marre | Metatranscriptomics Reveals the Active Bacterial and Eukaryotic Fibrolytic Communities in the Rumen of Dairy Cow Feda Mixed Diet[END_REF][START_REF] Williams | Rumen Protozoa Play a Significant Role in Fungal Predation and Plant Carbohydrate Breakdown[END_REF]. However, the expression of a gene does not reflect the synthesis of the corresponding protein, and metaproteomic analysis is required to overcome this limitation. Metaproteomics and metabolomics are the most informative approaches to access the rumen microbiome activity and function. These analytical techniques are based on mass spectrometry to provide differential analysis of protein expression (metaproteomics) and identification and quantification of small molecules (sugars, amino acids, SCFA, etc.) present in the rumen fluid (metabolomics). Metabolomics analysis can also be performed using NMR, or combining both MS and NMR [START_REF] Zhang | Advancing functional and translational microbiome research using meta-omics approaches[END_REF]. For both metaproteomics and metabolomics, the results rely on the existence of a reference database, and for metaproteomics, another difficulty resides in efficient protein extraction from the rumen microbiota [START_REF] Andersen | Rumen metaproteomics: Closer to linking rumen microbial function to animal productivity traits[END_REF]. The few applications of metaproteomics to rumen microbiota (reviewed in [START_REF] Andersen | Rumen metaproteomics: Closer to linking rumen microbial function to animal productivity traits[END_REF] have detected important rumen functions and enlightened specific cross-feedings [START_REF] Solden | Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem[END_REF] but did not give a complete view of the rumen metabolic networks yet.

Finally, the multi-omics approach combines several (or all) of these methodologies. It is still a challenge, due to technical issues about the analysis methods which need a lot of computing space, post-analytical processing and integration of data, but also to the sample preparation for the different analyses. Nevertheless, several studies have used a multi-omics approach, combining metagenomics, metatranscriptomics and metabolomics, to study in vivo fibrolytic bacteria competition (Yeoman et al., 2021), bacterial species and metabolic markers of feed efficiency [START_REF] Xue | Integrated meta-omics reveals new ruminal microbial features associated with feed efficiency in dairy cattle[END_REF] and microbiome and activities of low methane emitters [START_REF] Kamke | Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation[END_REF]. Due to the cost of such multiple meta-omics, these studies used a low number of animals, and large sample size analyses in the future will be necessary to increase our comprehension of the rumen functioning and allow identification of new strategies to improve rumen efficiency while lowering the environmental impact of ruminant production. The application of these meta-omics approaches to many rumen samples as well as longitudinal studies will allow to identify microbial species, metabolic pathways and metabolites to build wide metabolic networks and connect them with phenotypic traits in ruminant production (Table 1). 

Modelling approaches for integrating microbial genomic knowledge

Existing dynamic models of rumen fermentation are kinetic models where microbial metabolism is represented in a simplified aggregated pathway consisting of few macroscopic reactions defined either empirically or from dedicated literature. The dynamics of metabolism of a single rumen microbe or of the full microbial ecosystem can be described by the following generic differential equation resulting from applying mass balances 𝑑𝐱 𝑑𝑡 = 𝐒 𝐫(𝐱, 𝐩) + 𝐠(𝐱, 𝐪)

(1) Where 𝐱 is the vector containing the concentrations of metabolites, which can be either intracellular (𝐱 𝑖 ) or extracellular (𝐱 𝑒 ). The vector 𝐫 represents the reaction rates, which are function of the concentrations 𝒙 and the parameter vector 𝐩. These reactions are catalysed by a proxy of microbial biomass activity. Phenomena related to mass transport (input and output flows) are represented by the vector 𝐠, which is function of 𝐱 and the parameter vector 𝐪. The matrix 𝐒 is termed as the stoichiometric matrix. To simulate the model described by equation ( 1), the kinetic rates 𝐫(𝒙, 𝒑) need to be defined. In existing rumen models, 𝐫 is a vector with few macroscopic reactions representing an aggregated pathway of the rumen microbiota. Here, the rumen microbiota is described by few major functional groups (e.g., sugars utilizers, amino acids utilizers and hydrogen utilizers [START_REF] Muñoz-Tamayo | Mechanistic modelling of in vitro fermentation and methane production by rumen microbiota[END_REF]). As previously mentioned, existing rumen models do not integrate microbial genomic information. The integration of such an information implies to translate the knowledge of the metabolic potential of the rumen microbes (inferred from their genomes) into a mathematical object. In the following, we will discuss two modelling approaches that allow such an integration. The first approach explores the theory of state observers to integrate microbial time series into rumen fermentation models. The second approach is based on the genome-scale network reconstructions of rumen microbes. It should be noted that these two modelling approaches follow the same generic equation (1).

