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REVIEW

Microbiome-Based Therapeutics and Their Physiological Effects
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Abstract

Inflammatory bowel diseases (IBD), a heterogeneous group of inflammatory conditions that encompass both ulcerative colitis
and Crohn’s disease, represent a major public health concern. The etiology of IBD is not yet fully understood and no cure is
available, with current treatments only showing long-term effectiveness in a minority of patients. A need to increase our knowl-
edge on IBD pathophysiology is growing, to define preventive measures, to improve disease outcome, and to develop new
effective and lasting treatments. IBD pathogenesis is sustained by aberrant immune responses, associated with alterations of the
intestinal epithelial barrier (IEB), modifications of the enteric nervous system, and changes in microbiota composition. Currently,
most of the treatments target the inflammation and the immune system, but holistic approaches targeting lifestyle and diet
improvements are emerging. As dysbiosis is involved in IBD pathogenesis, pre-, pro-, syn-, and postbiotics are used/tested to
reduce the inflammation or strengthen the IEB. The present review will resume these works, pointing out the stage of life, the
duration, and the environmental conditions that should go along with microbiota or microbiota-derived treatments.

IBD; microbiota; n � 6; prebiotic; probiotic

INTRODUCTION

Inflammatory bowel diseases (IBD), a heterogeneous group
of conditions that encompass both ulcerative colitis (UC) and
Crohn’s disease (CD), are complex chronic inflammatory dis-
orders with increasing prevalence worldwide in the past dec-
ade (1). IBD are now a major public health problem that
affects �3.6 million people in the United States and Europe
(2). IBD onset typically occurs between the second and third
decades of life. A majority of affected individuals progress to-
ward a relapsing and chronic disease, characterized by an
immune activation and inflammation of the gastrointestinal
(GI) tract that severely alters its function. Common IBD symp-
toms include bleeding, severe diarrhea, abdominal pain, and
weight loss. In CD as well as in UC, inflammation of the gut is
associated with the breakdown of intestinal epithelial barrier
(IEB) integrity, abnormal secretions, and changes in motility
patterns. UC features include diffuse mucosal inflammation
that extends proximally from the rectum, whereas CD inflam-
mation may be patchy and transmural. This uncontrolled

chronic inflammation can result in a complicated disease
course with undesirable abdominal abscesses, fistulae, stric-
tures, subsequent bowel obstruction, and an increased risk
for GI malignancy. As such, a greater understanding of IBD
pathophysiological mechanisms is required.

IBD Etiology

IBD develop in genetically predisposed individuals under
the influence of environmental factors. Family aggregation
has long been recognized, and first-degree relatives of
affected individuals have a relative IBD risk of fivefold or
greater. More than 240 genetic risk loci have been associated
with IBD (3). Despite susceptibility genes that are for the
most part different between CD and UC, 30% of IBD-related
loci are common to these two intestinal diseases. These genes
are involved in the immune system modulation (immune
cell recruitment, innate mucosal defense) as well as in the
control of intestinal epithelial barrier (IEB) functions (perme-
ability, repair, and autophagy). Most interestingly, many of
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the known IBD susceptibility genes are associatedwith recog-
nition and processing of bacteria (4). Environmental factors
are also involved, and potentially relevant environmental
IBD risks factors encompass major life stressors, diet, and/or
lifestyle. They span the spectrum of life from birth and early-
life exposures (breastfeeding and antibiotic exposure in
infancy) to exposures later on in adulthood (depression,
physical activity, low-fiber diet, and low vitamin D) (2).

IBD Pathophysiology

Though the etiology of IBD has not been fully elucidated, it is
currently known that IBD pathogenesis is sustained by aberrant
immune responses and associated with alterations of the IEB,
alterations of the enteric nervous system (ENS), and changes in
microbiota composition (5). Patients with IBD are characterized
by the infiltration of inflammatory CD4þ T-cells in intestinal
tissue encompassing an increase in inflammatory T cells (Th1,
Th2, Th9, Th17, and CD161þCXCR3þCCR6þCD4þ Th17.1)
response, associated with a reduced regulatory T cells (Treg and
Tr1) response (6). In addition, the immune chronic activation in
IBD involves a dysfunction of neutrophil granulocytes and
phagocytes, T- and B cell selection and activation, and immune
inhibitorymechanisms. Another commondisease denominator
is the defective IEB, that not only presents cell death abnormal-
ities but also deregulation of the permeability, and clinical
remission is linked to intestinal mucosal healing (7). In addi-
tion, widespread damage of the enteric nervous system (ENS)
has been described for a long time in CD and its dysfunction
has been recently demonstrated. Structural abnormalities of
the ENS have consistently been observed in CD and, less fre-
quently, in UC (8, 9). Coarse nerve fibers and axonal necrosis
have been observed in CD ileum or colon (10, 11). In these seg-
ments, enteric glial cells have lost their control upon intesti-
nal healing and permeability (12, 13). Finally, dysbiosis has
been observed in patients with IBD and inmice models of co-
litis (14). Dysbiosis could be different between patients with
UC and CD, but is observed in both pediatric and adult popu-
lations, in active or quiescent phases of the pathology and in
treatment-naive patients with CD (15). The most consistent
observation in IBD is a reduced bacterial diversity, with a
decrease of Firmicutes phylum and Bifidobacteriaceae fam-
ily, an increase of the Enterobacteriacea and Akkermensia
genera (Akkermensia muciniphila). Periods of disease activity
are also marked by increased transient microbial changes
(16). The species Faecalibacterium prausnitzii is not only
decreased in patients with CD compared with healthy sub-
jects, but its absence is also correlated with the risk of relapse
of ileal CD after surgery, and its recovery is associated with
the maintenance of clinical remission (17–20). Increasing
studies describe how F. prausnitzii can dampen the inflam-
mation through reduction of proinflammatory cytokines pro-
duction, regulation of Treg or intestinal epithelial cells (IEC)
(21, 22). Altogether, these studies highlight the concept that
host-microbiota interactions play a central role in IBD patho-
genesis and are potential therapeutic targets (23, 24).

Treatments

At present, themainstays of IBD treatment are immunosup-
pressive and immune-modulating agents. Therapeutic agents
comprising anti-TNF demonstrated significant changes in our

ability to induce and maintain remission but reached limita-
tions. A significant percentage of patients with IBD do not
respond primarily to the treatment or lose responsiveness over
time (25). The inability to provide a surgical treatment due to
physical extension and/ormislocalization of lesions represents
as well a major challenge in the management of IBD (26, 27).
Various new agents targeting cytokines, adhesion molecules,
or tyrosine kinases are currently in clinical trials. Modulating
the gut microbiota emerges as an attractive novel therapeutic
approach for IBD, and therapies targeting/based on the gut
microbiome are under extensive investigation with varying
success.

Microbiota-Based Interventions

Amicrobiota is defined as an “assemblage ofmicroorganisms
(all the bacteria, archaea, protists, fungi, and viruses) present in
a defined environment” found in all multicellular organisms
(28). The gut microbiome, that encompasses �600,000 micro-
bial genes, contributes to trophic functions, metabolism, barrier
function, and immune stimulation. Host-microbiota interac-
tions play a key role in human health, with alterations of the
microbiota associated with numerous neurological and chronic
diseases (29, 30). The imbalance of themicrobiota in its compo-
sition and metabolism is encompassed in a global concept of
dysbiosis (31). This definition remains challenging as the defini-
tion of a healthymicrobiota is complex and in constant need of
refinement (32).

Resulting from this, different strategies are evaluated to
compensate or restore the default observed in microbiota-
host communication and treat dysbiosis and/or inflamma-
tion. Among many influencing factors, the diet is now well
recognized for being able to rapidly and reproducibly modify
or modulate the gut microbiota (33). In a more targeted way,
the use of prebiotics aims at enriching the microbiome, and
fecal transplantation or ingestion of microorganisms is under
study in preventive as well as therapeutic strategies. Thanks
to increasing knowledge on their function in host regulation,
the use of products derived from or associated with themicro-
biota is being tested. The present review will examine the use
of pre-, pro-, syn-, or postbiotics, fecal microbiota transplanta-
tion. and diet modification in the IBD patient care.

PREBIOTICS

Prebiotics Definition

A prebiotic is “a substrate selectively used bymicro-organ-
isms of the host conferring benefits for his health” (34).
Prebiotics are found naturally in vegetables, fruits, and cere-
als but also in human milk as human milk oligosaccharides
(35, 36). Theymainly include oligosaccharides, nondigestible
carbohydrates, and potentially polyphenols or polyunsatu-
rated fatty acids (37). Because of their modulatory effects on
the microbiota, fructans like the fructo-oligosaccharides
(FOS) and inulin, but also galactans like galacto-oligosaccha-
rides (GOS) represent the most studied prebiotics (35, 37).

Effects

Prebiotics can act on multiple organs/system apart from
the gut (35). The functions of the prebiotics are supported by
different mechanisms of action that may be direct,
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through interaction with cell surface receptors, or indirect
through the products of their fermentation by specific
commensal bacteria (35). Prebiotics contribute not only to
the defense against pathogens but also to the enhance-
ment of tolerance (e.g., Treg and dendritic cells promo-
tion) (35). Prebiotics promote the growth of healthy
bifidogenic strains populations like Bifidobacterium spe-
cies (38). They also promote barrier integrity, so influenc-
ing as well functions such as wound repair and intestinal
permeability (35, 37). Among the products of bacterial fer-
mentation, short-chain fatty acids (SCFAs) are bioactive
metabolites that can regulate epithelial and immune cells
(35). They have a broader impact on gut functions through
the regulation of the enteric nervous system and gut motil-
ity, and are thereby interesting in the context of IBD treat-
ment (39).

In Vitro Studies

Different mixtures of prebiotics [GOS, GOS þ FOS, GOS þ
FOS þ acidic oligosaccharides (AOS)] were tested on pri-
mary equine peripheral blood mononuclear cells (PBMC)
before and during inflammation (Table 1) (40). These prebi-
otics potentially enhanced inflammation and decreased tol-
erance by changing cytokines production. A second study
used orange pectin and side chain-derived polysaccharides
on the murine macrophage cell line RAW 264.7 before the
induction of inflammation (41). Both prebiotics promoted
anti-inflammatory effects by suppressing the IL-6 secre-
tion induced by inflammation (41). The acidic fraction of
human milk oligosaccharides reduced lymphocytes and
neutrophils adhesion to human umbilical vein endothelial
cells (HUVEC) and IFN-c production (45, 46). Prebiotics
like inulin increased on the contrary proinflammatory
cytokines (47). Regarding T cells maturation, short chain
GOS þ long chain FOS treatment on dendritic cells led to
Treg differentiation (48). In addition to the regulation of
maturation and functions of the immune cells, prebiotics
can regulate intestinal epithelial cells, mainly through
decrease of cytokine production (42, 43).

Positive changes of microbiota activity through SCFA
production and changes of composition were promoted in
vitro by prebiotics. Indeed, apple pectin increased in vitro
the abundance of butyrate-producing bacteria, including
F. prausnitzii, and butyrate concentrations in feces from
patients with UC and CD (49). Prebiotics modulated the
expression of genes toward a decrease of potential barrier
damage and of inflammation. Namely, an upregulation of
MUC1 and Occludin expressions were induced by fer-
mented chicory pulp supernatant in a GI tract model,
while TNF and cyclooxygenase-2 (COX-2) were downregu-
lated (44).

Preclinical Studies

FOS administration to Wistar rats promoted caecal SCFA
production, which lowered the luminal pH (Table 1).
Acidification of the luminal contentmay inhibit the develop-
ment of pathogens and enhance the growth of lactic acid
bacteria (52). GOS attenuated Citrobacter rodentium colitis
severity (38). The decrease of clinical symptoms and colitis
severity by prebiotics intake was linked notably to a decrease

of immune cells gut infiltration and of proinflammatory
cytokines secretion (41).

Prebiotics as early-life treatment was mainly investigated
in postweaned rats and mice (Table 1). Disease severity
and clinical symptoms were improved by prebiotics intake
early in life for these animal models. FOS increased fecal
Bifidobacterium spp. and decreased fecal Enterobacteriaceae
in HLA-B27 TG rats, whereas inulin increased caecal butyr-
ate concentration in 4-wk-old C57BL/6 mice. The production
of proinflammatory cytokines was decreased by 3-sialyllac-
tose human-identical milk oligosaccharide (HMO) intake in
IL-10�/� mice (62). Germinated barley stuff reduced the dex-
tran sulfate sodium (DSS)-induced disruption of collagen
and reticulin fibers in the intestinal mucosa, so improving
the IEB (66). In adult animal models, an overall improve-
ment of colonic damages, histological scores, and disease
index were observed following prebiotic treatment.

