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1   |   INTRODUCTION

Based on projections of global population growth, 9.7 
billion people will need to be sustainably fed by 2050. 
Economic growth will enrich this population, which will 
likely lead to increased overall food consumption. Besides 
the increased demand for food and animal feed, there will 
also be an increasing pressure arising from competing 
uses for agricultural products, for example to allow a tran-
sition from a fossil-based towards a bio-based economy 
and to limit global climate change through sustainable 
energy supplies (Clark et al., 2020). Moreover, crop pro-
duction will need to be increased using the same or even 
reduced land area to allow for more biodiversity by return-
ing agricultural land to its natural state. Crop production, 
however, will be challenged by climate change, including 
changes in temperature and precipitation, and by an in-
creased incidence of extreme weather events, which all 
decrease yield stability. Total agricultural productivity has 
been estimated to being reduced by 21% since 1961 due to 
climate change (Ortiz-Bobea et al., 2021).

The future requirements for our crops are undeniably 
diverse and highly demanding. In the coming decades, one 
of humanity's greatest challenges will be to sustainably 

improve crop nutritional quality (Scharff et al., 2021) and 
yield. Here, yield refers to the total amount of crop bio-
mass produced per unit area per year (Zhu et al., 2010). 
Increasing yield will depend on selecting the best traits, 
technologies and crops for breeding and crop manage-
ment of plants, targeting sustainable increases in total 
productive potential.

In this review, we present an overview of the key bio-
logical processes underlying crop yield potential that could 
contribute to the futureproofing of our current crops and 
that could be further exploited to improve crop produc-
tivity and safeguard future food security (Figure 1). More 
specifically, we describe a subset of plant traits and their 
genetic basis that contribute to yield potential, including 
photosynthesis, nutrient partitioning and remobilisation, 
leaf longevity, seed filling and plant organ growth and de-
velopment. To go further, crop yield potential is defined 
here as yield in the absence of limitations by input, dis-
ease or suboptimal growing conditions. The conversion of 
radiation to dry matter (radiation use efficiency or RUE) 
and the partitioning of acquired resources can be closely 
related to yield potential in these conditions. Hence our 
selection of sub-traits is based on this principle. Future 
perspectives are presented for each of these areas.
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University of Nottingham, Sutton 
Bonington campus, Loughborough 
LE12 5RD, UK.
Email: erik.murchie@nottingham.ac.uk

Funding information
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Abstract
The growing world population and global increases in the standard of living 
both result in an increasing demand for food, feed and other plant-derived prod-
ucts. In the coming years, plant-based research will be among the major driv-
ers ensuring food security and the expansion of the bio-based economy. Crop 
productivity is determined by several factors, including the available physical 
and agricultural resources, crop management, and the resource use efficiency, 
quality and intrinsic yield potential of the chosen crop. This review focuses on 
intrinsic yield potential, since understanding its determinants and their biologi-
cal basis will allow to maximize the plant's potential in food and energy produc-
tion. Yield potential is determined by a variety of complex traits that integrate 
strictly regulated processes and their underlying gene regulatory networks. Due 
to this inherent complexity, numerous potential targets have been identified 
that could be exploited to increase crop yield. These encompass diverse meta-
bolic and physical processes at the cellular, organ and canopy level. We present 
an overview of some of the distinct biological processes considered to be crucial 
for yield determination that could further be exploited to improve future crop 
productivity.

K E Y W O R D S

crop improvement, crop yield, food supply, nutrient remobilisation, organ growth, 
photosynthesis
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2   |   PHOTOSYNTHESIS:  LIGHT 
CAPTURE AND THE EFFICIENCY 
OF CONVERTING LIGHT INTO 
PLANT BIOMASS

The primary determinant of crop biomass production is 
cumulative net photosynthesis over the growing season 
(Ort et al.,  2015), where photosynthesis is defined as a 
plant process using the energy from light to convert car-
bon dioxide (CO2) and water (H2O) into oxygen (O2) and 
carbohydrates. The carbohydrates produced are used by 
the plant for growth and development. In addition, car-
bohydrates provide precursors for a range of diverse mol-
ecules including hormones, lipids and amino acids, and 
thus actually underpin all aspects of plant metabolism. 
Despite its importance, in agriculture photosynthesis has a 
‘real world’ efficiency well below its theoretical maximum 
(Zhu et al.,  2008), with only ~2% and 3% of the energy 
from sunlight being converted into biomass for current C3 
and C4 crops, respectively, when grown under favourable 
conditions (Yin & Struik, 2015). Free-air CO2 enrichment 
(FACE) experiments indicate that raising photosynthetic 
performance may increase crop yields (Ainsworth & 
Long, 2005; Long et al., 2006). Because photosynthesis is 
an energy-transducing metabolic process in which CO2 
fixation occurs via coordinated activities at various levels 

of biological organisation, including cells, organs, whole 
plants and communities (Long et al., 2015), numerous po-
tential targets encompassing diverse metabolic and physi-
cal processes have been identified that could be exploited 
to increase photosynthesis and crop yield. A selection of 
the most promising are highlighted below.

2.1  |  Recovery from photoprotection and 
light induction of the Calvin cycle

Absorbed light energy can be in excess of what is required 
for photosynthesis. When a high proportion of chlorophyll 
molecules remain in an excited state and the electron 
transport system is highly reduced, then there is a greater 
risk of energy being transferred to oxygen, producing the 
more energetic and reactive oxygen species (ROS; Møller 
et al., 2007). These ROS can damage the photosynthetic 
machinery and membranes of the plant if they are not re-
moved, and in particular when they are formed in the pho-
tosystem II (PSII) reaction centre, they can damage the 
reaction centre, resulting in a temporary (hours/days time 
range) loss of photosynthetic efficiency until the damaged 
reaction centre is repaired (Aro et al.,  1993; Harbinson 
et al.,  2022; Long et al.,  1994; Murchie & Ruban,  2020). 
The overreduction of PSII can increase the likelihood of 

F I G U R E  1   Options to improve 
crop productivity by improving crop 
yield potential. Crop yield potential 
can be improved via single process 
(green) optimisation, macro-process 
(blue) optimisation or a whole plant 
improvement (e.g. by integrating the 
optimisation of multiple processes in 
parallel, such as photosynthesis and leaf 
longevity). N = nitrogen, C = carbon. The 
mapping of the options to improve crop 
yield potential was performed within 
the CropBooster-P project (https://
www.cropb​ooste​r-p.eu/) (Baekelandt 
et al., 2022; Harbinson et al., 2021). 
Within the project, a similar mapping 
was done to identify the determinants of 
nutritional quality (Scharff et al., 2021) 
and sustainability (Gojon et al., 2022).
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photoinactivation, that is the functional closure of reaction 
centres, leading to a decline in PSII activity. In addition, it 
is energetically costly to resynthesise PSII after damage by 
ROS (Li et al., 2018; Miyata et al., 2012). One way of pro-
tecting the plants from the negative consequences of excess 
radiation and the damaging effects of ROS is by means of 
enzymatic and non-enzymatic antioxidants. In conditions 
where chlorophyll a excited state lifetimes increase due to 
the limitations imposed on PSII photochemistry by rela-
tively slow electron transport, a further photoprotective 
mechanism engages to quench this excited energy. This 
protective mechanism limits the increase in chlorophyll a 
lifetime and reduces the pressure on blocked PSII reaction 
centres, as such limiting the formation of ROS in the first 
place. The activation of this process involves the protona-
tion of the protein PsbS and the deepoxidation of the xan-
thophyll pigment violaxanthin to zeaxanthin, which drive 
rearrangements within the antenna systems of PSII that 
result in the dissipation of excitation energy as heat; a pro-
cess known as non-photochemical quenching (NPQ; Ahn 
et al.,  2008; Havaux & Niyogi,  1999; Müller et al.,  2001; 
Ruban,  2016). Xanthophylls are made via the methyler-
ythritol phosphate (MEP) pathway that also produces vol-
atile isoprenoids and hormones. These latter compounds 
may also have an important antioxidant effect specifically 
protecting the photosynthetic apparatus and often inter-
acting with each other (Dani & Loreto, 2022). Emission of 
isoprene, the most abundant plant-made volatile organic 
compound, may help to provide stable and homogeneous 
distribution of the light-absorbing centres and more elas-
tic thylakoid membranes (Pollastri et al., 2019, 2021). The 
NPQ process, while effective, has a drawback: it fully en-
gages and disengages relatively slowly, which can result in 
limitations to assimilation in a fluctuating light environ-
ment, as occurring in the plant canopy.