Microbial time series and state observers

Microbial communities change over time in response to environmental changes. The analysis of microbial time series is an useful tool for monitoring and characterizing the evolution of microbial community and the interactions between its members. The analysis of microbial time series can also provide insight on key dynamic properties of the ecosystem such as stability and resilience to perturbations. Analysis of rumen microbial time series have been applied to characterize rumen microbial colonization patterns both in vivo [START_REF] Huws | Microbiomes attached to fresh perennial ryegrass are temporally resilient and adapt to changing ecological niches[END_REF][START_REF] Piao | Temporal dynamics of fibrolytic and rnethanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling[END_REF] and in vitro [START_REF] Belanche | A Systems Biology Approach Reveals Differences in the Dynamics of Colonization and Degradation of Grass vs. Hay by Rumen Microbes with Minor Effects of Vitamin E Supplementation[END_REF], and the dynamic response of the methanogenic community to the supplementation of the methane inhibitor 3-nitrooxypropanol [START_REF] Pitta | Temporal changes in total and metabolically active ruminal methanogens in dairy cows supplemented with 3-nitrooxypropanol Temporal changes in total and metabolically active ruminal methanogens in dairy cows supplemented with 3-nitrooxypropanol[END_REF]. When sufficient time points are measured, a variety of methods are available to analyse microbial times [START_REF] Faust | Metagenomics meets time series analysis: unraveling microbial community dynamics[END_REF]. These methods include network inference reconstructions and community dynamic models, being the generalized Lotka-Volterra (gLV) model one of the most widely approaches used to model microbial communities. [START_REF] Gonze | Microbial communities as dynamical systems[END_REF] provides a detailed review on gLV approach, its applications and limitations. One of the limitations of the gLV approach is that they are not well-suited to analyse high-dimensional microbiome time series data. Another limitation is that the gLV approach does not integrate information on concentration of fermentation metabolites. An alternative to exploit microbial time series within a mechanistic modelling framework like the one represented by equation ( 1) is the use of state observers (also called software sensors). An observer is an algorithm that uses a mathematical model and measured variables to estimate unmeasured variables of a given system. Observers have been widely applied to monitor and control biological processes. One of these applications includes the estimation of the evolution of ammonia oxidizer bacteria and nitrite oxidizer bacteria in a nitrifying chemostat [START_REF] Ugalde-Salas | Asymptotic observers and integer programming for functional classification of a microbial community in a chemostat[END_REF]. To illustrate the concept of state observers, let us consider the following set of equations representing the concentration dynamics of a microbe (𝐵) and a product (𝑃) in an in vitro continuous reactor:

𝑑𝐵 𝑑𝑡 = 𝑟 -𝐷 • 𝐵 (2) 𝑑𝑃 𝑑𝑡 = 𝑘 • 𝑟 -𝐷 • 𝑃 (3) 
The growth of 𝐵 follows the reaction rate 𝑟. The production of 𝑃 is given by 𝑟 and the stoichiometry coefficient 𝑘. Under the hypothesis that 𝐵 can be measured in time and 𝑃 is not measured, the goal of the observer is to estimate 𝑃 from 𝐵. We will assume here that the reaction rate 𝑟 is unknown while the coefficient 𝑘 is known. We can then construct a new variable 𝑧 defined by 𝑧 = 𝑘 • 𝐵 -𝑃 (4) By deriving with respect to time, we obtain

𝑑𝑧 𝑑𝑡 = 𝑘 • 𝑟 -𝑘 • 𝐷 • 𝐵 -𝑘 • 𝑟 + 𝐷 • 𝑃 = -𝐷 • 𝑧 (5) 
If dynamic data of 𝐵 are available and an estimate of 𝑧̂ is obtained from equation ( 5), we can have the estimate 𝑃 ̂ as