To this day, colitis prevention studies have been mainly
performed in adult murine models, and while they show for
the most part, protective effects (53, 76–78), two studies
described how inulin supplementation potentiated the se-
verity of colitis (63, 79). Recently, in line with our work, one
study analyzed the effect of maternal intake of inulin on co-
litis development in rats, and described how it exacerbated
intestinal damage and inflammation induced by DSS (80).
The increased disease activity index, myeloperoxidase ac-
tivity and IL-1b mRNA expression observed in this model
were associated with an increase in the abundances of
Bacteroidetes, Bacteroides, and Parasutterella (80).

Clinical Studies

Clinical studies were achieved in adults and exclusively
used prebiotics to treat IBD (Table 1). Potential prebiotics such
as oat and wheat bran were also tested as dietary fibers. They
have interesting properties like the enhancement of immune
and intestinal functions (81). The microbiota composition and
metabolism were impacted, with an increase of fecal
Bifidobacteria after the intake of the mix “Prebio 1” of FOS and
inulin (71). Oat bran increased fecal butyrate concentrations
(57). Immunological parameters were affected by prebiotics
consumption, as evidenced by a change in dendritic cells cyto-
kines production and populations (72). Prebiotics decreased
inflammation markers and symptoms in patients, leading to
the decrease of steroid medication, as seen with germinated
barley foodstuff (GBF) for patients with UC in remission (60,
73). Even though the clinical disease activity index and recur-
rence rate might decrease with prebiotics intake (60), more
withdrawals of patients were observed for supplemented
groups (72, 82).Withdrawals took placemostly in studies where
patients with CD had moderately active disease. This result
underlined worsening symptoms and side effects that can
accompany the supplementation in prebiotics.

Conclusion on Prebiotics

Promising results were achieved in vitro and in vivo, and
showed beneficial effects of prebiotics on IBD prevention
and treatment at early age and adulthood. However, more
mitigated results were achieved in clinical trials that only
focused on treatment of IBD. A better tolerance of prebiotics
was observed in patients with UC in remission or with mild

IBD THERAPEUTIC STRATEGY IMPROVEMENT THROUGH MICROBIOTA

AJP-Gastrointest Liver Physiol � doi:10.1152/ajpgi.00002.2022 � www.ajpgi.org G525
Downloaded from journals.physiology.org/journal/ajpgi (147.099.166.085) on November 25, 2022.

http://www.ajpgi.org


Table 1. Prebiotic impact on colitis, prevention, and treatment of IBD

Reference Prebiotic Type Model or Study Design Age of Supplementation

Mechanisms/Global Impact on Colitis or

IBD

In vitro
40 GOS, GOS/FOS, GOS/FOS/

AOS
Primary equine PBMC ± LPS Increase or decrease in IL-10 and

TNF-a mRNA expression depend-
ing on the prebiotic used

38 GOS Hep-2 cell line ± Citrobacter
rodentium

Antiadhesive effect observed in vitro
only

41 Pectin RAW264.7 cell line ± LPS or
Pam3CSK4

Suppressed IL-6 production

42 Oligosaccharides, a3-sialyl-
lactose, or
fructooligosaccharides

Caco-2 cells Decrease TNF-a production and NF-
κB activation through PGlyRP3 and
PPARg

43 Galactosyloligosaccharides,
human HMO

H4, T84, NCM-460 cell lines,
immature human small in-
testinal tissue ± TNF-a, S.
enterica or L.
monocytogenes.

Decrease IL8 or MIP3A expression
induced by stressors

44 4–25 HMO mix, filtered fer-
mentation supernatant of
inulin, chicory root, chic-
ory or citrus pulp, rye
bran, soya hulls.

PSIc1, IPEC-J2 cell lines, pig GI
tract model ± LPS.

Reduced inflammation: change of cell
proliferation and cytokines produc-
tion, increased SCFA/
Bifidobacterium

Prevention
38 GOS C. rodentium infection ± GOS

in drinking water
7-wo C57BL/6 female In vivo reduction in disease severity

independent of the antiadhesive
effect observed in vitro only

41 Pectin DSS or TNBS ± pectin supple-
mented in diet

7–8 wo C57BL/6 male Amelioration of TNBS-induced Colitis
by orange pectin, no effect on T
cell differentiation or infiltration but
decreased TNFa or IL17A
concentrations

45–48 aHMO, nHMO, fucoidan,
3 0NeuAc-Lac, 3 0NeuAc-
3Fuc-Lac, FOS, inulin,
GOS, goat milk oligosac-
charides, scGOS/lcFOS

HUVEC cell line, human/Wistar
rat immune cells, TLR4�/� or
mice splenocytes ± hrTNF-a,
PMA/ionomycin, LPS

Influenced lymphocyte function, matu-
ration and adhesion, and inflamma-
tory cytokines secretion. Reduced
adhesion and increased CD25
expression.

49 Grape-derived prebiotic,
apple pectin

Healthy subjects, patients with
UC and CD

Promoted SCFA production and
SCFA-producing bacteria.

50 Glucan EPS P and L
polymers

Colonic mucosa of patients
with CD

Reduced proinflammatory cytokines
production.

51 Potential prebiotic: feruloy-
lated oligosaccharides of
rice bran

Murine BMDC or T cells from:
C3H/HeN, C3H/HeJ, C57BL/
6, TLR2 KO or NF-κB/lucifer-
ase transgenic mice

C57BL/6 Induced maturation of dendritic cells,
enhanced T cell immune response

52, 53 Inulin, FOS Acute DSS and TNBS colitis
induction

Male Sprague-
Dawley and Wistar
rats

Decreased colonic damages, body
weight loss, and PGE2 release.
Change of gut microbiota composi-
tion and SCFA

38, 41, 54, 55 GOS. Potential prebiotic:
quinoa, orange, citrus
pectin, native potato
starch, pea starch,
Chinese Yam starch.

Acute DSS and TNBS or C.
rodentium colitis induction

6–8 wo C57BL/6 mice Decreased clinical and histopatholog-
ical parameters, changed gut
microbiota composition, and SCFA.
GOS increased C. rodentium num-
ber in distal colon and spleen.

56 Inulin or FOS Spontaneous colitis. Before
colitis induction

4–16 wo HLA-B27 TG
rats

Reduced histological score and IL-1b,
change of gut microbiota
composition.

57 Potential prebiotics: oat
bran

Controlled pilot trial: quiescent
UC patients þ oat bran

Adult patients (>18 yr) No effect on SCFA concentrations.
Could not demonstrate a benefit of
oat bran.

58 Potential prebiotics: amy-
lose-associated resistant
starch (RS)

Remission UC patients þ high
and low RS/wheat bran (WB)

Decreased abdominal pain and gas-
troesophageal reflux for patients
with UC, increased butyrate con-
centration. No impact of RS diet on
UC, changed SCFA concentrations

Continued
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active disease, accompanied by an improvement of clinical
symptoms.

Additional homogenized studies, especially clinical trials,
are needed to better understand the preventive effects of
prebiotics and to determine the window of opportunity for
the treatment of IBD with prebiotics. The age and stage of

disease of the individual represent important parameters to
take into account. Currently, it is too early to suggest this
strategy. We have to understand more precisely the mecha-
nisms of prebiotic interactions with the host at immune, mi-
crobial, metabolic, and transcriptomic levels and the part of
these systems to explain the IBD treatment or prevention.

Table 1.— Continued

Reference Prebiotic Type Model or Study Design Age of Supplementation

Mechanisms/Global Impact on Colitis or

IBD

59 Potential prebiotic: curcu-
min (2 g/day)

Multicenter DB RPCT: quies-
cent UC patients UBT

Decreased the recurrence status, CAI
and endoscopic index. 2/43
relapsed during 6 mo of therapy,
whereas 8 of 39 patients in the pla-
cebo group relapsed (P = 0.040)

60, 61 GBF Multicenter NC OLT, NR OLT,
OLT, pilot OLT: patients with
UC in remission

Lowered the cumulative recurrence
rate. Maintained remission and anti-
inflammatory.

Treatments
62, 63 2FL, inulin (ICD) or pectin IL10�/� mice or C57BL/

6J ± acute colitis
After weaning: 21 days
to 6 wo

Decreased diarrhea, histological score
and intestinal permeability. Impact on
cytokines and SCFA production, gut
microbiota composition.

ICD worsened colitis: higher body
weight loss, gut, and spleen
remodeling.

64 Chondroitin sulfate, a-glu-
can butyrogenic resistant
starch þ b-glucans þ
mannaoligosaccharides

IBD dogs of different breeds. Mean age = 4.85 yr
old

No effect on IBD index score,
decreased histological score

65 Purified soluble fibers
(including inulin,
arabinoxylan)

Mice colonized with a syn-
thetic microbiota þ C.
rodentium colitis

8-9 wo Germ-free
Swiss Webster mice

Did not prevent mucus barrier ero-
sion, increased Bacteroides
abundance

66, 67, 68 Raftilose Synergy 1, germi-
nated barley foodstuff,
Chinese Yam polysaccha-
rides/inulin

Spontaneous colitis, acute co-
litis, “chronic” TNBS colitis

7–11 wo SPF housed
HLA-B27 and
Sprague-Dawley
rats

Decreased DAI, histological scores, mu-
cosal mast cells infiltration and dam-
age. Changed proinflammatory
cytokines and SCFA production, gut
microbiota composition. Anti-inflam-
matory and improved gut microbiota

69 Potential prebiotics: wheat
bran (WB)

Single-blind RCT: patients with
active CD þ wheat bran

Adult patients (>18 yr) Increased IBDQ scores and
decreased pHBI scores for patients
with CD. No impact of WB diet on
UC, changed SCFA concentrations.
Improved quality of life and gastro-
intestinal function

70 GBF Mild/moderately active UC
and UBT

Improved the clinical activity index

71, 72, 73, 74 Prebio 1/Synergy 1, oligo-
fructose-enriched inulin
(OF-IN)

Pilot NC OLT, DB RPCT:
patients with moderately
active CD UBT þ Prebio 1/
Synergy 1. Pilot RPCT: mild/
moderately active UC
patients UBT and lower fiber
diet þ Synergy 1 DB RPCT:
patients with inactive/mild/
moderately active CD UBT
þ OF-IN.

Prebio 1/Synergy 1 increased flatu-
lence, borborygmi and abdominal
pain. Synergy 1 and OF-IN induced
more withdrawals. Decreased DAI,
changed cytokines and SCFA pro-
duction, gut microbiota composi-
tion. Anti-inflammatory and
improved gut microbiota

75 Lactulose Prospective pilot RCT: patients
with active UC and CD

No effect on UC or CD diseases,
improved IBDQ for patients with
UC. No effect on CD but improved
quality of life

aHMO, acidic fraction of human-identical milk oligosaccharide (HMO); AOS, acidic oligosaccharides; BMDC, bone marrow-derived dendritic
cells; CAI, clinical activity index; CBMC, cord blood mononuclear cells; CD, Crohn's disease; DAI, disease activity index; DB, double-blind; DSS,
dextran sulfate sodium; EPS, extracellular polymeric substances; 2-FL, 2-fucosylated lactose; FOS, fructo-oligosaccharides; GBF, germinated bar-
ley foodstuff; GI, gastrointestinal; GOS, galacto-oligosaccharides; IBD, inflammatory bowel disease; IBDQ; inflammatory bowel disease question-
naire; HUVEC, human umbilical vein endothelial cells; ICD, inulin-containing diet; LPS, lipopolysaccharides; NC, noncontrolled; nHMO, neutral
fraction of HMO; NR, nonrandomized; Olt, open-label trial; PBMC, peripheral blood mononuclear cells; PGlyRP3, peptidoglycan recognition pro-
tein 3; pHBI, Harvey–Bradshaw index; PMA, phorbol 12-myristate 13-acetate; PPARg, peroxisome proliferator-activated receptor gamma; RCT,
randomized controlled trial; RPCT, randomized placebo controlled trial; SCFA, short-chain fatty acids; TLR, Toll-Like receptor; TNBS, 2,4,6-trini-
trobenzenesulfonic acid; TSLP, thymic stomal lymphopietin; UBT, under baseline treatment; UC, ulcerative colitis; wo, weeks old.