As a determinant of yield, canopy photosynthesis is 
ultimately the product of leaf photosynthesis affected by 
spatial and temporal variation in light intensity and bio-
chemical capacity. In a crop canopy, the light available for 
photosynthesis fluctuates continuously from a high (and 
even saturating) irradiance to light-limiting irradiance, 
due to, for instance, clouds and self-shading (Long et al., 
2022). These changes can take place within the seconds 
time range (Durand et al., 2021) and can, in part, be re-
lieved through changes in canopy structure that facilitate 
an improved canopy light environment (Araus et al., 2021; 
Burgess et al., 2015, 2017; Richards et al., 2019). Ideally, 
the photosynthetic processes would respond immediately 
to these rapid light fluctuations, but this is not the case. 
Following a transition from high to low light irradiance, 
the photoprotective NPQ engaged under high irradiance 
disengages relatively slowly, resulting in a momentary loss 
of light use efficiency for assimilation and therefore of 

potential carbon (C) gain by the plant (Burgess et al., 2015; 
Harbinson et al.,  2022; Hubbart et al.,  2012; Long 
et al., 1994; Murchie & Ruban, 2020; Werner et al., 2001; 
Zhu et al.,  2004). Despite photoprotection being indis-
pensable for plant survival, in silico simulations of photo-
synthesis in crop canopy-like conditions have highlighted 
that a faster tuning of NPQ in response to changing light 
conditions may be important to improve crop production 
potential (Wang, Burgess, et al.,  2020; Zhu et al.,  2004). 
Bioengineering of an accelerated response to natural 
shading events in Nicotiana tabacum, achieved by over-
expressing genes involved in the reversible conversion of 
zeaxanthin to violaxanthin (violaxanthin deepoxidase and 
zeaxanthin epoxidase), and the enzyme PsbS, resulted in 
increased leaf CO2 uptake and plant dry matter productiv-
ity and yield of 14-25% in the field (Kromdijk et al., 2016; 
De Souza et al., 2022). Upregulating PsbS in rice leaves had 
a minimal effect on growth in constant light environment 
conditions (Hubbart et al.,  2012). Under more realistic 
conditions, when considering a full canopy in fluctuating 
light, rice plants with increased PsbS and lower photoin-
hibition demonstrated higher radiation use efficiency and 
yield, indicating that fluctuating field conditions are cru-
cial when determining productivity (Hubbart et al., 2018).

When subjected to an increase in irradiance, there is a 
delay in achieving a maximal photosynthetic rate, because 
this depends on an increase in metabolite pools and an 
activation of enzymes of the Calvin cycle, and on stomatal 
opening, all of which take time (Harbinson et al., 2022). 
The activation of ribulose-1,5-bisphosphate carboxylase/
oxygenase (Rubisco), the CO2-fixing enzyme, by Rubisco 
activase (Rca) is particularly slow (Hammond et al., 1998; 
Soleh et al.,  2016; Woodrow & Mott,  1989) and there is 
strong evidence to improve photosynthetic efficiency 
under different circumstances, including fluctuating light, 
by targeting Rubisco (Harbinson et al., 2022). Modelling 
studies in wheat have indicated that the slow adjustment 
of photosynthetic biochemistry during shade-to-sun tran-
sitions reduces flag leaf photosynthesis by about 21% 
(Taylor & Long, 2017). Overexpression of Rca from maize 
in rice results in a slightly increased speed of photosyn-
thetic induction at 25°C (Yamori et al.,  2012) and over-
expressing both Rubisco and Rca results in an increase in 
rice photosynthesis and yield at high temperatures (Qu 
et al., 2021). There is also evidence for significant genetic 
variation underlying the speed at which Rubisco carbox-
ylation activity (Vcmax) increases following a change from 
low- to high-light conditions in wheat (Salter et al., 2019), 
and slow Rubisco deactivation speed may be linked to 
yield losses under fluctuating light conditions (Taylor 
et al., 2022). In line with this, there was considerable ge-
notypic variation within the 37 parental lines of a nested 
association mapping in soybean, displaying variation in 
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the speed of photosynthetic induction upon shade-to-sun 
transitions (Soleh et al., 2017). An in silico study showed 
that the CO2 assimilation loss attributable to photosyn-
thetic induction ranged between 2 and 17% for these gen-
otypes (Wang, Burgess, et al.,  2020). Finally, substantial 
variation in rates of photosynthetic induction has been 
demonstrated in rice that may be limited by biochemistry 
(Acevedo-Siaca et al., 2021).

While research on photosynthesis has largely focused 
on rates of CO2 uptake under steady-state light conditions, 
it is increasingly apparent that improvements to photosyn-
thesis require an understanding of how dynamic changes 
in the environment determine productivity. Future re-
search efforts require a full characterisation of the light 
environment and the response by plants in field settings. 
It is still unclear how variation in light conditions, in-
cluding the speed and magnitude of changes in intensity 
and spectral quality, quantitatively influence dynamic 
photosynthesis processes in the field, and how this might 
apply to diverse crop architectures (Burgess et al.,  2021; 
Durand et al.,  2021). Modelling approaches could pro-
vide one route towards resolving this, through advances 
in methods that represent 3-dimensional plant structure 
and apply light simulations in silico (Burgess et al., 2017; 
Townsend et al., 2018). Furthermore, while the effects of 
environmental fluctuations tend to focus on short-term 
fluctuations in the intensity of irradiance, changes in in-
tensity will often be accompanied by changes in spectrum 
and not all wavelengths are equally good at driving pho-
tosynthesis (Hogewoning et al., 2012). Changes in irradi-
ance will likely also be accompanied by other changes, 
such as leaf temperature, which will have their own ef-
fects on the photosynthesic processes. Environmental 
changes can also be long-term and not just the short-term 
(minutes to hours) fluctuations that are the focus of much 
current research. Longer term environmental changes 
are likely to be accompanied by longer term changes in 
gene expression and remodelling of photosynthetic and 
other metabolic pathways or processes (Chow et al., 1990; 
van Rooijen et al.,  2018), though currently also largely 
underexplored.