𝑃 ̂= 𝑘 • 𝐵 -𝑧̂ (6 
) This observer is called asymptotic observer. The great advantage of this type of observer is that it does not require knowledge on 𝑟. Indeed, defining the mathematical function of 𝑟 is one of the most challenging parts in the model construction of microbiological systems. For deeper discussion on observers, the interested reader is referred to dedicated reviews e.g. [START_REF] Dochain | State and parameter estimation in chemical and biochemical processes: a tutorial[END_REF]. The previously developed observer can be extended to include 𝑛 microbial species, that is the dynamics of the product will depend on the action of different microbes following

𝑑𝑃 𝑑𝑡 = ∑ 𝑘 𝑖 • 𝑟 𝑖 𝑛 𝑖=1 -𝐷 • 𝑃 (7)
with 𝑘 𝑖 , 𝑟 𝑖 the stoichiometry coefficients and the reaction rates for the microbe 𝑖. In a theoretical study, we applied this approach using the mathematical model of rumen in vitro fermentation developed by [START_REF] Muñoz-Tamayo | Mechanistic modelling of in vitro fermentation and methane production by rumen microbiota[END_REF] extended to account for continuous mode operation.

The model considers three functional microbial groups namely sugars utilizers, amino acids utilizers and hydrogen utilizers. We assumed a hypothetical simulation scenario where sugar utilizers and amino acids were constituted by 5 microbial species with different kinetic rates (Davoudkhani et al., 2022a). Figure 1 shows the dynamics of the 5 microbial species for each functional group and the simulation results of the observer for acetate, butyrate and propionate. The initial condition was set far from the "real" condition to illustrate that in time the estimation given by the observer converges to the real value (Davoudkhani et al., 2022a). The approach assumes that functional assignment of the microbes is possible. However, this functional assignment is a challenging issue that can be addressed as an optimization problem (Ugalde-Salas et al., 2019). Recently, we used the asymptotic observer approach to estimate the dynamics of the fermentation profile of a rusitec experiment carried out by [START_REF] Belanche | A Systems Biology Approach Reveals Differences in the Dynamics of Colonization and Degradation of Grass vs. Hay by Rumen Microbes with Minor Effects of Vitamin E Supplementation[END_REF]. We used the capabilities of CowPI [START_REF] Wilkinson | CowPI: A rumen microbiome focussed version of the PICRUSt functional inference software[END_REF] to infer the microbial function of microbial time series based on 16S data. Our results indicated the promising application of observers and microbial time series data to investigate alternatives to connect omic data and mathematical modelling for studying the rumen microbial ecosystem (Davoudkhani et al., 2022b).

Genome-scale metabolic modelling

The core of a genome-scale metabolic model is the stoichiometry matrix 𝐒 of the metabolism. For a genome sequenced microorganism, the stoichiometry matrix is built on the basis of genome-scale network reconstructions following a detailed protocol [START_REF] Thiele | A protocol for generating a high-quality genome-scale metabolic reconstruction[END_REF] that can be briefly summarized by the next five steps: i. Functional genome annotation. This step aims at associating genes, proteins, and reactions to a draft of metabolic reactions. ii. Orthology: reconstruction based on the comparison with GEMs of other microorganisms. iii. Gap-filling: process of completion of pathways. iv.

Manual curation: the network is curated on the basis of expert knowledge, experimental data and dedicated literature. v.