IBD THERAPEUTIC STRATEGY IMPROVEMENT THROUGH MICROBIOTA

AJP-Gastrointest Liver Physiol � doi:10.1152/ajpgi.00002.2022 � www.ajpgi.org G527
Downloaded from journals.physiology.org/journal/ajpgi (147.099.166.085) on November 25, 2022.

http://www.ajpgi.org


Preclinical and in vitro studies will be crucial to treat these
questions. New large interventional clinical studies with a
homogenous design (same age, same prebiotic, same dose,
and same duration of supplementation) using prebiotics on
patients with IBD with different degree of disease severity
have to be done. Only prebiotics from agricultural materials
or enzymatically synthesized (lacking the structural com-
plexity of dietary fibers) have been tested in this context. In
the future it will be relevant to use synthetic glycans span-
ning the chemical and structural diversity of dietary glycans
that can be efficiently and consistently produced. Synthetic
glycans enable a wide range of targeted changes to the
microbiome and potentially open new avenues for the pre-
vention and treatment of disease (83). HMO are other new
interesting prebiotics to test in the context of IBD by their
natural properties to support the immune system matura-
tion, the cognitive function, the digestive health, and the de-
velopment of gut microbiome (84).

Key Ideas: Prebiotics

In vitro and in vivo reduction of inflammation with prebiot-
ics: 1) modulation of immune and intestinal epithelial cells
functions/maturation and host genes expression; 2) modifica-
tion of microbiota activity/composition; and 3) mitigated
results for preclinical studies or clinical trials. Patients with UC
in remission showed a decrease of clinical symptoms after pre-
biotics intervention but more withdrawals were observed in
case of an active disease. Limitations: lack of harmonization of
protocols and of studies on prevention and at early age.

PROBIOTICS

Probiotics and IBD Treatment

Probiotics are defined as “live microorganisms that, when
administered in adequate amounts, confer a health benefit
on the host” (85). Probiotics have different mechanism of
action, including competitive interactions with deleterious
bacteria via a production of antimicrobial metabolites such
as bacteriocins and defensins. They have immunomodula-
tory properties mediated by anti-inflammatory molecules
and may increase the mucus layer (86). Probiotics further
show beneficial effects on the pathogenesis of IBD. The gut
microbiota of patients with IBD is characterized by a lack of
bacteria with anti-inflammatory activities such as F. praus-
nitzii (Firmicutes), together with an enrichment of bacteria
with inflammatory functions (87). Consumption of probiot-
ics with anti-inflammatory activities thus appeared as a
promising strategy in the management of IBD. Pioneer in
vitro studies identified immunomodulatory bacteria and
their beneficial impact on colitis in vivo (88). Meta-analysis
of clinical trials then indicated the beneficial effect of a
selected probiotic preparation, in the context of IBD (89).
This opens avenues for thorough characterization of the
immunomodulatory role of such microorganisms, and of
combinations thereof, from in vitro to clinical studies.

In Vitro Studies

VSL#3 is a probiotic mixture of four strains of Lactobacillus,
three strains ofBifidobacteria, and 1 Streptococcus thermophilus
strain (90). Pretreatment with VSL#3 on disrupted intestinal

cell lines improved epithelial barrier integrity by increasing
tight junction proteins (91) (Table 2). Saccharomyces boulardii
pretreatment of inflamed colonic cells suppressed inflamma-
tion-mediated NF-κB activation (100). As for Escherichia coli
Nissle 1917 (EcN1917), only one study showed that its treatment
reverted the increased permeability and restored the disrupted
epithelial barrier in Caco-2 cells challenged by proinflammatory
cytokines. Other bacteria such as Propionibacterium freudenrei-
chii showed anti-inflammatory effects, including on human
PBMC by increasing the IL-10-to-IL-12 (IL-10/IL-12) ratio (121).
Such effects in vivo reportedly coincide with a healing effect in
preclinicalmodels of IBD (88).

Preclinical Studies

Preclinical models of IBD, mainly murine models of spon-
taneous or induced colitis, revealed the protective effects of
selected strains of probiotics (122). VSL#3 pretreatment
reduced colonic inflammation and improved IEB function in
wild-type (WT) and Muc2�/� DSS-treated mice (92) (Table 2).
These effects are correlated with a restoration of antimicro-
bial peptide gene expression and an increase of commensal
bacterial abundance, mediated by SCFAs (92). Pretreatment
of mice with EcN1917 promoted recovery of inflammation by
modulating tight junction proteins, decreasing proinflam-
matory cytokines secretion and increasing mucins expres-
sion (96, 97). Regarding P. freudenreichii CIRM-BIA (CB) 129,
two studies highlighted its preventive effects on colitis mod-
els in mice by reduction of COX-2 expression and of proin-
flammatory cytokines levels (105, 106).

As treatment, VSL#3 probiotic mixture restored the loss of
tight junction protein observed in DSS-treated mice (109).
Another study however demonstrated no anti-inflammatory
effects of VSL#3 in mice with colitis (110). F. prausnitzii as cu-
rative approach reduced colitis severity inmice and rats, asso-
ciated with an increase of colonic tight junction (TJ) proteins,
reduction of intestinal permeability, and levels of proinflam-
matory cytokines (107, 118, 119, 123). Besides, F. prausnitzii
regulated Th17/Treg ratio and induced Treg cells (119).

Such promising in vivo results opened the way to clinical
studies, provided that the safety of the implemented strain
(s) was established.

Clinical Studies

Few studies investigated the ability of probiotics to main-
tain remission in children with CD (Table 2). No protective
effect of Lactobacillus rhamnosus GG (LGG) was found in
children with CD on standard therapy (108). Regarding adult
patients with CD, S. boulardii showed encouraging effects in
maintaining the remission in CD by reducing the Crohn’s
disease activity index (CDAI) and improving IEB integrity
(101–103). LGG was tested on adult patients with active CD
but failed to induce remission (120).

Children with acute UC and receiving the VSL#3 probiotic
mixture exhibited reduced inflammatory markers levels, a
modification of gut microbiota, but also adverse effects (124).
Two clinical studies showed that VSL#3 supplementation
was effective to induce remission in adult patients with mild
to moderate UC (90, 125). In addition, mucosal healing rate
was higher with VSL#3 (90, 93). For S. boulardii, a clinical
trial showed that its supplementation to UC adult patients
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Table 2. Prevention and treatment of colitis or IBD with probiotics

Reference Probiotic Type Model or Study Design

Age of

Supplementation Mechanisms Effect on IBD

Prevention
91–95 VSL#3 IEC in vitro þ /�

inflammation
No effect on mucin secretion
Restored TJ proteins via an
activation pf p38 and ERK
pathways

Improved IEB integrity

Attenuated ROS production
by macrophages

Anti-inflammatory

Colitis in mice (WT and
Muc2�/�)

10–12 wo Increased abundance of gut
commensal bacteria

Improved gut microbiota

Increased expression of b2
defensin via the regulation
of NF-κB and AP-1/restora-
tion of antimicrobial pep-
tide gene expression and
VEGF

Patients with inactive UC Adult patients
(>18 yr)

Remission was higher in the
VSL#3 group vs. placebo

96–99 Escherichia coli Nissle
1917 (EcN 1917)

IEC in vitro þ /�
inflammation

Restored the localization and
altered distribution of clau-
din-1

Improved IEB integrity

Induced colitis and
mucositis in mice

7–9 wo Ameliorated the decreased
expression of TJ proteins

Inhibited the decrease of
claudin-1 expression

Reduced the increase expres-
sion of ICAM-1

Restored the indices of rich-
ness and diversity to nor-
mal values

Improved gut microbiota

Attenuated the increase of
Firmicutes phylum and
increased Cyanobacteria

Restored the of Firmicutes/
Bacteroidetes ratio

Ameliorated expression of
Muc-2 and -3

Effect on colonic mucosa

Patients with inactive UC Adult patients
(>18 yr)

Efficacy and safety equivalent
to the gold standard mesa-
lazine in patients with UC

100–104 Saccharomyces
boulardii

IEC in vitro þ /�
inflammation

Upregulated PPAR-c, thus
suppressed NF-κB activa-
tion leading to a decrease
IL-8 expression

Anti-inflammatory

Colon from patients with
IBD

Enhanced E-cadherin delivery
to the cell surface

Improved IEB integrity

Patients with inactive CD Adult patients
(>18 yr)

Improved gut permeability Clinical relapses were less
frequent in patients
receiving S. boulardii
with current treatment

Decreased lactulose/mannitol
ratio

105, 106 Propionibacterium
freudenreichii

Human PBMC Increased IL-10/IL-12 ratio Anti-inflammatory
Induced colitis in mice 8 wo Modulated local and systemic

inflammatory markers
(proinflammatory cytokines,
MPO, Cox-2)

Decreased secretory IgA con-
centration in small bowel

Increased zo-1 mRNA levels Improved IEB integrity
No effect on gut microbiota

19, 107 Faecalibacterium
prausnitzii

Induced colitis in mice 6–8 wo Decreased proinflammatory
cytokines and increased
IL-10

Anti-inflammatory

Corrected dysbiosis Improved gut microbiota
108 Lactobacillus rhamno-

sus GG (LGG)
Children with inactive
CD

5–21 yr No extension of time before
relapse in children with CD
when given as an adjunct
to standard therapy

Treatment
109–112 VSL#3 6–8 wo

Continued
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Table 2.— Continued

Reference Probiotic Type Model or Study Design

Age of

Supplementation Mechanisms Effect on IBD

Induced colitis in mice
and rats

Decreased proinflammatory
markers and increased IL-
10 levels in colonic tissues
and serum

Anti-inflammatory (contro-
versial data)

No effect on gut inflammation
and severity of colitis

Improved gut permeability
by preventing the
decreased expression
and distribution of TJ
protein

Improved IEB integrity Prevented the increase in
apoptotic cell level

No effect on mucin secretion
Modulated the gut micro-
biota composition
(increased
Bifidobacterium spp.
And Lactobacillus spp)
and activity (increased
capacity to ferment
lactose, sucrose etc.)

Improved gut
microbiota

Gastric ulcer in rats.
Treatment after ulcer
induction.

No data Enhanced gastric ulcer
healing

Improved IEB integrity

Children with active UC 3–17 yr Modification of the gut
microbiota

Remission was achieved in
56% of children,
response in 6% and bi
change/or worsening in
39%

Reduction of inflammatory
markers

Adverse effects: 67% (bloat-
ing and flatulence)

Patients
with
active
UC

Adult patients (>18 yr) Mucosal healing rate
was significantly
higher in patients in
the VSL#3 groups vs.
placebo

Remission was
achieved in
>50% of
patients

113–115 EcN 1917 IEC in vitro þ /�
inflammation

Improved IEB integrity

Induced colitis in mice
(WT and TLR-2 and
�4�/�).

No data Decreased proinflammatory
cytokines via TLR-2 and -4
dependent pathways

Anti-inflammatory

Patients with active UC Adult patients
(>18 yr)

Equivalent effect to the
gold standard mesalazine
in patients with UC

100, 116, 117 Saccharomyces
boulardii

Induced colitis in mice. 8–12 wo Decreased proinflammatory
mediators via an upregula-
tion of PPARɣ

Anti-inflammatory

Decreased proinflammatory
mediators via an upregula-
tion of PPARɣ

Limited the infiltration of lym-
phocyte T helper in
inflamed colon

Patients with active UC Adult patients
(>18 yr)

17/24 patients achieved
clinical remission

107, 118, 119 F. prausnitzii Induced colitis in mice
and rats.

6–8 wo Reduced proinflammatory
cytokines and T-cell levels

Anti-inflammatory

Induced Treg by inhibiting the
IL-6/STAT-3/IL-17 pathway

Secreted butyrate that regu-
lated Th17/treg balance by
inhibiting HDAC-1

Improved gut permeability Improved IEB integrity

Continued
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with clinical flare-up was effective to reach remission (116).
EcN1917 efficacy in the treatment of UC is mitigated, with a
study showing no difference between the EcN1917 group and
the mesalazine control group and another presenting
EcN1917 as an alternative to mesalazine for maintenance of
remission in UC (113, 126). Meta-analysis of clinical studies
dealing with IBD and probiotics concluded on a “strong evi-
dence” for VSL#3 in the context of IBD, yet a “moderate” evi-
dence for S. boulardii and a “weak to not effective” for L.
rhamnosus GG and for E. coliNissle 1917.

Conclusions on Probiotics

To conclude, in vitro studies suggested an action of probi-
otics on the IEB, gut microbiota, and anti-inflammatory
effects. Animal studies supported the protective effects of
probiotics against colitis development via a reduction of
inflammation. However, knowledge about the role of probi-
otics on pediatric IBD at preclinical and clinical levels as well
as data on CD is still missing. Beneficial effects of probiotics
were more reported in UC than in CD. Larger clinical trials
implementing probiotics are needed to confirm that they
can favor remission in IBD.