2.2  |  Antenna pigment composition and 
electron transport rates

The light-harvesting antennae contain the chlorophyll 
molecules that capture light energy to feed into the pho-
tosystem centres (PSI and PSII), thereby driving electron 
transport. At the top of the canopy, more light energy is 
often absorbed than can be used in the photosynthesis 
process (Walker et al., 2018). This may be beneficial in the 
wild, where a plant capturing more light by its upper leaves 

blocks light transmission to competing understory plants. 
In a mixed crop culture, however, more equal distribution 
of the light-harvesting capacity of leaves across the entire 
canopy may increase productivity (Friedland et al., 2019; 
Walker et al.,  2018; Wu et al.,  2020). Several model-
ling studies have shown that improving photosynthetic 
electron transport components is crucial for increasing 
canopy photosynthesis (e.g. Yin et al., 2022). More specifi-
cally, modelling approaches suggest that when reducing 
the antenna size of PSII or the total leaf chlorophyll in a 
more balanced way (i.e. affect PSI and PSII to the same ex-
tent) and as such reducing light absorption, upper canopy 
leaves could not only save on resources but also allow more 
light to reach lower canopy leaves and therefore improve 
photosynthesis at canopy level (Ort et al., 2011), as shown 
in rice (Gu et al., 2017), wheat (Hamblin et al., 2014) and 
soybean (Walker et al., 2018). The high chlorophyll con-
tent in contemporary crops may be linked to the breeder's 
selection for high leaf nitrogen (N). Chlorophyll-a-oxidase 
has, for instance, been reported to be related to antenna 
size (Friedland et al., 2019; Masuda et al., 2003; Slattery 
et al., 2017) and could thus be a target to improve canopy 
light distribution and therefore canopy light use efficiency 
and assimilation. The photosynthetic apparatus, in par-
ticular Rubisco, constitutes the major pool of N in leaves 
and thus high N content is essential for photosynthesis 
and plant growth (Warren et al., 2000; Zhu et al., 2008). 
Accordingly, dark green leaves, which act as an indica-
tor of N content, were frequently selected for in the past, 
based on expectations this would increase yields due to 
improved C fixation (Friedman et al.,  2016). It appears 
that this selection may have led to crops with a suboptimal 
light distribution (Walker et al., 2018).

The cytochrome b6f (cyt b6f) complex connects elec-
tron transport from PSII to PSI and is under non-light-
limited conditions the rate-limiting step in the electron 
transport chain. When photosynthesis is not light- or 
rubisco-limited or limited by the regeneration phase of 
the Calvin cycle, electron transport (and thus the cyt b6f 
complex) will limit photosynthesis and be the cause of 
the loss of photosynthetic light use efficiency. Increasing 
the activity of the cyt b6f complex may therefore also 
increase the photosynthetic rate (von Caemmerer & 
Furbank, 2016). In line with this, it has been shown that 
overexpressing the Rieske FeS protein (PetC) compo-
nent of the cyt b6f complex in Arabidopsis results in a 
concomitant increase in the levels of the cyt f (PetA) and 
cyt b6 (PetB) core proteins of the cyt b6f complex (Simkin 
et al., 2017; Yamori et al., 2016). This leads to an increase 
in the levels of proteins in both PSII and PSI and has 
a significant impact on the quantum efficiency of both 
photosystems, the electron transport, biomass and seed 
yield (Simkin et al.,  2017). Similar results have been 
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seen in the C4 bioenergy grass, Setaria viridis (Ermakova 
et al., 2019). Altogether, these examples demonstrate the 
potential of fine-tuning the electron transport processes 
to increase crop productivity.

There are new opportunities to enhance light harvest-
ing processes and electron transport rates to improve pho-
tosynthesis at both cellular and canopy scales. Although 
canopy light interception is generally not considered a 
major limitation to crop yield, the distribution of pho-
tosynthetic activity can be influenced by enhanced light 
penetration as a result of leaf angle or movement (Burgess 
et al., 2016, 2021). In the future, approaches to optimise 
light use efficiency by electron transport processes should 
be combined with alterations in canopy architecture to 
further enhance the distribution of light transmission. 
We must also underline that increasing the photosynthe-
sis rate of crops without improving nutrient uptake and 
use efficiency at the same time is unlikely to have a posi-
tive impact on yield (Sinclair et al., 2019; Yin et al., 2022). 
Because nutrients like N and phosphorus (P) are essen-
tial components of key cell compounds and, particularly 
for N, among the main drivers of leaf growth and the 
interception of solar energy, dramatic increases in crop 
biomass could only be achievable if such nutrients, and 
solvent water, are sufficient.

2.3  |  The photorespiratory 
cost, C4 crops and other CO2-
concentrating mechanisms

Rubisco is responsible for the fixation of atmospheric 
CO2 and is the first step in producing organic carbon 
compounds. As such, Rubisco plays a central role in de-
termining the rate of CO2 fixation, although some of its 
characteristics may severely compromise photosynthetic 
productivity. Rubisco can react with both CO2 and O2 as 
substrates. Despite catalytic properties favouring CO2 as a 
substrate, 20 to 50% of Rubisco reactions occur with O2 in 
a process called photorespiration, leading to both a waste 
of energy and a loss of fixed C (von Caemmerer,  2020). 
The initial product of the oxygenation reaction, 
2-phosphoglycolic acid (2-PG) inhibits, amongst others, 
some enzymes of the Calvin-Benson cycle and hence 
must be rapidly removed and recycled. Photorespiration is 
considered one of the most energy-demanding metabolic 
processes in plants (Sonnewald, 2018) and regional scale 
models have shown that photorespiration decreases cur-
rent US soybean and wheat yields by 36% and 20%, respec-
tively (Walker et al., 2016). Climate change is expected to 
further influence the balance between photosynthesis and 
photorespiration. On one hand, CO2 concentration is in-
creasing, favouring carboxylation and the Calvin-Benson 

cycle. On the other hand, increasing temperature is de-
creasing the relative CO2/O2 solubility, making O2 more 
available to Rubisco (Walker et al.,  2016). Accordingly, 
photorespiration rates and their negative impact on crop 
yield are projected to increase in the coming decades due 
to global warming (Dusenge et al., 2019).