Translation of the reconstruction to a computational model. The final result is a detailed metabolic reaction network that can be represented mathematically in a matrix form that captures the stoichiometry of the metabolism. Several databases and toolboxes are available to facilitate the reconstruction of GEMs including KEGG [START_REF] Kanehisa | KEGG: Kyoto Encyclopedia of Genes and Genomes[END_REF], Metacyc [START_REF] Caspi | The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases[END_REF] , BiGG [START_REF] King | BiGG Models: A platform for integrating, standardizing and sharing genome-scale models[END_REF], Pathway Tools [START_REF] Karp | The pathway tools software[END_REF], CarveMe [START_REF] Machado | Fast automated reconstruction of genomescale metabolic models for microbial species and communities[END_REF], KBase [START_REF] Arkin | KBase: The United States department of energy systems biology knowledgebase[END_REF] and AuReMe [START_REF] Aite | Traceability, reproducibility and wiki-exploration for"à-la-carte" reconstructions of genome-scale metabolic models[END_REF]. The interested reader is referred to the benchmark study by [START_REF] Mendoza | A systematic assessment of current genomescale metabolic reconstruction tools[END_REF] which assessed several features of seven genome-scale reconstruction tools. The stoichiometry matrix contains a high number of rows (metabolites) and reactions (columns). From the reconstruction of draft GEMs, an average GEM of a rumen microbe can consist of 1155 reactions and 1422 metabolites [START_REF] Belcour | Metage2metabo, microbiota-scale metabolic complementarity for the identification of key species[END_REF]. While kinetic models derive the stoichiometric matrix by prior knowledge and dedicated literature, in the GEM approach the stoichiometric matrix is derived directly from the genome of the microbe of interest. The stoichiometry matrix can be analysed by a plethora of methods comprised within the constraint-based reconstruction and analysis (COBRA) approaches (see, e.g., the review by [START_REF] Lewis | Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods[END_REF]. The constraint-based term results from the analysis that the capabilities of the microbes are bounded by constraints that include thermodynamics and enzyme capacities. The stoichiometric matrix 𝐒 contains the stoichiometric matrices for intracellular (𝐒 𝑖 ) and extracellular (𝐒 𝑒 ) metabolites. COBRA approaches overcome the need of defining kinetic rates and its parameters by assuming that internal metabolism operates at steady-state condition. Consequently, genomic-scale modelling focuses mainly on the analysis of the intracellular matrix 𝐒 𝑖 . For simplicity, let's omit the transport phenomena in equation ( 1) and focus only on the metabolism phenomena, represented by the term 𝐒 𝐫(𝒙, 𝒑). Applying the steady-state condition for the intracellular metabolites results in 𝑑𝒙 𝒊 𝑑𝑡 = 𝐒 𝒊 𝐫 = 0 (8) Since the number of reactions is typically higher than the number of metabolites, equation ( 8) is often underdetermined. All admissible solutions of equation ( 8) constitute the solution space, that mathematically corresponds to the null space (kernel) of the stoichiometric matrix 𝐒 𝒊 . COBRA approaches are centred on the analysis of 𝐒 𝒊 and aim to predict the potential phenotypes of an organism on the basis of its genome. Flux balance analysis (FBA) [START_REF] Varma | Metabolic Capabilities of Escherichia-Coli .1. Synthesis of Biosynthetic Precursors and Cofactors[END_REF] and elementary flux mode analysis (EFM) [START_REF] Schuster | On elementary flux modes in biochemical reaction systems at steady state[END_REF] are the basic frameworks of COBRA. FBA and EFM have served as scaffolds for the development of a plethora of approaches that counts with more than 100 methods [START_REF] Lewis | Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods[END_REF]. The principles of FBA and EFM are briefly described below.

Flux balance analysis

An infinite number of solutions exist that fulfil the steady-state equation (8). To reduce the solution space, FBA looks at finding the flux vector 𝐫 by optimizing a regulatory optimal condition. The most used optimization criterion applied in FBA is the maximization of the biomass growth rate. Other optimal criteria are for example the maximization of production of ATP and the production of a desired by-product. FBA solves the system of linear equations ( 8) under defined constraints and an objective function by using linear programming. FBA is included in the collection of methods of the COBRA toolboxes [START_REF] Heirendt | Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0[END_REF] for the analysis of GEMs. Within the FBA framework, it is possible to predict the maximal growth rate of an organism and the production rates of metabolites. However, FBA does not allow the prediction of metabolite concentrations. Other applications of interest of FBA includes robustness analysis that allows to assess the impact of varying a particular reaction of the network on the growth rate. For small networks, the optimal solution is often unique, while for large networks, multiple optimal solutions are frequently found. Multiple solutions are the result of the redundancy capability of the microbe, a property that is linked to metabolic robustness. Once the maximal growth rate is obtained, it is possible to perform multiple optimizations to calculate the maximum and minimum flux values of each reaction in the network to characterize the range of metabolic functions. This approach is called flux variability analysis (FVA) [START_REF] Lewis | Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods[END_REF]. As previously mentioned, FBA is based on the steady-state assumption. However, a further extension, named as dynamic FBA (DFBA) [START_REF] Mahadevan | Dynamic flux balance analysis of diauxic growth in Escherichia coli[END_REF] has been developed to account for the dynamics of microbial metabolism. DFBA allows to predict the dynamics of metabolites. The DFBA approach is often applied on a reduced metabolic network. FBA applications require highquality GEMs that result from an exhaustive reconstruction protocol based on detailed biochemical data, high level of curation and knowledge on gene functions. Nevertheless, a good portion of any genome contains genes whose functions are unknown [START_REF] Zengler | A road map for the development of community systems (CoSy) biology[END_REF]. Accordingly, high quality level reconstructions might not be feasibly reached yet for the complex rumen microbial community without a massive effort. Whereas high quality level reconstructions of rumen microbes are not available, GEMs applications for the rumen ecosystem can focus on metabolic core functionalities.