Key Ideas: Probiotics

Actions of probiotics in vitro and in vivo: 1) improved IEB
via the regulation of tight junction proteins andmucin secre-
tion; 2) modification of gut microbiota composition and ac-
tivity; and 3) reduction of inflammation. VSL#3 appears to
be the most effective probiotic for maintenance of remission
in IBD and also in its induction at preclinical scale.
Limitations: lack of preclinical studies and clinical trials
both on probiotics as preventive and therapeutic strategies,
especially at early age, on CD.

POSTBIOTICS

Definition of Postbiotics

Postbiotics refer to microbial components as well as mi-
crobial metabolites secreted by live bacteria or released after
bacterial lysis (127). All these components may have local
and systemic effects. Their advantages over probiotics
include reduced risk of infection and side effects triggered

by certain bacteria. Indeed, the administration of viable pro-
biotics to individuals with weaker immune systems could
enhance inflammatory responses and turn “generally recog-
nized as safe” harmless probiotic bacteria into detrimental
microorganisms. The inactivation of bacteria can be achieved
by physical methods such as heat or chemical treatment,
resulting in bacteria unable to grow but with maintained
health benefits (127). Postbiotics can be divided in gut micro-
bial components andmetabolites.

Gut Microbial Components

Cell surface protein.
Surface-layer proteins (Slp) constitute a semipermeable cell
envelope component in certain bacteria. Pretreatment with
Slp from Lactobacillus acidophilus NCFM improved IEB in
vitro by increasing transepithelial electrical resistance (TEER)
and reducing permeability, which was partly due to a restora-
tion of TJ proteins expressions (Table 3). Slp pretreatment also
attenuated inflammation via the reduction of proinflamma-
tory cytokines level (128). In a noninflammatory context, SlpA
from L. acidophilus CICC 6074 increased proinflammatory
mediators by activating MAPK/NF-κB pathway in a macro-
phage cell line. Regarding treatment, this protein suppressed
Toll-like receptor 4 (TLR4) signaling activation triggered by
LPS stimulation thus inhibited MAPK/NF-κB signaling (Table
3) (129). Furthermore, Slp from P. freudenreichii CIRM-BIA129
revealed anti-inflammatory properties, with SlpB inducing
high IL-10 secretion in swine peripheral blood mononuclear
cells (PBMC) and mesenteric lymph node immune cells
(MLNC) under inflammation (149). Interestingly, pretreatment
with SlpA from L. acidophilus NCFM in a DSS-induced colitis
mouse model reduced inflammatory cytokines, as well as
TLR4 and COX2 proteins, in colon tissues, demonstrating pro-
tective effects (129).

To conclude, Slp proteins can have anti-inflammatory
effects on inflamed IEC, or and proinflammatory effects on
immune cells in the absence of inflammatory stimuli (128–
130, 149, 150, 175).

Peptidoglycan.
Peptidoglycans (PGN) are major cell wall components in
both Gram-positive and Gram-negative bacteria (133). PGN

Table 2.— Continued

Reference Probiotic Type Model or Study Design

Age of

Supplementation Mechanisms Effect on IBD

Improved increased TJ pro-
teins (claudin-4, occludin,
ZO-1 and E-cadherin) in co-
lonic samples

No significant differences
were observed in the pas-
sage of E. Coli K12

120 LGG Patients with active CD Adult patients
(>18 yr)

Could not demonstrated a
benefit of LGG in induc-
ing remission

CD, Crohn's disease; COX-2, cyclooxygenase-2; ERK, extracellular signal-regulated kinases; hDAC, histone deacetylase; ICAM-1, inter-
cellular adhesion molecule; IBD, Inflammatory bowel diseases; IEB, intestinal epithelial barrier; IEC, intestinal epithelial cells; MPO, my-
eloperoxidase; PBMC, peripheral blood mononuclear cells; ROS, reactive oxygen species; TJ, tight junction; VEGF, vascular endothelial
growth factor; TLR4, Toll-like receptor 4; UC, ulcerative colitis; wo, weeks old; WT, wild-type.
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Table 3. Prevention and treatment of colitis or IBD with postbiotics

Reference

Postbiotic

Type Model or Study Design

Age of

Supplementation Effect on IBD Mechanisms

Prevention
121, 128–132 Slp IEC or immune cells in vitro

þ /� inflammation
Improved IEB integrity Decreased TEER and

permeability
Restored TJ proteins

Anti-inflammatory Decreased proinflammatory
cytokines and increased IL-10
via an inhibition of MAPK/NF-
κB

Proinflammatory Increased proinflammatory
mediators via an inhibition of
PKC leading to an activation
of MAPK/NF-κB pathway

Induced colitis in mice.
Before colitis induction.

No data Anti-inflammatory Reduction of inflammatory
markers

Inhibited the colitis-induced
expression of TLR-4, iNOS
and COX-2 in colon tissue

133 PGN Induced colitis in mice.
Before colitis induction.

6–7 wo Protected against colitis,
decreased inflammation
parameters

Reduced IL-1b, IL-6 and TNF-a
levels, reduced colonic gene
expression but increased co-
lonic IL-10 protein expression
through NOD2 signaling

134–137 LTA Goblet cells in vitro þ /�
inflammation

Effect on mucus secretion Increased MUC-2 expression via
TLR-2/NF-κB

Anti-inflammatory Decreased proinflammatory
cytokines through TLR-2 lead-
ing to an inhibition of MAPK/
NF-κB pathway

IEC or immune cells in vitro
þ /� inflammation

Proinflammatory Lactobacillus deficient in LTA:
decreased proinflammatory
cytokines and increased anti-
inflammatory cytokines via
TLR-2

Induced colitis in mice.
Before colitis induction.

No data Proinflammatory Lactobacillus deficient in LTA:
reduced colitis score and
increased colonic IL-10 level

138–146 SCFA IEC or immune cells in vitro
þ /� inflammation

Anti-inflammatory Decreased proinflammatory
expression and increased IL-
10 via different pathways: via
MCT-1 and NF-κB pathway, by
inhibiting HDAC through
GPR109A and via ERK 1/2
pathway

Induced colitis in mice.
Before colitis induction.

6–9 wo Anti-inflammatory Decreased proinflammatory
cytokines via an inhibition of
NF-κB pathway

Low concentration of acetate
acted as a low chemotactic
index for neutrophils

Butyrate induced colonic IL-18
via GPR109A and regulated
Treg and IL-10 producing
CD4þ T cell frequency in the
colon, thus increasing IL-10
secretion by macrophages

Acetate activated NLRP3 inflam-
masome by binding to GPR43
on colonic epithelial cells lead
to a Kþ efflux and a
hyperpolarization

Proinflammatory Increased ROS production and
phagocytic activity

Continued
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Table 3.— Continued

Reference

Postbiotic

Type Model or Study Design

Age of

Supplementation Effect on IBD Mechanisms

Patients with inactive UC Adult (>18 yr) No change in the daily
symptoms score and DAI

No change in the CRP, MPO and
CAI

Increased IL-10/IL-12 ratio
147, 148 MCFA/LCFA IEC in vitro þ /�

inflammation
Anti-inflammatory Inhibited IL-8 secretion
Improved IEB integrity Suppressed the increased per-

meability and the decreased
TEER

Restored occludin, ZO-1/-2, clau-
din-1 and -3 expression and
MLCK

Decreased TNFR2 and
increased GPR40

Postbiotics before colitis
induction in mice

6–10 wo Improved IEB integrity Suppressed the increased
permeability

Anti-inflammatory Decreased metabolites derived
from n � 6 PUFA known for
their proinflammatory
properties

Increased PGE2 and 8-HETE
Treatment

129, 149–151 Slp Piglets PMBC and MLNC,
RAW 264.7 cells, HT-29
cells, Caco-2 cells, U937
cells

Anti-inflammatory Induced IL-10 secretion, inhibited
TNF-a and IFN-c release

Anti-inflammatory Decreased TNF-a, IFNa, IFNb, IL-
10, IL-1b, COX-2 and iNOS lev-
els, suppressed TLR4 signal-
ing, attenuated NLRP3
inflammasome and NOD2
signaling

SlpB is involved in adhesion
to HT29 cells.

Anti-inflammatory proper-
ties on Caco-2 cells
proinflammatory proper-
ties on U935 cells

Increased inflammation via
TLR2, inhibition of NF-kB/p65
translocation into the nucleus

133, 152–154 PGN RAW264.7 cells, colonic
lamina propria monunu-
clear cells (LPMC) from
colitis-induced mice, mu-
rine dendritic cells,
Caco-2 cells with over-
or underexpression of
hPepT1

Anti-inflammatory Inhibited NO synthesis, iNOS
and COX2 expression,
decreased LPS-induced
expression of TNF-a and IL-6

Anti-inflammatory Inhibited IL-6 synthesis through
inhibition of NF-kB

Anti-inflammatory Partial maturation of DC:
increased IL-10/IL-12 ratio via
NOD2 signaling

Proinflammatory Increased IL-8 expression
through NF-kB pathway, acti-
vation of NOD1/2 signaling
and increased IL-1b

142, 143, 155–
157

SCFA In vitro: human and mouse
PBMC, macrophages,
myofibroblast þ /� IEC,
HT-29, NMC460 cells

Anti-inflammatory
properties

Decreased NO, IL-6, TNF-a, and
IL-12 release through GPR43

Decreased NO, IL-6, TNF-a, and
IL-12 release due to an inhibi-
tion of HDAC

M2 macrophage polariza-
tion and migration

Increased STAT-6 phosphoryla-
tion and decreased H3K9
deacetylase Increased CCL2
expression

Induced mucoprotective
prostaglandin profile

Increased PGE1/PGE2, promoted
MUC2 expression in co-cul-
ture with IEC

NLRP3 inflammasome
activation

GPR43 signaling activation

157–160 SCFA after colitis induction
in mice

No data Limited colitis induction Decreased colonic IL-6, IL-1b,
and TNF-a increased colonic
expression of Arg1 increased
activation of the H3K9/STAT6
signaling pathway

Continued
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have two main receptors, TLR2 and NOD1/2, which are
expressed by antigen-presenting cells such as dendritic cells
(DC), macrophages, and IEC (176, 177).

PGN from certain Lactobacillus strains decreased the expres-
sion of LPS-induced TNF and IL-6 through inhibition of the
NF-κB signaling pathway in vitro and in colitismodel (152, 178).
Moreover, PGN from L. acidophilus inhibited inducible nitric
oxide synthase (iNOS) and COX-2 expression (179, 180). Most of
the studies dealing with PGNs nevertheless focused on their
effects under physiological conditions to investigate their
signaling pathway. Under basal condition, PGN increased
the expression of proinflammatory cytokines in IEC and
DC (153, 177). These studies suggested proinflammatory

effects of PGNs. Nonetheless, murine DC underwent par-
tial maturation when treated with L. salivarius 33 (Ls33)
PGN, resulting in an increased IL-10/IL-12 ratio (133).

In vivo, PGN from L. salivarius Ls33 protected against
2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis
induction by decreasing inflammatory parameters, but this
protection was absent in IL-10-deficient mice or NOD2-defi-
cient mice (Table 3) (133). No clinical data was found on Slp
administration.

To conclude, in vitro studies indicated anti-inflammatory
properties of PGN when cells were stimulated by an inflam-
matory stimulus, whereas PGN induced in basal condition a
proinflammatory response.

Table 3.— Continued

Reference

Postbiotic

Type Model or Study Design

Age of

Supplementation Effect on IBD Mechanisms

Promoted IL-10 production, acti-
vated Th1 cell STAT3 and
mTOR

Critical role for GPR43-mediated
recruitment of PMN to contain
intestinal bacterial
translocation

161–166 Mild activate adult CD Adult (>18 yr) No difference No difference in clinical, histo-
logical and endoscopic score

Active UC No difference No difference in the endoscopic
appearance of the mucosa

Tend to improve pathologi-
cal score

Improved DAI: 33% in the SCFA
group and 20% in the placebo
group

Decreased DAI Anti-inflammatory properties
mediated by an inhibition of
NF-kB in macrophages,
reduced the number of neu-
trophils in epithelium

167–174 SBA Rat IEC, Caco-2, and HT-
29 cells, differentiated
macrophages, Jurkat T
cells

DCA: proinflammatory
UDCA: no effect

DCA increased IL-8 secretion, 2
mM DCA cytotoxic UDCA: no
effect on IL-8 secretion or
capacity of enterocytes to limit
bacterial translocation

DCA proinflammatory DCA increased IL-8 secretion via
NF-κB activation

Anti-inflammatory Activated NF-κB pathway via
TGR5-cAMP signaling and
inhibited pro-inflammatory
cytokines production

Inhibited Th1 differentiation,
inhibited ERK phosphorylation
and decreased Th1 cytokines

Induced colitis in rats. After
colitis induction.