Since its discovery, reducing photorespiration has 
been seen as an important target for crop improvement 
(Zelitch & Day, 1973). One strategy is to decrease the costs 
associated with photorespiration by introducing novel 
metabolic pathways that efficiently recycle the products 
of Rubisco oxygenation (Peterhansel et al.,  2013). In 
Arabidopsis, introducing photorespiratory bypasses such 
as bacterial glycolate-metabolising enzymes or a glyco-
late decarboxylation pathway that either recycle 2-PG to 
3-phosphoglyceric acid or fully decarboxylate it within the 
chloroplast significantly increases photosynthetic rates 
and biomass production in growth room and greenhouse 
experiments (Kebeish et al., 2007; Maier et al., 2012). In 
silico simulations of these alternative pathways demon-
strated that to maximise the benefits for crops grown 
under field conditions, optimisation should target both 
maximum flux through the alternative pathway as well as 
minimal flux through the current photorespiratory path-
way (Xin et al., 2015). This approach has been pursued in 
tobacco, where three distinct alternative pathways were 
evaluated, recently reviewed in Eisenhut et al.  (2019). 
All three pathways start with glycolate, which is formed 
from 2-PG by the plant native enzyme 2-PG phosphatase. 
They differ in downstream biochemical processes and the 
number of transgenes required: two, three or five. Each 
of the alternative pathways has been combined with 
the repression of the plastidal glycolate/glycerate trans-
porter PLGG1 to reduce the efflux of glycolate from the 
chloroplast and increase the efficiencies of the synthetic 
bypasses. Field trials with engineered tobacco plants iden-
tified the two-transgene alternative pathway in combina-
tion with the repression of PLGG1 as the most effective 
strategy, and the plants displayed significant biomass 
increases compared with controls (South et al.,  2019). 
Promising biomass increases in 14 to 35% and grain yield 
increases in 7%–27% were also reported following the in-
troduction of an alternative photorespiratory pathway in 
rice, which suppressed photorespiratory rates by 18%–31% 
compared with the controls (Shen et al., 2019; Wang, Shen, 
et al., 2020). Similar promising results were reported for 
the oilseed crop Camelina sativa (Dalal et al., 2015), sug-
gesting that this approach could be exploited to improve 
yield in a wide range of C3 crops (South et al.,  2018). It 
is however unclear whether plants with alternative path-
ways will maintain performance advantages, or even ex-
perience adverse effects relative to controls, when grown 
under suboptimal conditions.
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As an alternative strategy to reduce photorespiration, 
the Rubisco oxygenation reactions could be decreased by 
increasing the CO2 concentration around the enzyme. In 
C3 crops, CO2 concentration is expected to be much lower 
at the Rubisco active sites than in the atmosphere, be-
cause of stomatal and mesophyll resistances to CO2 dif-
fusion towards the chloroplasts. Where these resistances 
are greater, photosynthesis will be diminished and pho-
torespiration increased (Iñiguez et al., 2020). The chloro-
plast CO2 concentration is generally further reduced when 
plants are exposed to abiotic stresses linked with stomatal 
closure (Flexas et al.,  2004, 2006). To increase CO2 con-
centration at Rubisco sites, some photosynthetic algae, 
bacteria and plants have evolved C-concentrating mech-
anisms (CCMs), such as C4 photosynthesis (Sage, 2004). 
In C4 photosynthesis, a two-step process of CO2 assimila-
tion is spatially distributed within cells or between cells 
within leaf tissues. In current C4 crop plants like maize, 
sorghum, sugarcane and millet, gaseous CO2 is initially 
fixed by phosphoenolpyruvate carboxylase (PEPC) into 
C4 acids, which are then transported to deeper, gas-tight, 
bundle sheath cells where decarboxylation occurs, releas-
ing CO2 for subsequent recapture by Rubisco (Sage, 2004). 
In bundle sheath cells of C4 crops, there is also no or only 
little O2 production (Westhoff et al., 1990), further increas-
ing the relative CO2 concentration near Rubisco (Sage 
et al., 2012). Because there is an approximately tenfold in-
crease in the CO2 concentration within the bundle sheath 
cells, Rubisco oxygenation reactions are almost entirely 
suppressed (Carmo-Silva et al., 2008).

Converting C3 into C4 crops is an ambitious goal re-
quiring both anatomical and biochemical changes and 
with components of bundle sheath and mesophyll tis-
sues expressed and regulated correctly to be functional 
(Ermakova et al.,  2020; Lin et al.,  2020). Many of the 
necessary 'building blocks' are already available within 
C3 crops and recent developments in bioinformatics and 
biotechnology make success more realistic (https://c4rice.
com/). Alternative approaches that do not require ana-
tomical changes are to add cyanobacterial, algal or antho-
cerote CCMs to crop chloroplasts. Unlike the CCM of C4 
plants, which relies on a biochemical pump, these CCMs 
work by means of biophysical CO2 or bicarbonate pumps. 
In the cyanobacterial CCM, Rubisco is packed within a 
protein-bound structure called the carboxysome, while in 
the algal or anthocerote CCM, Rubisco aggregates to form 
a structure called the pyrenoid (Atkinson et al., 2020; Long 
et al., 2015; Price et al., 2013). Creating a high CO2 concen-
tration in the carboxysome or pyrenoid would reduce the 
energetic loss to photosynthesis due to the oxygenation 
of ribulose-1,5-bisphosphate and allow Rubisco to work 
more efficiently by producing a CO2 concentration closer 
to saturation for that enzyme. Modelling studies suggest 

that this could increase crop yield by approximately 30% 
(McGrath & Long, 2014), or by even higher percentages 
if the energy requirement of cyanobacterial CCMs is con-
firmed to be lower than the ATP-costly C4 crop CCMs (Yin 
& Struik,  2017). Substantial progress has already been 
made by introducing functional cyanobacterial Rubisco 
into crops and by expressing both alpha and beta forms 
of the carboxysomes in plants (Lin, Occhialini, Andralojc, 
Devonshire, et al., 2014; Lin, Occhialini, Andralojc, Parry, 
& Hanson, 2014; Long et al., 2018; Wang, Yan, et al., 2019). 
However, to be effective, the rest of the cyanobacterial 
system must also be present and functional (Atkinson 
et al., 2020). The research field of CCMs is relatively new 
and may offer great opportunities to improve the photo-
synthetic rates and thus plant yield.

While not a CCM, increases in the diffusion of CO2 
from the free air surrounding the leaf towards the site of 
carboxylation would increase the CO2 concentration at 
the site of carboxylation and thus increase the photosyn-
thetic rates. This diffusive pathway includes the boundary 
layer, stomatal and mesophyll conductance. Increases in 
any of these would, all other things being equal, increase 
the CO2 concentration in the chloroplast. Mesophyll con-
ductance is not only a major diffusional limitation for CO2 
(Warren,  2008), but improving mesophyll conductance 
would also allow an increase in the photosynthetic water 
use efficiency for C3 plants (Flexas et al.,  2012, 2013). 
Physical (e.g. cell wall and membrane and chloroplast 
surface area and movement) and biochemical (e.g. aqua-
porins and carbonic anhydrase availability) factors may 
both contribute to limit CO2 concentration in the chlo-
roplasts, hence limiting photosynthesis (Evans,  2021). 
Increasing mesophyll conductance has been proposed as a 
target for improving photosynthesis and crop yields (Ren 
et al., 2019). Little, however, is known about the underly-
ing genetics of mesophyll conductance (Flexas et al., 2012, 
2013; Ren et al., 2019). An increased density of leaf vena-
tion has also been associated with a higher rate of photo-
synthesis (Boyce et al., 2009; Brodribb et al., 2007).

3   |   NUTRIENT PARTITIONING 
AND REMOBILISATION, LEAF 
LONGEVITY AND SEED FILLING

An important component of plant productivity is the 
partitioning of organic C and N among the various 
plant organs (Evans & Poorter, 2001; Yadav et al., 2015). 
Nutrient partitioning requires export from the sites of 
primary uptake and assimilation, transport throughout 
the plant by phloem and xylem, and import into the var-
ious sink organs such as seeds, taproots and rhizomes 
(Tegeder & Masclaux-Daubresse,  2018). In perennial 
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trees and grasses, for instance, stems and roots serve as 
reservoirs storing C and N. The major energy and C stor-
age compounds of plants are starch, fructans and oils, 
whereas the N storage compounds are mainly proteins. 
Proteins represent 10%–40% of the total seed weight de-
pending on the plant species (Baud et al., 2008). The re-
serves that accumulate after satisfying the demands of 
plant growth and metabolism determine the quality of 
harvested plant products for human and animal food 
(Pask et al., 2012). Increasing the capacity of plants to 
store nutrients in non-photosynthetic organs, like stems 
or tubers, may extend the duration of photosynthe-
sis and be one way to increase nutrient use efficiency 
(Martre et al., 2007).