Elementary flux modes analysis

In contrast to FBA, EFM analysis is a non-optimization technique. EFM analysis is intended to study the full capabilities of a given metabolic network by finding the simplest biochemical flux vectors, in terms of which all other flux vectors can be expressed [START_REF] Schuster | On elementary flux modes in biochemical reaction systems at steady state[END_REF]. This means that the solution space can be spanned by a set of basis vectors. To find those vectors, [START_REF] Schuster | On elementary flux modes in biochemical reaction systems at steady state[END_REF] made use of concepts and tools from convex analysis. The vector that fulfils the condition in equation ( 8) -without any additional optimality constraint -are non-negative vectors contained in the null-space of the stoichiometric matrix 𝐒 𝒊 . The space of admissible fluxes is a convex polyhedral cone. The generating vectors of the cone are called elementary flux modes. Any steadystate flux distribution can be expressed as a non-negative linear combination of the EFMs. Biochemically, the EFMs represent the minimal set of enzymes of the metabolic network that can operate at steady state. Dedicated software is available for EFM computation [START_REF] Klamt | Structural and functional analysis of cellular networks with CellNetAnalyzer[END_REF]. Applications of EFMs include the assessment of yields for all independent pathways, analysis of functional redundancy of a network, and robustness of an organism subject to gene deletions and additions approaches [START_REF] Lewis | Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods[END_REF]. The EFMs can be exploited to derive macroscopic kinetic models. Indeed, each EFM can be translated into a macroscopic reaction and thus be used to build a dynamic model. This type of approach has been used to model the metabolism of Chinese hamster ovary cells [START_REF] Provost | Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells[END_REF]. The key point is to select a minimal set of EFMs that span the metabolic capabilities of the organisms. This task can be done by using yield analysis [START_REF] Song | Reduction of a set of elementary modes using yield analysis[END_REF]. The calculation of EFMs can become computationally expensive for large networks. Therefore, GEM reduction methods are required to provide networks with core functionalities. The Supplementary Material S1 discusses some GEM reduction methods. Figure 2 sum up the FBA and EFM approaches applied on the analysis of the solution space of equation ( 8). Fig. 2. COBRA approaches are based on the analysis of the allowable states of a metabolic network. These admissible states are contained in a polyhedral cone (A). The generating vectors of the cone are the elementary flux modes (EFMs). Flux balance analysis aims at finding an optimal solution in the solution space (blue circle in A). The EFMs can be projected in a yield space (B). The EFMs at the vertices of the polygon are a minimal set spanning the metabolic capabilities of the microorganism.

The capability of the EFM-based approach of translating microbial genomic knowledge into macroscopic reactions makes the EFM framework a suited approach for modelling the rumen ecosystem. Indeed, the resulting macroscopic reactions derived from EFM analysis can be integrated into dynamic models accounting for by the fluctuating rumen environment and the interaction between the rumen microbiome, the host and the diet. Figure 3 summarizes the workflow of constructing a dynamic genome-based model. To provide parsimonious and reliable models, the property of parameter identifiability should be considered in the model construction to avoid over-parameterised models [START_REF] Muñoz-Tamayo | Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling[END_REF]. 