No data Mitigated colitis severity

Induced colitis in mice.
After colitis induction.

6–8 wo Decreased colitis and colo-
nic inflammation

Reduced leukocytes infiltration
and promoted TGR5 pathway

Postweaned
mice

DCA exacerbated DSS-
colitis

NLRP3 inflammasome activation,
increased pro-inflammatory
cytokines production by
macrophages

Promoted ileal and colonic
inflammation, gut dysbiosis

CAI, clinical activity index; CCL2, chemokine ligand 2; DAI, disease activity index; DCA, deoxycholic acid; DSS, dextran sulfate so-
dium; HDAC, histone deacetylase; HETE, hydroxyeicosatetraenoic acid; IBD, inflammatory bowel diseases; IEB, intestinal epithelial bar-
rier; IEC, intestinal epithelial cell; iNOS, inducible nitric oxide synthase; GPR, G protein-coupled receptor; LCA, litocholic acid; LTA,
litocholic acid; LCFA, long-chain fatty acid; MCFA, medium-chain fatty acids; MCT1, monocarboxylate transporter 1; MLNC, mesenteric
lymph node immune cells; mTOR, mammalian target of rapamycin; NLRP3, NOD-like receptor family, pyrin domain containing 3;
PBMC, peripheral blood mononuclear cells; PGE2, prostaglandin E2; PGN, proteoglycan; PMN, polymorphonuclear leukocytes; PUFA,
polyunsaturated fatty acids; ROS, reactive oxygen species; SBA, secondary bile acid; SCFA, short-chain fatty acid; Slp, surface layer pro-
tein; TGR5, Takeda-G protein receptor 5; TEER, electrical transepithelial resistance; TJ, tight junction; TLR, Toll-like receptor; UDCA =
ursodeoxycholic acid; wo, weeks old.
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Lipoteichoic and teichoic acids.
Lipoteichoic acids (LTA) and teichoic acids (TA) are mole-
cules anchored in the cell wall of Gram-positive bacteria.
LTA belong to microbe-associated molecular patterns,
which are recognized by pattern recognition receptors.
One in vitro study used human monocytic THP1 cells
stimulated with PGN from Shigella flexniri as an IBD
model (Table 3) (181). Pretreatment with LTA from L. plan-
tarum reduced proinflammatory cytokines in these
inflamed cells (181). On the other hand, LTA from L. aci-
dophilus NCFM decreased the IL-10/IL-12 ratio in cultured
dendritic cells (134). In IEC, the immunomodulatory
effects were also controversial. LTA from L. paracasei D3-5
decreased proinflammatory cytokines in murine intestinal
goblet cells and increased MUC2 protein level expression
(135). However, another study showed that LTA purified
from L. rhamnosus GG increased IL-8 mRNA expression in
Caco-2 cells (136). Two studies demonstrated in a murine
model of colitis that LTA-deficient Lactobacillus mutants
were protective, with a rise of colonic IL-10 level and a
reduced colitis score (Table 3) (134, 137).

The effects of LTA may differ within the same bacterial
species. Therefore, screening for immunomodulatory prop-
erties in specific bacterial strains is essential. Preclinical
studies suggested that LTA have proinflammatory properties
onmurine colitis models (134, 137).

Gut Microbial Metabolites

SCFAs.
In humans, SCFAs are found in different tissues but
mostly within the colon lumen. They include acetate, pro-
pionate, butyrate, and valerate and are produced by anaer-
obic bacteria through the fermentation of dietary fibers.
Butyrate is mainly produced by gut bacteria that belong to
the phylum Firmicutes, such as F. prautsnitzii, whereas
propionate and acetate production are mainly produced
by Bifidobacterium bacterial species (182). SCFAs, the
main energy source for colonocytes, participate in diverse
intestinal functions, such as digestive motility, immuno-
modulation, and modification of gene transcription (35,
39, 183). SCFAs improve the gut barrier function and
impact the intestinal microbiota (155, 184). Patients with
IBD have reduced levels of SCFAs in the mucosa and feces
(185). Most studies support anti-inflammatory benefits of
SCFAs (63). All these data suggest an involvement of
SCFAs in IBD pathogenesis.

Indeed, pretreatment with SCFAs reduced the inflamma-
tory response on both IEC and immune cells (138–140).
SCFAs inhibited IL-8 secretion induced by inflammatory
stimulus in human fetal cell line, fetal intestinal organoids,
and fetal mouse intestine (141). Regarding therapeutic
effects, treatment of challenged-immune cells with butyrate
or acetate reduced proinflammatorymediators release by inter-
acting with the GPR43 receptor (Table 3) (142, 156). Butyrate
facilitated M2 macrophage polarization after stimulation
with both butyrate and IL-4, a Th2 cytokine (157). Besides,
butyrate promoted migration of macrophages by increas-
ing chemokine ligand 2 (CCL2) expression. Furthermore,
treatment with SCFAs on cocultures of IEC and myofibro-
blasts induced a mucoprotective prostaglandin profile,

reflected by an increased PGE1/PGE2 ratio in myofibro-
blast supernatants (155). Finally, acetate induced a NLRP3
inflammasome activation in colonic epithelial cells
through GPR43 and Ca2þ signaling (143).

Acetate protected in vivo against colitis, improved IL-10
production, and reduced proinflammatory cytokines (Table
3) (142–144). Regarding treatment, SCFAs attenuated gut
inflammation in DSS-treated mice (Table 3) (157, 158).
Indeed, SCFAs stimulated colonic IL-10 secretion in mice
with colitis (158). Butyrate decreased the histological score in
DSS-treatedmice by inducing M2macrophage (158).

Only few studies have examined the therapeutic effect of
SCFAs in active Crohn’s disease and they are not conclusive
about the efficiency of SCFAs to treat CD (Table 3). More lit-
erature exists on the preventive and therapeutic effects of
SCFAs in UC. No differences in improvement of clinical, his-
tological, and endoscopic scores were shown between butyr-
ate and 5-aminosalicylate (5-ASA) supplementation (161).
Butyrate combined with current treatments induced an
increase of the IL-10/IL-12 ratio but did not change C-reactive
protein, myeloperoxidase, or clinical activity index (186).
Regarding curative effects of SCFAs on active UC, most stud-
ies failed to show a difference between SCFAs and current
treatments (162–164). A study showed that butyrate enema
improved disease activity index (DAI) in patients with UC,
reduced both the number of neutrophils in crypt and surface
epithelia (165).

To conclude, in vitro studies suggested an anti-inflamma-
tory role of SCFAs on IEB via NF-κB pathway and the GPR43
receptor. Furthermore, in vivo studies suggested that SCFAs
mitigated intestinal inflammation in induced-colitis model.
Clinical studies are however not successful in terms of SCFA
efficiency.

Medium-chain fatty acid/long-chain fatty acid.
Medium-chain fatty acids (MCFAs) and long-chain fatty
acids (LCFAs) mostly derive from diet, but bacteria can also
generate these lipids via the biohydrogenation pathway (187,
188). Recent evidence for their relevance in IBD is emerging
with a recent study highlighting the possible use of bacteria-
derived long-chain fatty acid that exhibited anti-inflamma-
tory properties in colitis. Indeed, E. coli EcN1917 produced a
high level of 3-hydroxyoctadecaenoic acid (C18-3OH) com-
pared with other strains. Administration of C18-3OH in a
mice model of colitis improved colitis and restored gut dys-
biosis (147). Besides, 10-hydroxy-cis-12-octadecenoic acid
(HYA), a derivate of linoleic acid (n � 6), protected against
inflammation by restoring tight junction proteins expression
and modulating the expression of the TNF receptor TNFR2
in cultured IEC (148).

Secondary bile acids.
Bile acids (BAs) are produced in the liver from the choles-
terol metabolism and are further metabolized by gut bacte-
ria. Cholesterol is converted to primary BAs, such as
chenodeoxycholic acid (CDCA) and cholic acid (CA) that are
released after a meal in the intestine, where they aremetabo-
lized by gut bacteria. Gut anaerobic bacteria deconjugate the
liver-derived BAs to their respective free BAs and then con-
vert primary BAs into secondary BAs (SBAs) in the colon. CA
is transformed into deoxycholic acid (DCA), and CDCA is
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transformed into litocholic acid (LCA) and ursodeoxycholic
acid (UDCA). SBAs have different functions, including regula-
tion of energy homeostasis, anti-inflammatory effects, and
antimicrobial functions (189). Patients with IBD have reduced
level of SBA in stools but not of total fecal BA concentrations,
suggesting that this decrease is due to an impaired gut micro-
biota BAmetabolism (190).

DCA increased in vitro IL-8 secretion by IEC, but high con-
centrations of DCA were toxic on Caco-2 cells (Table 3) (167–
169). Furthermore, DCA and LCA inhibited TNF production
in differentiated macrophages stimulated by commensal
bacterial antigen or LPS. Pretreatment of CD4þ Th cells with
LCA inhibited Th1 differentiation (170).

Mice with DSS-induced colitis pretreated with LCA or
UDCA displayed an improvement in the severity of colitis
(147, 148). Colonic alkaline phosphatase (AP) activity, a
marker of leukocyte infiltration, was significantly reduced
by UDCA in rats with colitis. DCA exacerbated DSS-colitis
and triggered NLRP3 inflammasome, therefore, increased
proinflammatory cytokines production of macrophages
(171). Regarding the curative mode, DCA and LCA improved
colitis by decreasing colonic inflammation and disease pa-
rameters (Table 3) (191). UDCA also had beneficial effects on
acute and chronic colitis induced by 2,4,6-trinitrobenzene-
sulfonic acid (TNBS) (172). SBAs reduced leukocytes infiltra-
tion and exerted an anti-inflammatory effect, in part
dependent on the TGR5 bile acid receptor, in three murine
colitis models (191). However, other studies did not show
beneficial effects of SBAs.

To conclude, SBAs appeared to have beneficial effects in
an inflammatory context. However, caution should be taken
in the use of SBAs as DCAwas toxic in some studies (167).

Key Ideas: Gut Microbial Components

Most of gut microbial components reduce inflammation.
Limits: lack of in vivo studies and absence of clinical trials to
conclude on their value in the prevention/treatment of IBD.

Key Ideas: Gut Microbial Metabolites

SCFAs are the most studied postbiotics in IBD; however,
clinical studies are insufficient. The cited metabolites apart
from SCFAs also showed promising results.

SYNBIOTICS

Definition

Synbiotics are products combining prebiotics and probiotics
(192). Their benefit for the host relies on the synergic or addi-
tive action of both components to ensure an effective imple-
mentation of an improved microbiota by enhancing the
survival of specific bacterial strains and/or their metabolism.
Such strategy may help to preserve the intestinal functions
and prevent diarrhea or constipation for the individual (193).
Strengthening of the immune system and of the intestinal bar-
rier is also investigated together with inhibition of pathogens
(192). So synbiotics reportedly have a greater efficacy than
pro-/prebiotics alone (193). Synbiotic administration may
reduce cost and treatment duration, thus enhancing compli-
ance (194). For all those reasons, synbiotics represent an
attractive field of study for IBD care.

In Vitro Studies

Synbiotic supplementation was used only as treatment
(Table 4). Altogether, in vitro studies underlined a positive
effect of synbiotics via different mechanisms. An increased
diversity of the microbiota and production of SCFA were
observed after incubation of a synbiotic composed of
Bacillus strains and a mix of FOS, xilooligosaccharides
(XOS), and GOS in a synthetic human GI tract called M-
SHIME (196). Human immune cells like PBMC were also
impacted by the synbiotics, through the influence of the pre-
biotics part of synbiotic, for instance short-chain GOS and
long-chain FOS (scGOS/lcFOS), which induce the production
of IL-10 by dendritic cells (48). Metabolites derived from syn-
biotics like SCFAs also play a role, as seen with the SCFAs
derived from the synbiotic inulin þ Lactobacillus rhamno-
sus GG ATCC 53013 that reduced the production of inflam-
matory cytokines by LPS-stimulated human PBMCs (216).

Preclinical Studies

In general, the literature on synbiotics at preclinical level
is scarce and seems to focus on the preventive aspect of syn-
biotics (Table 4). Promising results were achieved in the
described preventive studies, with a reduction of the disease
severity and colonic damages. The mechanisms found were
the same as in in vitro studies: increased microbiota diver-
sity, production of SCFAs, and secretion of IL-10 (199).
Interestingly, a restoration of the gut barrier was seen after a
supplementation by Bifidobacterium infantis þ XOS inmale
C57BL/6 mice under acute DSS-induced colitis via the
increase of tight junction proteins ZO-1 and claudin-1 expres-
sion (202). It appears that a supplementation of synbiotics
mitigates the development of colitis inmurinemodels.