For most species, seeds are also main storage organs. 
They typically accumulate large reserves of nutrients 
that will significantly support germination and the early 
stages of plant development in all but a few exceptional 
cases. Seed filling therefore is highly important for plant 
fitness and is essential for food security, because it de-
termines both seed size and nutritional quality. In crops, 
efficient seed filling is a key factor controlling yield (El-
Zeadani et al., 2014; Houshmand et al., 2022; Reynolds 
et al., 2021; Sehgal et al., 2018). Several crucial steps in N 
allocation need to be taken into consideration to improve 
crop productivity and nutritional quality of harvested 
products (Paul et al.,  2017). These include optimising 
source-sink ratios, promoting efficient translocation of 
assimilates to harvestable organs and optimising the 
balance between biosynthetic activities in vegetative or-
gans and nutrient remobilisation from senescing organs 
towards reproductive organs (Havé et al.,  2017). Here, 
we present some of these processes and the underlying 
molecular players that could be exploited to improve in-
trinsic crop yield.

3.1  |  Carbohydrate allocation to 
harvestable parts

Crop productivity can be improved by targeting C al-
location towards the harvestable plant organs, such as 
stems, tubers, roots, reproductive organs and seeds, by 
directly modifying genes controlling the processes of 
carbohydrate accumulation in source and sink organs 
(Foulkes et al., 2022; Lu et al.,  2020; Murchie et al., 
2022; Oszvald et al., 2018). Trehalose 6-phosphate (T6P) 
is the phosphorylated precursor of the non-reducing 
glucose disaccharide trehalose. It is known that T6P 
acts as a signal of sucrose availability that regulates 
plant growth and development (Fichtner & Lunn, 2021; 
Paul et al., 2018). T6P has been shown to increase pho-
tosynthetic rates in maize, N. tabacum and rice (Li 

et al., 2022; Oszvald et al., 2018; Pellny et al., 2004). Low 
levels of T6P are thought to act as a starvation signal 
that stimulates sucrose flux towards the sinks (Oszvald 
et al., 2018). Altering the levels of T6P in wheat, using 
genetic variations in trehalose phosphate synthase 
(TPS) and trehalose phosphate phosphatase (TPP) 
genes, was identified as a promising strategy to enhance 
sink strength and source-sink interactions (Lawlor & 
Paul,  2014; Lyra et al.,  2021). Overexpression of TPP, 
encoding a T6P phosphatase, in the phloem vasculature 
of female reproductive tissues of maize, decreases T6P 
levels in developing cobs and results in a relocation in 
sucrose and amino acids from cob pith towards devel-
oping kernels (Oszvald et al.,  2018). Moreover, target-
ing the T6P regulation results in increased maize yield 
(Nuccio et al., 2015). A TPP gene in wheat was found to 
underlie a quantitative trait locus (QTL) associated with 
grain size (Zhang et al., 2017) and applying a chemically 
modified plant-permeable analogue of T6P to wheat ten 
days after anthesis increases both grain size (up to 20%) 
and starch accumulation (Griffiths et al., 2016).

T6P inhibits the feast-famine protein kinase Sucrose 
non-fermenting 1 (Snf1)-RELATED KINASE 1 (SnRK1), 
which is a master gene of sucrose sensing. SnRK1 is ac-
tivated upon C starvation or stress. Its antagonist, the 
TARGET OF RAPAMYCIN (TOR) kinase is activated 
upon nutrient supply (Dobrenel et al.,  2016). In this 
way, SnRK1 and TOR play paramount roles in the regu-
lation of plant growth in response to the nutrient status 
of plant tissues (Burkart & Brandizzi,  2021; Ingargiola 
et al., 2020; Li et al., 2021). Interestingly, the SnRK1/TOR 
complex not only controls starch accumulation but also 
lipid synthesis and nutrient recycling through autophagy 
(Baena-González & Hanson, 2017). SnRK1 interacts with 
the ATAF1 transcription factor, which integrates C star-
vation responses. ATAF1 induces the expression of auto-
phagy genes that control nutrient recycling but is also a 
repressor of the GOLDEN2-LIKE1 (GLK1) transcription 
factor, which is involved in chloroplast maintenance. It 
is thus likely that ATAF1 is involved in the fine-tuning 
of the shift from C and N primary assimilation to nutri-
ent recycling (Garapati, Feil, et al.,  2015; Garapati, Xue, 
et al., 2015; Kleinow et al., 2009). As such, manipulating 
the TOR/SnRK1 balance or activities would be a way to 
control nutrient assimilation and storage on one hand, as 
well as nutrient recycling and mobilisation on the other 
hand (Liu & Bassham, 2010).

The altered allocation of resources upon modula-
tion of the T6P/SnRK1 pathway can be explained by the 
upregulation of SWEET sucrose transporters (Oszvald 
et al.,  2018). SWEET4 genes encode hexose transport-
ers involved in the uptake of hexoses produced by cell 
wall invertases in developing seeds (Sosso et al., 2015). 
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These genes have been targets for selection during do-
mestication, and modulation of their expression and/
or activity is an alternative strategy to increase carbohy-
drate uptake into developing seeds (Sosso et al., 2015). 
Besides SWEET proteins, the sucrose transporters SUT 
and SUC are involved in apoplastic loading (Bürkle 
et al.,  1998). In the Atsuc2-4 mutant, phloem loading 
can be rescued upon expression of AtSUC1, AtSUC2 or 
ZmSUT1 (Dasgupta et al., 2014). In addition, apoplastic 
unloading needs to be enhanced, for instance in seeds. 
Overexpression of AtSTP13, encoding a sugar trans-
porter, increases glucose uptake by Arabidopsis seeds, 
resulting in an increase in plant biomass (Schofield 
et al., 2009). Conversely, RNAi-mediated knock-down of 
the high-affinity hexose transporter gene LeHT leads to 
a massive decrease in fruit hexose accumulation in to-
mato (McCurdy et al., 2010). The sucrose phloem load-
ing mechanism appears to be conserved across many 
crops (Braun et al., 2014) and understanding the under-
lying mechanisms may thus offer great potential to im-
prove yield of various crops. Since most crops still seem 
to have sink limitation during seed filling, breeders will 
need to keep improving C allocation to harvestable parts. 
Additionally, it is recognised that C assimilate availabil-
ity through remobilisation of C storage should prolong 
starch synthesis and increase C allocation to seeds by 
extending the duration of seed growth. For example in 
wheat, breakdown of fructans feeds growing seeds: fruc-
tan exohydrolase 1-FEH v3 mapping on chromosome 
6B is a useful marker for fructose breakdown (Khoshro 
et al., 2014; Zhang et al., 2008).

Optimising the source-sink transfer is a promising 
and feasible way to optimise photosynthesis and improve 
the productivity of crops (Dingkuhn et al., 2020; Oszvald 
et al., 2018). In many crop species, photosynthesis during 
the seed-filling period appears to be responsive to in-
creases in seed sink strength through genetic effects that 
increase seed number, even in modern cultivars with al-
ready high seed numbers (e.g. Acreche & Slafer,  2009). 
More specifically, the T6P/SnRK1/TOR pathway might 
be amenable for yield improvement (Baena-González & 
Hanson, 2017; Paul, 2021) and several T6P pathway genes 
are amongst those associated with domestication im-
provement in maize (Hufford et al., 2012). Interventions 
that modify T6P through genetic modification in maize 
(Nuccio et al.,  2015), chemical application in wheat 
(Griffiths et al., 2016) and natural variation in wheat and 
rice have shown that the T6P pathway is not yet optimised 
in crops and thus has potential for further yield improve-
ment (Lyra et al.,  2021; Paul et al.,  2020). To establish 
which changes can be made to further improve crop yield 
and resilience, it will remain interesting and important to 
understand how the T6P pathway, and likely also other 

pathways involved in source-sink transfer, can be modi-
fied through breeding.