Microbial community modelling

The previously sections addressed the GEM approach applied to single microbes. The construction of GEMs of key rumen species is a key step towards the generation of a rumen microbiome model. However, to model the rumen microbiome it is needed to address how the GEM approach should be extended to the whole microbial ecosystem. GEMs of microbial communities is still at an early stage. In 2012, [START_REF] Zengler | A road map for the development of community systems (CoSy) biology[END_REF] argued that the status of knowledge on the function of microbial communities was comparable to the knowledge of the systems biology of single species ten years ago. To model microbial communities, the main challenge to be addressed relates to the question of how the species, their metabolic networks, and interspecies interactions should be represented. Tackling this challenge becomes critical when analysing high diverse ecosystems such as the rumen. The critical issue of representing the species (and their metabolic capabilities) into GEMs has been addressed by two frameworks, namely the compartmental [START_REF] Stolyar | Metabolic modeling of a mutualistic microbial community[END_REF] and the supra-organismal approaches [START_REF] Klitgord | Ecosystems biology of microbial metabolism[END_REF]. The two approaches are depicted in Fig. 4. In the compartmental approach, the metabolic network of each microbial species is treated as a separate compartment, whereas the supra-organismal approach assumes that the microbial community behaves as a single microorganism provided with all the metabolic capabilities of the individual species of the consortia. The supra-organism approach is strongly linked with the principles of whole genome sequencing. Fig. 4. Approaches for modelling microbial communities. A) Compartmental approach; B) Supraorganism approach.

For highly diverse ecosystems, the compartmental approach in sensu stricto results in a model that is difficultly tractable (for the rumen ecosystem, a compartmental model will imply hundreds of microbial species). On the other hand, the main weakness of the supra-organism approach is that due to its level of aggregation, it lacks a description of the connectivity principle among species which is a determining factor of the function of the whole community [START_REF] Biggs | Metabolic network modeling of microbial communities[END_REF]. Thus, the supra-organism approach offers limited capabilities to study central metabolic interactions such as cross-feeding and interspecies hydrogen transfer. Following the evidence of a rumen core microbiota [START_REF] Creevey | Determining the culturability of the rumen bacterial microbiome[END_REF][START_REF] Henderson | Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range[END_REF][START_REF] Wallace | A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions[END_REF], a potential alternative between the two approaches is to represent the rumen microbial community by a mini-consortium of microbes covering the rumen functional core. The selection of the members of a rumen functional core microbiome can be supported by existing literature and by the use of tools such as Metage2Metabo [START_REF] Belcour | Metage2metabo, microbiota-scale metabolic complementarity for the identification of key species[END_REF] which uses draft GEMS to identify minimal communities and keystone species for a targeted set of compounds. The development of a rumen microbiome model will require strong integration between modelling approaches and dedicated in vitro experiments designed to characterize in deep rumen microbial interactions and the influence of such interactions on the fermentation profile [START_REF] Popova | Rumen microbial genomics: from cells to genes (and back to cells)[END_REF].

Applications of genome-scale metabolic modelling approaches to rumen microbiome

Major potential applications of genome-based approaches for the rumen microbiota include the design of cultivation media for uncultured microorganisms, the identification of probiotics to enhance rumen function and the design of strategies for methanogen inhibition, and the exploitation of rumen microbes for the production of valuable compounds. GEMs also allow to characterize the interconnection between microbes within an ecosystem and provide insight into central ecosystem properties such as robustness, resilience and functional redundancy [START_REF] Weimer | Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations[END_REF] which should be considered when designing microbial manipulation strategies. Few applications of genome-based approaches are reported for the rumen microbiota. Within an industrial context of microbial synthesis of valuable compounds, the GEM reconstruction of Actinobacillus succinogenes 130Z allowed to investigate the metabolic potential of this ruminal strain for the production of succinic acid from low-cost raw materials [START_REF] Pereira | Reconstruction of a genome-scale metabolic model for Actinobacillus succinogenes 130Z[END_REF]. The model was identified as a useful resource for metabolic engineering strategies aiming at improving succinic acid yields. In the same industrial-driven approach, the GEM construction of the lactate utilizing bacterium Megasphera elsdenii allowed the identification of pathways involved in the mechanism of metabolic production of hexanoic acid, which is an industry valuable product [START_REF] Lee | Genome-Scale Metabolic Network Reconstruction and In Silico Analysis of Hexanoic acid Producing Megasphaera elsdenii[END_REF]. We have recently reconstructed the GEM of Fibrobacter succinogenes S85 using the AuReMe toolbox [START_REF] Aite | Traceability, reproducibility and wiki-exploration for"à-la-carte" reconstructions of genome-scale metabolic models[END_REF]. We applied further the EFM framework on the GEM to produce a dynamic model that predicts the production of acetate, succinate and formate from the metabolism of glucose, cellobiose and cellulose [START_REF] Fakih | Dynamic genomebased metabolic modeling of the predominant cellulolytic rumen bacterium Fibrobacter succinogenes S85[END_REF].