Two other preclinical studies were found on the treatment
of colitis with synbiotics. A synbiotic constituted of L. para-
casei B21060 þ FOS þ arabinogalactan was given after DSS
induction for 1 wk in male BALB/c AnNHsd mice. Another
study used an acute DSS induction on C57BL/6 mice with a
synbiotic composed of Lactobacillus gasseri 505 þ Cudrania
tricuspidata extract. Both studies showed anti-inflammatory
effects, with a decrease of colonic damages and TNF produc-
tion and a restoration of the gut barrier.

Clinical Studies

Surprisingly, more data were available on clinical trials
but only for treatment with synbiotics. Indeed, no study was
found with a use of synbiotics as preventive mean for IBD
(Table 4). The heterogeneity of the studies is striking.
Different types of synbiotics were used such as “Synbiotic
2000,” which included inulin, b-glucans, resistant starch,
and pectin. The recruited patients with IBD were mostly
patients with UC (only 2 studies with patients with CD) with
a broad range of disease severity, from remission to severe
disease activity. The number of tested individuals is small
(<50/condition) and underlines a need for clinical trials with
a more consequent number of participants to ensure a rele-
vant analysis of the effects of synbiotics.

One study focused on children with UC of �12 yr old in
remission for whom a synbiotic composed of B. longum
R0175 þ inulin was given for 10 mo (203). The result of this
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Table 4. Studies of synbiotic uses as prevention and/or treatment for colitis or IBD

Reference Synbiotic Model or Study Design Age of Supplementation Effect on IBD Mechanisms

Prevention
195 Oligoalternan þ B. breve

R0070 þ L. lactis
R1058

HT-29 cell line þ LPS/
IFN-c

Improved IEB integrity Inhibited cell
proliferation

48 scGOS/lcFOS þ L. rham-
nosus or B. breve

Immature primary
human immune cells
þ PMA/ionomycin

Anti-inflammatory Induced IL-10 secretion

196 MegaSporebiotic þ
MegaPrebiotic

In vitro human gastroin-
testinal tract M-
SHIME, each with
fecal inoculum of a
different human adult

Improved gut
microbiota

Increased microbiota di-
versity and SCFA
production

197 Synbiotic Multilac Baby Pathogens culture: ei-
ther E. coli EPEC, Sh.
sonnei, S. typhimu-
rium, K. pneumonia,
and C. difficile

Higher growth inhibition
of all pathogens with
the synbiotic com-
pared with probiotics
alone

198 Synbiotic Instant Mixture =
Lactobacilli þ
Bifidobacteria þ inulin

HLA-B27–b2-microglo-
bulin rats þ sponta-
neous colitis.
Synbiotic before coli-
tis induction

2 mo old Improved gut
microbiota

Reduced histological
score, increased
microbiota diversity

199 L. paracasei B21060 þ
FOS þ
arabinogalactan

BALB/c AnNHsd mice
þ acute DSS colitis.
Synbiotic before coli-
tis induction

10 wo Improved IEB integrity Reduced colonic dam-
ages. Restoration of
gut barrier, increased
IL-10

200 L. rhamnosus GG þ
tagatose

BALB/c mice þ acute
DSS colitis. Synbiotic
before colitis
induction

6 wo Improved gut
microbiota

Reduced clinical symp-
toms, recovery of gut
microbiota dysbiosis

201 Green banana resistant
starch þ Bacillus coag-
ulans MTCC5856,
whole plant sugar cane
fiber Kfibre þ Bacillus
coagulans MTCC5856

C57BL/6 mice þ acute
DSS colitis. Synbiotic
before colitis
induction

7 wo Reduced disease and
histological scores,
increased SCFA
production

202 Bifidobacterium infantis
þ xylooligosaccharide

C57BL/6 mice þ acute
DSS colitis. Synbiotic
before colitis
induction

6–7 wo Anti-inflammatory and
improved IEB
integrity

Reduced DAI, inflamma-
tory cytokines.
Strengthened gut
barrier

203 B. longum R0175 þ inulin Single-blind RPCT: UC
patients in remission

Mean age: 12.6 yr old. Improved quality of life Improved quality-of-life
score

204 B. longum þ psyllium RCT: mild/in remission
UC patients

Mean age (synbiotic,
prebiotic, probiotic):
35, 37 and 36 yr old.

Improvement of IBDQ

205 Synbiotic 2000 DB RPCT: CD patients
undergoing resection

Mean age at surgery
(synbiotic, placebo):
36.1 and 34.7 yr old.

No effect No effect on postopera-
tive recurrence of CD

206 B. breve Yakult þ GOS Open-label RCT:
patients with active/in
remission UC

Mean age (synbiotic,
control): 43.6 and
47.4 yr old.

Improved gut
microbiota

Reduced endoscopic
score, change of gut
microbiota

Treatment
199 L. paracasei B21060 þ

FOS þ
arabinogalactan

Male BALB/c AnNHsd
mice þ acute DSS
colitis. Synbiotic after
colitis induction

10 wo Anti-inflammatory and
improved IEB
integrity

Reduced colonic dam-
ages. Restoration of
gut barrier, increase
of IL-10

207 L. gasseri 505 þ
Cudrania tricuspidata
extract

C57BL/6 mice þ acute
DSS colitis. Synbiotic
after colitis induction

5 wo Anti-inflammatory Reduced serum TNF-a,
nitric oxide

208, 209 B. longum þ Synergy 1 DB RPCT: patients with
active UC and CD.

Mean age (synbiotic,
placebo): 45–46.3
and 38–49 yr old.

Anti-inflammatory and
improved gut
microbiota

Reduced disease activ-
ity, inflammatory cyto-
kines. Increased
regeneration of tissue
and change of gut
microbiota

Continued
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study is encouraging as no severe symptoms were observed
and an improvement of the quality of life was assessed.

Treated patients were aged of 18–60 yr old, and treatment
time ranged from 4 wk to 1 yr. Apart from two studies where
no effect of synbiotics were seen on CD recurrence or micro-
biota, and despite the heterogeneity of disease severity and
disease type, the majority of the clinical trials presented a
beneficial effect of synbiotic through a clinical improvement
(205, 217). The tested synbiotics appeared also effective to
reduce the production of inflammatory cytokines like IL-6 or
IL-8 (210). For instance, two studies used B. longum and
“Synergy 1,” a preferential inulin/oligofructose growth sub-
strate for this strain, on patients with either active CD or UC
for 1 to 6mo (208, 209). Both trials showed a reduction of dis-
ease severity after supplementation. This can be linked to a
modulation of the microbiota and an enhancement of the
tissue regeneration. Moreover, synbiotics contributed also to
maintain remission and to reduce treatment dosage, as seen
in a clinical trial with patients with active UC supplemented
with a synbiotic containing patented Streptococcus faecalis
T-110 JPC, Clostridium butyricum TO-A, Bacillus mesentricus
TO-A JPC, Lactobacillus sporogenes, and a prebiotic (213).

Conclusions on Synbiotics

Few studies are available at in vitro and preclinical levels
but all of them pointed out the beneficial effects of synbiot-
ics on inflammation: reduction of colonic damages and
inflammatory cytokines production, restoration of the
microbiota diversity, and strengthening of the gut barrier.
Synbiotics appeared to bemore effective as pre- or probiotics
alone. These observations were also seen at clinical level,
with a reduction of disease activity and an extension of

remission. However, robust homogenized clinical trials are
lacking to fully characterize the effects of synbiotics and
their design should be supported by preliminary data gener-
ated from preclinical studies. The distinctions of disease
type and disease severity are also an important factor.

Key Ideas: Synbiotics

Beneficial effects observed at all levels for synbiotics: 1)
restored diversity of the microbiota; 2) decreased anti-
inflammatory cytokines production; 3) strengthened the gut
barrier; and 4) improved disease severity, which led to an
extended remission for patients with UC. Limitations: lack of
robust in vitro/preclinical and clinical studies, especially for
prevention; more data should be collected to describe pre-
cisely the effects of synbiotics for UC and CD, at different dis-
ease stages and different age of the individual.

FECAL MICROBIOTA TRANSPLANTATION

Definition

Because IBD is associated with alteration in the gut micro-
biota (reduced diversity, increased pathogens, and low
commensals), fecal microbiota transplantation (FMT) is
increasingly considered for the therapeutic treatment of IBD.
FMT consists of the transfer of fecal material from a healthy
donor to a recipient patient to restore the pathology-induced
alterations of the intestinal microbiota. FMT can be adminis-
tered through the lower gastrointestinal tract (enema, colono-
scopy, and sigmoidoscopy) or upper gastrointestinal tract
(endoscopy, nasoduodenal tube, and capsule ingestion).
Although this method has been proven to be effective in cases

Table 4.— Continued

Reference Synbiotic Model or Study Design Age of Supplementation Effect on IBD Mechanisms

210 L. paracasei B20160 þ
arabinogalactan þ
XOS

RPCT: patients with
mild/moderate UC
UBT.

Mean age (synbiotic,
placebo): 46 and 48
yr old.

Anti-inflammatory Decreased serum IL-6,
IL-8

211 Inulin þ L. plantarum, L.
gasseri, L. casei, B.
infantis, L. salivarius, L.
acidophilus, S. thermo-
philus, L. sporogenes

Randomized open-label
trial: patients with
mild/moderately
active UC UBT

Increased remission.

212 Enterococcus faecium, L.
plantarum, S. thermo-
philus, B. lactis,
Lactobacillus acidophi-
lus, B. longum þ FOS

RPCT: patients with
mild/moderately
active UC.

Mean age (synbiotic,
placebo): 44.94 and
40 yr old.

Reduced DAI

213 S. faecalis T-110 JPC, C.
butyricum TO-A, B.
mesentricus TO-A JPC,
L. sporogenes þ
prebiotic

Open-label RCT:
patients with moder-
ately/severe active
UC UBT.

Adult patients (>18 yr) Increased remission. Reduced relapse and
disease severity.
Increased remission
duration, reduction of
steroid dosage

214 Depending on parameter,
4–5 studies included

Meta-analysis of several
diseases including
IBD.

Depends on study Anti-inflammatory Reduced CRP and
TNF-a

215 Lactocare DB RPCT: patients with
mild/moderately
active UC UBT.

Adult patients (>18 yr) Reduced SCCAI.

CD, Crohn's disease; DAI, disease activity index; DB, double-blind; FOS, fructo-oligosaccharides; GOS, galacto-oligosaccharides; IBD,
inflammatory bowel diseases; IBDQ, inflammatory bowel disease questionnaire; IEB, intestinal epithelial barrier; LAB, lactic acid bacte-
ria; LPS, lipopolysaccharides; PMA, phorbol 12-myristate 13- acetate; RCT, randomized controlled trial; RPCT, randomized placebo con-
trolled trial; SCCAI, simple clinical colitis activity index; SCFA, short-chain fatty acids; UBT, under baseline treatment; UC, ulcerative
colitis; XOS, xilooligosaccharides; wo, weeks old.
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of recurrence of Clostridium difficile infection (218), it is still
under study for IBD.

Preclinical Studies

Few preclinical studies have investigated the role of FMT
in the treatment of colitis (219–222). In a DSS-induced mu-
rine model of colitis, FMT of untreated mouse microbiota
decreased weight loss and reduced colonic inflammation as
measured by increased colonic length and fewer histological
alterations (220–222). FMT also improved homeostasis of the
gut microbiota with an increase in Lactobacillus and
Bifidobacterium bacteria and restoration of tryptophan and
SCFA levels similar to that of untreated mice (221, 222).
Mechanisms by which FMT promotes the recovery of DSS-
induced colitis may be mediated by the regulation of the
immune system with higher IL-10 production as well as aryl
hydrocarbon receptor (Ahr) activation (220). In another
study, colonization of gnotobiotic mice with IBD donor-
derived microbiotas induces an IBD-like phenotype charac-
terized by abnormal immune cell profile (abundant Th17
cells and lower tolerogenic RORgtþ Treg cell) and higher
susceptibility to colitis (219). Transplantation of healthy
human donor microbiota in IBD mice favored a tolerogenic
immune response with increased proportion of RORgtþ
Treg cells that may protect from colitis. Thus, therapeutic
effects of the FMT on IBD likely involve the remodeling of
the gut microbiota and regulation of intestinal immunity.