3.2  |  Regulation of senescence and 
nitrogen remobilisation

During seed formation, C dedicated to seed filling is 
mainly provided by photosynthetic C fixation occurring 
in leaves and in the fruit tissues, such as pod walls in leg-
umes, silique envelopes in Brassicaceae, and glumes and 
awns in cereals (Araus & Tapia, 1987; Cliquet et al., 1990; 
Tambussi et al., 2021). The lifespan of the leaf controls the 
duration of photosynthetic C fixation and primary N as-
similation, establishing the total C and N uptake by the 
crop, strongly impacting seed yield. The timing and rate of 
the leaf senescence then determine nutrient recycling and 
mobilisation, both important for seed filling with N and 
other nutrients (Masclaux-Daubresse et al., 2010). Thus, 
the process of seed filling and the accumulation of major 
seed reserves are intimately linked with the senescence of 
the source tissues in many plant species (Havé et al., 2017; 
Woo et al., 2019). Leaf senescence is also controlled by en-
dogenous factors including phytohormones and metabolic 
status, and exogenous factors such as shading, drought or 
nutrient deficiencies (Jordan et al., 2012; Kim et al., 2018). 
Cytokinin hormones are endogenous inhibitors of leaf 
senescence (Gan & Amasino,  1995). Various attempts 
have been made to delay senescence by altering cytokinin 
levels as a way to increase biomass and seed yield (Dani 
et al., 2022). Interestingly, cytokinins regulating leaf and 
plant senescence seem to be intimately connected to iso-
prenoid metabolism (Dani et al.,  2022) and this may be 
one reason why only deciduous leaves emit isoprene 
(Loreto & Fineschi, 2015). In various model and crop spe-
cies, overexpression of the IPT cytokinin synthesis gene 
in senescing tissues has been obtained using promoters 
of senescence-associated genes (Guo & Gan,  2014; Jordi 
et al.,  2000). For instance, SENESCENCE-ASSOCIATED 
GENE 12 (SAG12) from Arabidopsis, SENESCENCE-
ENHANCED 1 (SEE1) from maize, SENESCENCE-
ASSOCIATED RECEPTOR-LIKE KINASE (SARK) from 
bean, CYSTEINE PROTEASE (Ghcysp) from cotton and 
SENESCENCE-ASSOCIATED GENE 39 (SAG39) from 
rice have been used to delay leaf senescence and increase 
plant performances (Guo & Gan, 2014). In a different ap-
proach, a delay in senescence has been obtained by lower-
ing the senescence-promoting hormones such as salicylic 
acid (SA) by expressing the bacterial SA hydroxylase 
NAPHTHALENE CATABOLIC GENE (NahG) or by mu-
tating the isochorismate synthase gene SALICYLIC ACID 
INDUCTION DEFICIENT 2 (SID2; Abreu & Munné-
Bosch, 2009). The linked reduction in SA levels leads to 
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a marked increase in biomass and seed production, indi-
cating that alterations in SA levels could be exploited to 
increase crop yield (Abreu & Munné-Bosch, 2009).

At the transcriptional level, leaf senescence is gov-
erned by several transcription factors mainly belonging to 
the NAC and WRKY protein families (Borrill et al., 2019; 
Cormier et al.,  2015, 2016; Derkx et al.,  2021; Distelfeld 
et al., 2012; Lee & Masclaux-Daubresse, 2021). Amongst 
these proteins is ATAF1 discussed in relation to carbo-
hydrate allocation to harvestable parts and a NAM-B1 
transcription factor that has been identified from a quan-
titative genetic study in durum wheat. The NAM-B1 gene, 
also known as the Gpc-B1 locus on chromosome 6B of 
bread wheat, is a master gene controlling leaf senescence, 
grain yield and protein content (Uauy et al., 2006; Waters 
et al., 2009). Whereas modern wheat varieties rarely carry 
a functional NAM-B1 allele, the ancestral wild wheat al-
lele of NAM-B1 (Triticum turgidum ssp. Dicoccoides DIC 
allele) accelerates senescence and increases nutrient 
(N, Fe and Zn) remobilisation from leaves to developing 
grains (Distelfeld et al.,  2014). An analysis of published 
data revealed that the presence of a functional copy of the 
NAM-B1 gene is associated with increased protein and 
micronutrient content in grains, though with a margin-
ally negative effect on yield (Pearce et al.,  2014; Tabbita 
et al., 2017). Effects of NAM-B1 alleles were also found in 
barley, and better performing alleles are used in several 
cereal breeding programmes (Parrott et al.,  2012). Some 
other genes of the same family, like the homologous 
NAM-A1 (with its functional allele NAM-A1a), could be 
used to improve wheat grain protein content while main-
taining yield (Alhabbar et al., 2018; Cormier et al., 2015; 
Derkx et al., 2012). Several other leaf senescence regula-
tory genes, identified in Arabidopsis and rice, were shown 
to confer functional stay-green phenotypes and yield im-
provements, for example the Ghd7 (Grain number, plant 
height and heading date 7) and ONAC2 genes of rice (Lee 
& Masclaux-Daubresse,  2021; Mao et al.,  2017; Singh 
et al., 2021; Wang et al., 2015).

Seed filling with N can be achieved through post-
flowering N uptake from the soil during seed formation 
and through remobilisation of organic N from senescing 
vegetative tissues. Because seed storage protein content 
largely relies on N remobilisation (Masclaux et al., 2001), 
the onset of leaf senescence and its rate are major factors 
for grain protein content (Thomas et al., 2002; Thomas & 
Howarth,  2000; Van Oosterom, Borrell, et al.,  2010; Van 
Oosterom, Chapman, et al.,  2010). The photosynthetic 
apparatus is known to be the largest protein reserve 
and N source in leaves for remobilisation (Peoples & 
Dalling, 1988; Warren et al., 2000; Zhu et al., 2008). Thus, 
a trade-off between photosynthesis and senescence leads 
to a trade-off between maximising C assimilation versus 

N remobilisation for seed production and seed filling 
(Yin et al., 2022). As a consequence, frequently selected-
for-stay-green phenotypes are not always associated with 
higher yields because maintenance of the photosynthetic 
apparatus is counterproductive for N remobilisation to-
wards developing seeds (Thomas & Ougham, 2014).