At the community level, a GEM compartmental approach was applied to study a mini-consortia composed of the keystone rumen species Ruminococcus flavefaciens, Prevotella ruminicola, and Methanobrevibacter gottschalkii [START_REF] Islam | Metabolic modeling elucidates the transactions in the rumen microbiome and the shifts upon virome interactions[END_REF]. The resulting GEM allowed to predict the metabolic yields of the community and its relative populations, but also led to identification of 22 new inter-species interactions into this community. The authors also investigated the presence of a possible metabolic synergy between viruses and the members of the community via the addition of viral functionalities by local alignment. A significantly disrupted bacterial metabolism was detected, which confirmed the crucial role of viral auxiliary metabolic genes in the reprogramming of microbial metabolism.

By using the Metage2Metabo software, [START_REF] Belcour | Metage2metabo, microbiota-scale metabolic complementarity for the identification of key species[END_REF] constructed draft GEMs from the collection of 913 cow rumen MAGs published in [START_REF] Stewart | Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen[END_REF]. Metage2Metabo allowed to identify a minimal community of 44 GEMs capable of producing the 296 metabolic end-products that the whole rumen community can potentially produce synergistically. This type of findings provides valuable information for the development of synthetic ecology strategies aiming at advancing fundamental understanding of the rumen microbiome.

Final remarks

The integration of microbial omic data into mathematical models of the rumen microbiome can produce novel tools with enhance power for predicting rumen function. The potential applications of this next generation models are broad including the design of microbial manipulation strategies to enhance feed efficiency and mitigate emissions from the ruminant sector. To reach this expected impact, a Cartesian approach build on the analysis of systems at different levels of microbial complexity (co-culture, mini-consortia and whole consortia) is needed to derive parsimonious and representative models of the rumen microbiome that can be integrated into whole rumen models that incorporate the biological levels associated with the host. This exciting challenge can only be reached via a strong interdisciplinary synergy between scientists with expertise in microbiology, animal physiology, computational biology, biochemistry and mathematical modelling. The embracement of the GEM framework into rumen modelling will require the appropriation of new skills by the rumen modelling community. In this direction, we can learn and take advantage of the developments made by the system biology community on the modelling of microbial communities such as the human gut and artificial communities. The learning process should include the enhancement of open science practices [START_REF] Muñoz-Tamayo | Seven steps to enhance open science practices in animal science[END_REF] to strengthen the sharing of models and resources which will result in enhanced rumen microbiome models accessible to the community.
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 1 Fig.1. Simulation study to assess the performance of an asymptotic observer applied to the mathematical model of rumen fermentation developed by[START_REF] Muñoz-Tamayo | Mechanistic modelling of in vitro fermentation and methane production by rumen microbiota[END_REF]. In this hypothetical study, we assumed that 5 species constituted the microbial groups of sugars utilizers and amino acids utilizers (A). Each species has different kinetic parameters. B. The estimated values of acetate, butyrate and propionate of the state-observer (solid line) converge to the real values.

Fig. 3 .

 3 Fig. 3. The steps to build a dynamic kinetic genome-based model of microbial metabolism.
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 1 Use of different meta-omics analyses to study the rumen microbiome, and their specific contribution to our understanding of the rumen functions.

	METAGENOMICS	METATRANSCRIPTOMICS
	 Discovery of uncultured microbial	 Gene expression profiling
	genomes	 Gene expression regulation
	 Potential activity of microbiota	 Identification of active taxa
	 Taxa-related metabolic features	 Identification of microbiota activity
	 Putative interaction network	Rapid response to various factors
		(environmental stimuli…)
	METAPROTEOMICS	METABOLOMICS
	 Taxa-specific protein profiles	 Metabolite profiling
	 Identification of microbiota activity	 Identification of metabolites
	 Localization of protein activity	associated with animal phenotype
		(biomarkers) or rumen microbiota
		profile
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