Clinical Studies

Four studies have now been published on the treatment of
IBD using FMT (223–226). They concern patients with UC in the
active phase of the disease were intended to induce remission.
Overall, 277 patients with UC receiving FMT (n = 140) or placebo
treatment (n = 137) were followed over 8 to 12 wk posttreatment.
Clinical remissionwas achieved in 28%of patientswho received
FMT compared with 9% in the placebo group. However, one of
the randomized controlled trial (RCT) studies did not find any
significant difference between FMT and placebo groups in
improving remission (223). These discrepancies may rely on
FMT frequency and mode of administration as well as donor
microbiota. Microbial analysis of patients who achieved remis-
sion shows higher microbial diversity following FMT compared
with those who did not and compared with placebo. Specific
bacterial family (Clostridium clusters IV and XIVa or Roseburia
species) were correlatedwith disease improvement while others
(Fusobacterium orEscherichia species) were associatedwith the
lack of remission. Specifically, better outcomes were observed
for patients with UC who had a shift in microbiota composition
toward the donor composition (223, 227). Microbial functional
changes were also observed in patients who achieved remission
following FMT with an increase in SCFA and secondary bile
acid levels (227). One pilot RCT on pediatric UC population also
suggests that FMT improves symptoms and inflammatory
indexes throughmicrobial changes and the regulation ofmuco-
sal inflammation (228).

In CD, fewer studies have been conducted and the results
are scarce. One reason could be the heterogeneous nature of
CD for which FMT advantage may not be observed in all phe-
notype. Only one randomized controlled study showed that
the incidence of flare was lower following FMT compared with

the placebo group despite no significant differences in clinical
remission rate at 10- and 24-wk posttransplantation. However,
patients who received FMT had a decrease in Crohn’s disease
endoscopic index of severity and, contrary to sham group, had
no increase of C-reactive protein level after 6 wk (229). Similar
to UC studies, maintenance of remission was associated with a
greater colonization of the donormicrobiota in patients.

Conclusions on FMT

To conclude, despite a small number of enrolled patients
and short-term evaluation of clinical remission, the efficacy
of FMT in improving clinical response and in the induction
of remission in patients with UC are promising but larger
studies are needed in patients with CD. Also, the few studies
are encouraging regarding the safety of FMT treatment since
the patients who had received FMT only had rare adverse
events withmostlymild transient gastrointestinal symptoms
(diarrhea, gas, or bloating). Overall, this suggests that FMT
could be an effective therapeutic approach in IBD. However,
several questions remain to be addressed. One is the defini-
tion of the material to be transplanted: how can we define a
healthy microbiota? Should we prefer one donor or several?
Is there a “super-donor”? Is there any donor-recipient
matching required to improve FMT effects? Another ques-
tion is about the FMT procedure: what is the best mode of
delivery? Which frequency is needed? As Moayyedi et al.
(224) observed that early diagnosed (<1 yr) patients with UC
had a better FMT outcomes, should we determine any spe-
cific window of action during IBD course to favor FMT effi-
cacy? Also, the question of the microbiota resilience arises:
will the transplanted bacteria become sustainably estab-
lished in the host? Is there a need for repeated FMT? The du-
rability of therapeutic effects of FMT is still unclear but
recent studies reported mid-term outcomes in patients with
UC with remission greater than 6 mo up to over 1 yr when
associated with a maintenance of FMT or dietary modifica-
tion (228, 230). Finally, the main question concerns the
active compounds of the FMT: what are the mediators (bac-
terial products, metabolites, bacteria) of the beneficial effects
of FMT and mechanisms? These questions will need to be
addressed in large clinical studies for patients with both UC
and CD to demonstrate that FMT could be an effective (per-
sonalized) treatment for IBD.

Key Ideas: Fecal Microbiota Transplantation

Beneficial effects observed in preclinical and clinical stud-
ies: 1) restored the diversity of the microbiota; 2) restored an
anti-inflammatory and tolerogenic immune profile; 3) pro-
moted clinical remission; and 4) improved disease severity
that led to an extended remission for patients with UC.
Limitations: lack of randomized clinical studies, especially
for CD; lack of reproducibility among studies (FMT proce-
dure, donor type, etc.); more data should be collected to
describe precisely the effects of FMT in UC and CD, at differ-
ent disease stages and different patient phenotypes.

DIET

Several studies underline the protective effect of a healthy
diet as well as the high consumption of fruits and vegetables
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against the risk of CD development (231, 232). On the con-
trary, diets enriched in fat and/or sugars constitute risk fac-
tors for IBD development (232, 233). The composition of the
diet may influence several biological systems: the immune
system, the microbiota, and the host response. Epigenetic
effects can be induced by diet, as seen in an in vivo study
where a methyl-donor maternal diet increases colitis suscep-
tibility in offspring (234). Diet represents an interesting
research field for IBD care, especially due to its ease of imple-
mentation. The impact of numerous types of diet or diet
components have been tested on IBD or colitis model, from
high salt to dietary fiber, high-fat, or spicy food, and we can-
not be exhaustive in this review to summarize them.
Nevertheless, we wanted to mention two particular supple-
mented diet: vitamin D and n � 3 or n � 6 polyunsaturated
fatty acids (PUFA) enriched diet, because they represent
diets tested long time ago and are among the most investi-
gated nutrients with a potential association to IBD. In addi-
tion, they have a renewed interest especially because they
regulate and/or are regulated by key elements of digestive
homeostasis: lipids andmicrobiota (147, 235, 236).

Vitamin D

Vitamin D is a lipophilic compound that induces calcium
absorption from the gut after binding to the vitamin D receptor
(VDR). Deficiency in vitamin D is associated with increased
IBD disease activity and clinical relapse (237).

Two in vitro studies on intestinal epithelial and immune
cells studied the protective effects of vitamin D, while two
others examined therapeutic effects. According to a study on
Caco-2 cells challenged with adherent-invasive E. coli (AIEC)
strain LF82, Vitamin D pretreatment protected against AIEC-
induced IEB disruption bymaintenance of the tight-junction
distribution (Table 5) (273). In addition, pretreatment of
immune and intestinal epithelial cells with vitamin D stimu-
lated NOD2 expression, HBD2, and antimicrobial cathelici-
din expression (274). In regard to treatment, Vitamin D3
downregulated claudin-1 and -2 and upregulated claudin-4
and -7 in colonic biopsies from patients with UC (Table 5).
Besides, vitamin D3 inhibited IL-13 and IL-6 expression
(267). Finally, another study found that vitamin D reduced
permeability and increased TEER of disrupted IEB (268).

One in vivo study evidenced the protective effect of vita-
min D toward colitis in early life. Vitamin D prevented the
increase of intestinal permeability in DSS-treated mice as
well as the disruption of IEB by AIEC E. coli (Table 5) (273).
High dose of vitamin D was however deleterious, inducing a
more severe colitis and an increase of proinflammatory cyto-
kines expression. Furthermore, microbial composition of
mice fed with high dose of vitamin D was similar to that of
DSS-treated mice, indicating a negative impact of strong
doses of vitamin D on the gut microbiota (275).

All clinical studies were performed in adults, and very few
studies investigated the ability of vitamin D to maintain
remission in patients with UC (Table 5). Vitamin D main-
tained gut permeability of patients with CD in remission,
decreased C-reactive protein level, but did not change the
CDAI score (276). Interestingly, a high dose induced a better
rate of relapse than a low dose. Furthermore, vitamin D3
improved anxiety and depression scores (277). A pilot study

exhibited the beneficial effects of vitamin D3 supplementa-
tion on patients with active CD with improved CDAI and
quality-of-life scores (269).

Patients with UC in remission with low serum level of vita-
min D (<35 ng/mL) have higher risk of clinical relapse (278).
However, there is a lack of studies investigating the effects
of vitamin D supplementation to sustain patients with UC
in remission. Vitamin D supplementation reduced intestinal
inflammation in patients with active UC (270). Besides, patients
with active UC presented an increase of Enterobacteriaceae but
no change in gut microbiota diversity (270). A decrease in
UCDAI was observed correlated with an increase in serum vita-
min D, a reduction in C-reactive protein, and calprotectin.
Patients with active UC who received vitamin D presented
decreased DAI, serum C-reactive protein, and TNF level (271).
However, another study demonstrated no difference of DAI or
inflammatory markers on patients with UC supplemented with
vitaminD (272).

n2 3 or n2 6 PUFA Supplementation

Because of their attractive anti-inflammatory effects, diets
enriched in n � 3 PUFA and/or diet with an increased n � 3-
to-n � 6 (n � 3/n � 6) ratio have been tested in different
inflammatory digestive pathologies including IBD. In addi-
tion, association studies correlated high n � 3 PUFA concen-
trations with a reduction of CD and protection from UC (279–
281). n � 3 PUFA modulate the microbiota, by increasing bu-
tyrate-producing bacterial genera but also by decreasing
Faecalibacterium, for instance (282). n � 3 PUFA are consid-
ered anti-inflammatory fatty acids and theymay, for example,
counter n � 6 PUFA inflammatory effects by competition
(283). Resolvins, protectins, and other proresolving molecules
derived from n � 3 PUFA modulate the immune response to-
ward a resolution of inflammation, and strengthen the barrier
by increasing epithelial proliferation (284, 285). Nevertheless,
studies showing the protective effects of n � 6 (12, 13, 286) or
those highlighting defects in the metabolites of n � 6 in
patients with IBD (7), reshuffle the cards.

In Vitro Studies

Preincubating cells with n � 3 PUFA resulted in anti-
inflammatory effects, with a decrease of IL-17RA, IL-12B
expression in monocytes, and an induction of tolerance by
an increase of IL-10 production by dendritic cells (Table 5)
(238, 241). A reinforcement of the gut barrier was achieved by
increasing the transepithelial resistance, reducing the
increase of permeability induced by inflammation, and by
preventing barrier disruption (243). The duration of expo-
sure to n � 3 PUFA is heterogeneous, as well as the mean
of inflammation. 15-Hydroxyeicosatetraenoic acid (15-
HETE) or 11bPGF2a have n � 6 PUFA metabolites pre-
sented also IEB strengthening properties as they decrease
IEB permeability and increase IEB healing (12, 13). Thus,
promising results were achieved in vitro for prevention.

Effects are more mitigated for in vitro of n � 3 PUFA as a
treatment (Table 5). Fish oil decreased the production of
proinflammatory mediators like PGE2 and the expression of
COX2, but induced at the same time apoptosis (261, 263).
Interestingly, fish oil modified the composition of peripheral
bloodmononuclear cells and plasma phosphatidylcholine.
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Table 5. Prevention and treatments studies with diet in IBD

Reference Food Substrate Model or Study Design Age of Supplementation Effect on IBD Mechanisms

Prevention
238 Krill oil (EPA þ DHA) THP1 cells þ LPS,

Citrobacter roden-
tium, PMA.

Before inflammation Anti-inflammatory Decreased inflammatory
cytokines production,
induced macrophages
M2 differentiation and
enhanced bacterial
killing.

White Yorkshire x
Landrace pigs, C3H/
HeNCr mice þ
Trichuris suis or C.
rodentium infection

9–10 wo pigs5 wo mice Anti-inflammatory and
improved gut
microbiota

Reduced the increase of
crypts length, body
weight loss, inflamma-
tory cytokines expres-
sion. Improved spleen
index, changed gut
microbiota composition.

239, 240 EPAþDHA DB RPCT: patients with
CD in remission with
5-ASA

Mean age = 10.13 yr old Reduced relapse.

DB RPCT: EPIC-1
(patients with CD in
remission), EPIC-2
(patients with active
CD UBT)

EPIC-1 mean age (pla-
cebo, n � 3): 38.2
and 40. 5 yr old.

EPIC-2 mean age (pla-
cebo, n � 3): 40 and
38.5 yr old.

Failed to prevent
relapse

No difference in CDAI or
SF-36 scores

241, 242 EPA, PA or DHA BALB/c mice bone mar-
row-derived DCs, pri-
mary HIMEC cells þ
LPS, IL-1b

Before inflammation Anti-inflammatory Increased IL-10 production,
reduced VCAM-1 and
VEGFR2 expression.

243–246 ALA, EPA, DHA, LA,
GLA, AA, fat blend

RAW 264.7, 293 T, T84
cells lines þ LPS,
IFN-c/TNF-a, IL4, heat
stress

Improved IEB integrity Reduced NF-κB activation,
COX-2 expression.
Reinforced the barrier
by changing tight junc-
tion proteins distribution
and morphology.

247–249 LA:ALA, LA:LC n � 3
PUFA, n � 3/n � 6/n
� 9 diets at different
ratios

Sprague-Dawley rats þ
acute DSS or TNBS
colitis. Before colitis
induction

Postweaning Anti-inflammatory Reduced DAI, colon histo-
logical score, pro-inflam-
matory cytokines
expression, anemia and
inflammatory cytokines.
Changed colon phos-
pholipid fatty acids
profile.