Studies of the metabolic pathways and cellular mech-
anisms controlling nutrient fluxes from senescing leaves 
towards the seeds have mainly focused on N-metabolism 
enzymes, ATG proteins involved in macro-autophagy ma-
chinery and proteases (Havé et al., 2017; Lee & Masclaux-
Daubresse,  2021). Amongst them is the prominent role 
of macro-autophagy in N remobilisation from leaves 
to the seeds, which has been demonstrated in several 
plant species as Arabidopsis, maize and rice (Guiboileau 
et al.,  2012; Li et al.,  2015). The macro-autophagy ma-
chinery is a vesicular mechanism essential for the traf-
ficking of cytoplasmic components to the lytic vacuole, 
where proteolytic activities will degrade them to release 
nutrients (Masclaux-Daubresse et al.,  2017). The induc-
tion of macro-autophagy in senescing leaves has a funda-
mental role in (i) maintaining cell longevity by removing 
oxidised components that are potentially toxic and (ii) 
nutrient recycling by driving unwanted proteins and mac-
romolecule to degradation in the vacuole, thus providing 
amino acids and sugars for remobilisation towards the 
seeds (Guiboileau et al.,  2012; James et al.,  2018, 2019; 
Li et al.,  2015; Pružinská et al.,  2017). Fine-tuning of 
autophagy activity in leaves is essential to maintain leaf 
longevity. Increasing autophagy improves nitrogen use 
efficiency (NUE) in Arabidopsis and rice, because it facil-
itates the release of N metabolites in source tissues (Chen 
et al., 2019; Guiboileau et al., 2012; Yu et al., 2019). The 
nature of the transporters involved in the release of the 
products of autophagy from the vacuole and further from 
leaf cells, for phloem loading and export from senescing 
leaves to seed loading, has been poorly investigated so 
far. The LEUCINE-HISTIDINE TYPE TRANSPORTER 
1 (LHT1), which improves amino acid uptake at the root 
level, could also play a role in N remobilisation because it 
is also induced with senescence in leaves (Guo et al., 2020; 
Hirner et al., 2006; Wang, Yang, et al., 2019). The AAP8 
AMINO ACID PERMEASE (AAP), which is involved in 
phloem loading of amino acids in source leaves, has been 
shown to control seed loading (Santiago & Tegeder, 2016; 
Zhang et al.,  2010, 2015). The UmamiT transporters 
(UmamiT11, UmamiT28, UmamiT29 and UmamiT18) 
have been shown to control free amino acids levels in 
fruits and during seed development (Ladwig et al., 2012; 
Müller et al., 2015). Remobilisation of inorganic N during 
senescence might also be interesting for seed filling in 
plants that are able to store nitrate or ammonium in vac-
uoles. The NRT1.7 and NRT2.5 nitrate transporters and 
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the Dur3 urea transporter are induced during senescence 
and remobilise nitrate and urea from Arabidopsis leaves 
to sink tissues during senescence (Bohner et al., 2015; Fan 
et al., 2009; Kojima et al., 2007; Lezhneva et al., 2014; Wu 
et al.,  2014). Several transporters were identified as tar-
gets to improve N flux towards seeds, and manipulation 
of several nitrate and amino acid transporters successfully 
improved yield and NUE in several plant species (Tegeder 
& Masclaux-Daubresse, 2018). Although the precise role 
of many transporters in phloem loading, unloading and 
xylem to phloem translocation is not well known, the con-
current activations of some of these transporters is a strat-
egy to improve N flux towards seeds that deserves further 
research.

It is well known that amino acid catabolism occurs in 
senescing leaf tissues to support mitochondrial respiration 
through conversion to keto-acids (Chrobok et al.,  2016). 
The cytosolic GLUTAMINE SYNTHETASES (GS1) and 
ASPARAGINE SYNTHETASES (ASN) that are induced 
during leaf senescence are essential to reassimilate am-
monium released from amino acid catabolism. These 
enzymes contribute to the synthesis of glutamine and 
asparagine that are the preferred amino acids for phloem 
loading (Havé et al., 2017; Lee, 2021; Moison et al., 2018; 
Xu et al., 2012). Manipulation of these enzymes is com-
plex as they exist as multigenic families. Several studies 
performed in maize and rice report the positive effects 
of activation of these enzymes on plant productivity, 
which encourages their manipulation (Lee, Marmagne, 
et al., 2020; Lee, Park, et al., 2020; Martin et al., 2006).

The important limiting steps in N management for 
biomass and yield improvement are the capacities of 
plants to provide enough N at the right place and at the 
right time of development to support optimal growth of 
the plant organs. For that, the capacity of a plant to use 
structural proteins, enzymes and other macromolecules 
as N reservoirs in vegetative tissues is essential. Plants that 
have the capacity to efficiently degrade, recycle and trans-
locate organic N from macromolecules without affecting 
cell longevity, need less inorganic N input. Such an ability 
requires the simultaneous modulation of the metabolic 
and physiological processes mentioned throughout this 
review, such as photosynthesis, senescence and nutrient 
transport and partitioning. In addition, because the pho-
tosynthetic machinery represents the main N reservoir in 
vegetative green tissues of most plants, leaf senescence 
has opposite effects on C fixation and N remobilisation.

The impact of the regulatory genes of the leaf senes-
cence programme on photosynthesis, nutrient partition-
ing, nutrient translocation and grain production needs 
further investigation to understand the interaction of all 
these gene products controlling leaf longevity, chloro-
plast maintenance, plant growth and nutrient recycling 

throughout the plant's lifespan. Breaking this negative 
relationship to obtain plants that can maintain both C fix-
ation and N recycling and mobilisation as long as possi-
ble is an interesting future research question for breeding 
strategies.

3.3  |  Oil/lipid metabolism

Many plant species, including model species such as 
Arabidopsis and crops such as sunflower and rapeseed, 
accumulate fatty acids as the principal energy source in 
seeds. Fatty acid production relies on sucrose produced 
through photosynthesis and transported to the seeds 
(Miray et al., 2021; Troncoso-Ponce et al., 2016). Sucrose 
is hydrolysed to glucose and fructose, which are then con-
verted to acetyl-coenzyme A (CoA) via glycolysis. Acetyl-
CoA is then utilised for fatty acid biosynthesis in seed 
plastids, from which triacylglycerols (TAGs) are synthe-
sised in the endoplasmic reticulum and accumulate in oil 
bodies (oleosomes). Manipulation of enzymes and tran-
scription factors involved in TAG metabolism has been 
thoroughly explored, and several have increased oil con-
centrations in seeds (Kong et al.,  2020; Troncoso-Ponce 
et al.,  2016; van Erp et al.,  2014; Weselake et al.,  2009). 
Other strategies for increasing oil content in seeds in-
clude manipulating chloroplast fatty acid transporters 
to increase seed oil accumulation (Li et al.,  2020; Tian 
et al., 2018).

The pull, push and protect approach (Vanhercke, 
Petrie, et al.,  2014) consists of the induction (push), the 
synthesis (pull) and the protection (protect) of TAG-
containing bodies (oil bodies) in plants. This approach 
was used to promote oil production and accumulation in 
vegetative tissues and especially in leaves. The concur-
rent overexpression in N. tabacum of (i) the Arabidopsis 
WRINKLED1 (WRI1) gene that encodes a transcription 
factor that enhances the expression of genes involved in 
lipid synthesis, (ii) the ACYL-COA:DIACYLGLYCEROL 
ACYLTRANSFERASE1 (DGAT1) gene that promotes the 
formation of oil bodies, and (iii) the OLEOSIN gene that 
codes for a coat protein that defines and protects oil bod-
ies results in the production of the ‘high oil’ tobacco lines 
that contained 15% more TAGs (dry weight) in their leaves 
(Marchive et al., 2014; Vanhercke et al., 2013; Vanhercke, El 
Tahchy, et al., 2014). Furthermore, Vanhercke et al. (2017) 
silenced the SUGAR-DEPENDENT1 (SDP1) gene encod-
ing a lipase that degrades oil bodies to interrupt the first 
step of TAG turnover and overexpressed the Arabidopsis 
thaliana transcription factor LEAFY COTYLEDON 2 
(LEC2) in the ‘high oil’ tobacco previously engineered. 
The LEC2 master regulator of seed maturation and oil ac-
cumulation in seeds was expressed under the control of 
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the senescence-associated promoter SAG12, to minimise 
negative pleiotropic effects of constitutive LEC2 expres-
sion (Kim et al.,  2015). These new constructs increased 
TAG accumulation levels in the leaf tissues by 30%–33% 
relative to the wild type (Vanhercke et al.,  2017, 2019). 
Several studies also demonstrate the positive effect of 
intercepted light and leaf senescence retardation and on 
seed oil content (Aguirrezábal et al., 2003; Andrianasolo 
et al.,  2016). In addition to the efforts made to increase 
oil yield, studies aimed at improving oil quality (Napier & 
Graham, 2010). For instance, numerous biotechnological 
solutions were proposed to change oil composition to fit to 
the diversity of consumer demands (Haslam et al., 2016).