242, 250, 251 ALA-rich oil, fish oil Sprague-Dawley rats þ
acute TNBS colitis.
Before colitis
induction

7–8 wk inferred Anti-inflammatory and
improved IEB
integrity

Decreased adhesion mole-
cules, inflammatory cyto-
kines expression. Anti-
angiogenic effect.

252, 253 Extra virgin olive oil
(EVOO), polyphenol
extract (PE), EVOO þ
PE, fish oil

Wild-type or Rag2�/�
C57BL/6 mice

Acute T transfer or DSS
colitis (induction þ
rest). Before colitis
induction.

6–12 wo Reduced DAI, colon histo-
logical score, inflamma-
tory cytokines
expression and cell pro-
liferation.

Fish oil: no effect on IBD
score, modified lipid
concentrations.

254 Fish oil (n-3 PUFA) þ
corn oil (n-6 PUFA)

C57BL/6 mice þ acute
C. rodentium colitis.
Before infection

4 wo Improved gut
microbiota.

Protected against colitis
but increased mortality
with impairment of infec-
tion-induced responses.
Increased Lactobacillus
and Bifidobacteria
abundances.

255 Fish oil or n-3 PUFA Meta-analysis: CD and
UC patients in
remission

Depends on study No effect No benefit for UC. N-3
PUFA reduced risk of
relapse for CD patients
but heterogeneity. Risk
of upper GI tract
symptoms.

Continued
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Table 5.— Continued

Reference Food Substrate Model or Study Design Age of Supplementation Effect on IBD Mechanisms

256 Atlantic salmon Pilot study: UC patients
UBT

Mean age = 50 yr old Reduced SCCAI and
increased AIFAI in
plasma and rectal
biopsies.

257–259 EPA-FFA Controlled study:
patients with CD and
UC in remission UBT

Pilot study, RCT:
patients with UC in
remission UBT.

Mean age-controlled
study (CD, UC,
healthy) = 39, 34, 28
yr old

Mean age pilot study
(control, EPA-FFA) =
22–48, 45 yr old

Mean age RCT (pla-
cebo, EPA-FFA) =
42.7, 47.1 yr old

Anti-inflammatory and
improved gut
microbiota

Improved histological
inflammation, main-
tained clinical remission,
changed gut microbiota
composition.

260 Grounded flaxseed
(GF), flaxseed oil (FO)

Open-labeled RCT:
patients with UC UBT

Mean age (control, GF,
FO) = 32.52, 29.92,
32.30 yr old

Anti-inflammatory Reduced inflammatory
cytokines, Mayo score.
Increased IBDQ-9 score.

Treatment
261, 262 Fish oil (EPAþDHA),

extra virgin olive oil,
OA-BSA, LA-BSA, AA,
EPA

Caco-2, HT-29, NIH
3T3, RAW 264.7
cells þ PMA

Improved IEB integrity Induced apoptosis, cell dif-
ferentiation. Decreased
cell proliferation.

263, 264 Fish oil þ vitamins A, C,
E/selenium or enteral
elemental diet EO28

CD patients PBMC,
plasma phosphatidyl-
choline, Colonic biop-
sies of active UC and
CD patients þ LPS,
ConA

Anti-inflammatory Modified PBMC and
plasma phosphatidyl-
choline compositions.
Decreased cytokines
and increased IL-1ra
production.

265 Extra virgin olive oil Chronic DSS colitis 6 wk old Sprague-
Dawley rats

Decreased DAI and inflam-
matory cytokines
expression, improved
histological score.

266 Seal oil (EPA, DPA,
DHA)

Pilot study: patients with
CD and UC

RCT: patients with IBD.

Pilot study age range
(CD, UC, control): 27–
42, 41–57, 50–67 yr
old.

RCT age range (CD,
UC): 21–44 and 16–55
yr old.

Reduced of SF-36
assessed bodily pain.

267–272 Vitamin D Inflamed or not biopsies
of colon from active
UC patients, Caco-2
cells

Adult (>18 yr) Anti-inflammatory and
improved IEB
integrity

Anti-inflammatory,
improved IEB
(Downregulated claudin-
1 and -2, upregulated
claudin-4 and -7, inhib-
ited IL-13 and IL-6
expression)

Mild to moderate active
CD

Improved IEB (reduced
permeability and
increased TEER restored
expression and localiza-
tion of ZO-1, claudin 1
and occludin 1)

Active adult patients
with CD

Improved DAI Improved CDAI (improved
of circulating vitamin D
level, no change in cyto-
kines level)

Patients with active UC
and inactive UC

Anti-inflammatory Improved DAI (decreased
fecal calprotectin levels
and increased albumin
increased
Enterobacteriaceae but
no change in gut micro-
biota diversity)

Patients with active UC Improved DAI and anti-
inflammatory properties
(decreased of C-reactive
protein and calprotectin,
activation of NFκB
pathway)

Patients with mild to
moderate active UC

Continued
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Preclinical Studies

More in vivo data are available on the preventive effects of
n � 3 PUFA, including at early age (Table 5). Postweaning
but also as adult, animals supplemented with n � 3 PUFA
showed a reduction of disease severity and improved clinical
symptoms. Like in vitro studies, the supplementation modu-
lated proinflammatory cytokines, with a reduction of IL-6
and iNOS (247). Gene expression was also impacted, with a
decrease of the colonic NF-κB DNA binding activity (250).

Only one study investigated n � 3 PUFA treatment at
early age (Table 5). In postweaned mice, the n � 3 diet
ameliorated colitis but increased mortality by an impaired
response to infection like LPS dephosphorylation ability
(254). In adults, extra virgin olive oil reduced disease ac-
tivity and abrogated DSS-induced gene expression of
proinflammatory components like COX-2 and iNOS (265).
To conclude on preclinical studies, n � 3 PUFA interven-
tion as prevention seemed effective, with an improvement
of disease severity by similar mechanisms observed in
vitro, i.e., a modulation of immune cytokines and gene
expression. It should however be noted that the main
model of inflammation induction was acute, so the
chronic aspect of IBD is lacking and should be taken into
consideration for future studies.

Clinical Studies

n � 3 PUFA diet was mainly studied as treatment (Table
5). Clinical trials on the effects of n � 3 PUFA at early age
are scarce; only one study is enlisted and described the
effects of eicosapentaenoic acid (EPA) and docosahexae-
noic acid (DHA) in 10-yr-old patients with CD in remis-
sion. As complement to 5-ASA, n � 3 PUFA reduced the
relapse risk. In adults, 10 studies including 1 meta-analy-
sis and 2 robust studies (�190 CD patients/condition)
were listed and comprised a consequent part of small
studies (239, 255). EPA, EPA-free fatty acid, and DHA were
the main n � 3 PUFA analyzed. Patients in remission but
also with moderately active disease presented decreased
disease severity after n � 3 PUFA consumption. The main
effects were on the n � 3/n � 6 ratio, a decrease of proin-
flammatory cytokines production like IFN-c and IL-17 by
CD4þ and CD8þ T cells of peripheral blood (256, 287).
However, in the EPIC-1 and -2 clinical trials that com-
prised the highest number of participants, n � 3 PUFA

diet failed to prevent relapse and to improve disease se-
verity in patients with CD, active or in remission.

Conclusion on Diet Intake

In vitro and preclinical studies showed clearly benefi-
cial effects of n � 3 PUFA on inflammation, at different
ages and both as preventive and therapeutic mean.
However, at clinical level, the heterogeneity of n � 3
PUFA intake duration and a lack of early age treatment
studies do not allow full comparison. Especially, two clin-
ical trials of great number of patients do not corroborate
the positive results seen in smaller pilot studies. Also,
preventive studies are needed at clinical level to complete
the investigation of the potential of n � 3 PUFA and pre-
dictive IBD markers (environmental factors, dysbiosis,
etc.) should be taken into account for the recruitment of
patients. Overall, diets rich in n � 3 PUFA are disappoint-
ing due to their low efficiency. In view of their benefic
effects on the digestive functions, diets rich in n � 6
PUFA may be considered (7, 12, 13, 286). For example, the
arachidonic acid metabolite 11b-PGF2a induces intestinal
epithelial healing (13). Another arachidonic acid metabo-
lite, the 15-HETE decreases IEB permeability, and the
prostaglandin I2 supplementation alleviates colitis (7, 12).
Altogether, implementing a supplementation with not
only n � 3 PUFA, but perhaps n � 6 PUFA and/or their
derived metabolites, represents a relevant direction of
study for IBD treatment.

Concerning Vitamin D, the available clinical trials do
not have standardization of doses and routes of adminis-
tration. Despite its inflammatory processes, vitamin D pre-
sented opposite effect at different doses, underlining the
need for standardized studies to establish how the supple-
mentation should be performed and the doses to be
administered.

Key Ideas: Diet

Lack of studies in general, both in prevention and treat-
ment, with homogenized design and not only association
studies. n � 3 PUFA supplementation was beneficial in
vitro and at preclinical level but failed to present any ro-
bust evidence in clinical trials. In contrast to diets that are
globally enriched in n � 6, recent studies focused on n � 6
PUFA-metabolites and their interest as supplementation
for patients with CD showed promising results.

Table 5.— Continued

Reference Food Substrate Model or Study Design Age of Supplementation Effect on IBD Mechanisms

Patients with active UC No effect No difference in DAI or
inflammatory markers

AA, arachidonic acid; AIFAI, anti-inflammatory fatty acid index; ALA, linolenic acid; 5-ASA, 5-aminosalicylate; BSA, bovine serum al-
bumin; CD, Crohn's disease; CDAI, Crohn’s disease activity index; CLA, conjugated linoleic acid; DAI, disease activity index; DB, double-
blind; DBP, diastolic blood pressure; DC, dendritic cells; DGLA, di-homo-gamma-linolenic acid; DHA, docosahexaenoic acid; DPA, doco-
sapentaenoic acid; DSS, dextran sulfate sodium; EPA, eicosapentaenoic acid; EPA-FFA, EPA free fatty acid; EPIC, European Prevalence
of Infection in Intensive Care; GLA, c-linolenic acid; IBD, inflammatory bowel diseases; IBDQ-9 = inflammatory bowel disease question-
naire-short form; IEB, intestinal epithelial barrier; IEL, intestinal epithelial lymphocyte; LA, linoleic acid; LC n � 3 PUFA (polyunsatu-
rated fatty acids), C20:5 n � 3 and C22:6 n � 3; LPL, lamina propria lymphocyte; MLN, mesenteric lymph node; LBP, LPS binding
protein; OA, oleic acid; PA, palmitic acid; PBMC, peripheral blood mononuclear cells; PBS, phosphate-buffered saline; PMA, phorbol 12-
myristate 13- acetate; PG, prostaglandin; RBC, red blood cell; RPCT, randomized placebo controlled trial; RR, relative risk; SBP, systolic
blood pressure; SI, small intestine; TEER, transepithelial electrical resistance; TNBS, 2,4,6-trinitrobenzenesulfonic acid; UBT, under
baseline treatment; UC, ulcerative colitis; wo, weeks old.
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GENERAL CONCLUSIONS

From pre- to postbiotic, all levels of interventions have
been or are being tested to reinforce and restore the micro-
biota, or mimic its effects. Although preclinical studies show
very encouraging results, the transition to the clinic is less
easy and will require many additional studies. Can all types
of patients with IBD be treated and when? What is the better
strategy? Prebiotics have a broad impact and up to now not
entirely known. Their low specificity may lead to the fear of
amplification of numerous physiological but also pathologi-
cal processes, and thus the appearance of undesirable effects
as recently described with inulin. Our knowledge has largely
increased concerning probiotics or cocktails of probiotics,
their interactions and their uses for the benefit of the host.
They are relatively important means to restore digestive
functions or reinforce the homeostasis of the digestive tract.
Similarly, FMT is attractive, but many questions remain to
be addressed to make progress on the subject. Better under-
standing of the effect of FMT, identification of super-donors,
and of the protective members of their microbiota should
lead to the development of next-generation probiotics (288,
289). In this respect, the present development of capsules
containing freeze-dried rawmicrobiota of donors constitutes
a first step (290). In general, the use of bacteria to treat is a
concept that still needs to be promoted to many clinicians,
in particular by demonstrating its safety and effectiveness.
In this sense, postbiotics would be safer, but they are, to
date, less effective. Nevertheless, we can suppose that a
cocktail of postbiotics and means of administration that
would allow to control and maintain their concentration
would allow to improve this.

The development of bioinformatic modeling, the results
of shotgun metagenomics, and metabolomics as well as the
use of organoids or organ-on-chip human models should
help us precise and define how microbiota-based strategies
can improve host homeostasis. Even so, it seems reasonable
to think that interventions improving the microbiota or
using the microbiota should at least complete and improve
the therapies used to treat patients with IBD.
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