To summarise, successes have been achieved leading 
to increases in oil accumulation not only in seeds but also 
in vegetative tissues, offer new perspectives in producing 
high-energy plant products. Plant metabolism is exceed-
ingly plastic and capable of offering solutions that meet 
human needs in terms of oil quality and quantity, includ-
ing nutrition, food processing, industrial processes and 
biofuel production. So far, however, this potential is un-
derexploited because of limited understanding. To meet 
the future crop productivity demands, it is crucial to un-
ravel the mechanisms and genetic regulation underlying 
oil and lipid metabolism, as well as their interconnections 
with other plant processes.

4   |   PLANT ORGAN GROWTH AND 
DEVELOPMENT

A key determinant of crop yield is organ growth and de-
velopment, of which several aspects and their link with 
the photosynthetic and nutrient remobilisation processes 
were described earlier. Plant growth is controlled by com-
plex, highly interconnected networks of regulators that 
integrate many different internal and external signals, 
including light, sugars, water availability and minerals 
(Hilty et al.,  2021). These inputs are translated into dis-
tinct processes, such as the spatial organisation of plant 
tissues, the cell cycle and/or cell expansion, cell–cell com-
munication and cell death.

4.1  |  Leaf growth and development

Leaves are often taken as model organs to elucidate vari-
ous processes underlying organ growth and the underlying 
molecular pathways. In addition, leaves are the direct and 
main source of plant-derived products and the predomi-
nant sites of photosynthesis. In their role as major C- and 
energy-producing factories, leaves allow plants to sustain 
their growth, to complete their life cycle and to form other 

organs of agricultural importance, such as seeds and fruits 
(Barber,  2009; Demura & Ye,  2010; Tsukaya,  2013; Zhu 
et al., 2010).

Leaf development is a multifactorial and dynamic 
process, and distinct aspects of leaf development and 
the underlying molecular networks have been identi-
fied and reviewed extensively (Gonzalez et al.,  2012; 
Hepworth & Lenhard, 2014; Nelissen et al., 2016; Nelissen 
& Gonzalez,  2020; Powell & Lenhard,  2012; Vercruysse 
et al.,  2020). At a cellular level, the main mechanisms 
that contribute to leaf size and/or shape determination 
are (i) the number of cells recruited to the organ primor-
dium (Efroni et al.,  2010; Kalve et al.,  2014; Reinhardt 
et al., 2000), (ii) the rate and (iii) duration of cell division 
(Andriankaja et al., 2012; Donnelly et al., 1999; Gonzalez 
et al., 2012; Vercruysse et al., 2020), (iv) the rate and (v) 
duration of cell expansion and (vi) the extent of meri-
stemoid division, the re-iterative asymmetric division of 
stomatal precursor cells (Bergmann & Sack, 2007; Geisler 
et al., 2000; Larkin et al., 1997). Impinging on one of these 
processes often results in an alteration in cell number 
and/or cell size, affecting final leaf size and/or shape and 
plant biomass (Gonzalez et al., 2012; Nelissen et al., 2016; 
Vercruysse et al., 2020).

Leaf growth-regulatory genes encode proteins of di-
verse functional classes involved in the regulation of a sin-
gle or multiple cellular processes (Gonzalez et al.,  2010; 
Hepworth & Lenhard,  2014; Krizek,  2009; Schneider 
et al.,  2021). The PEAPOD (PPD)/KINASE-INDUCIBLE 
DOMAIN INTERACTING (KIX)/STERILE APETALA 
(SAP) module is an example of a leaf growth-regulatory 
module that is highly conserved to regulate cell number 
in numerous eudicot species (Schneider et al.,  2021). 
Upon down-regulation of the PPD/KIX complex or up-
regulation of STERILE APETALA (SAP), mediating post-
translational degradation of the PPD/KIX complex, cell 
division is significantly increased in leaves, resulting in 
significant shoot biomass increases in up to about 50% 
(Schneider et al., 2021). Besides the PPD pathway, there are 
several other key regulators of organ growth with highly 
conserved functions, such as the CYTOCHROME P450 
78A (CYP78A) family (Anastasiou et al., 2007; Stransfeld 
et al., 2010; Wang et al., 2008), and the CELL NUMBER 
REGULATOR (CNR) (Guo et al.,  2010), TONNEAU1 
Recruiting Motif (TRM) (Guo & Simmons,  2011; 
Wang, Pan, et al., 2019), SUN (Sun et al., 2017), OVATE 
(Snouffer et al., 2020), YABBY (Strable et al., 2017; Zhang 
et al., 2019) and WOX (Cho et al., 2013; Wang et al., 2017) 
proteins. Several of the identified leaf growth regulators 
also regulate fruit or seed size (Chen et al., 2021; Monforte 
et al., 2014; Schneider et al., 2021; Sun et al., 2017), sug-
gesting that the growth processes may, at least in part, be 
similarly regulated in above-ground organs. Although 
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increasing sink size could be a way to increase yield, an 
increase in seed size may also result in a concurrent but 
adverse impact on the harvest index (Masclaux-Daubresse 
& Chardon, 2011). For instance, in soybean lines in which 
the PPD orthologue BIG SEEDS 1 (BS1) is down-regulated, 
seed size is increased but accompanied with the produc-
tion of less seeds (Ge et al., 2016). Some growth regulators 
also connect organ size to other important yield-related 
traits. For instance, KLU, a member of the CYP78A family, 
acts as a positive regulator of organ growth, leaf longevity 
and drought tolerance in maize plants (Jiang et al., 2021), 
while GROWTH REGULATING FACTOR 5 (GRF5) 
stimulates leaf size, photosynthesis and leaf longevity 
(Vercruyssen et al.,  2015). The strong effects on diverse 
plant organs in numerous species indicate that target-
ing these conserved key leaf growth-regulatory pathways 
(Vercruysse et al.,  2020) may offer great potential to in-
crease crop productivity.

Besides cell proliferation, cell expansion also contrib-
utes to final leaf size, and a close coordination between 
both processes is fundamental for proper organ develop-
ment (Andriankaja et al.,  2012; Vercruysse et al.,  2020). 
Leaf cells can loosen or tighten their primary walls, re-
vealing that the molecular processes underlying irrevers-
ible cell wall expansion are dynamically controlled. Cell 
expansion is proposed to be predominantly regulated 
by EXPANSINs (EXPs), known for a long time to play a 
crucial role during cell wall loosening (Cosgrove, 2000a, 
2000b; Vercruysse et al.,  2020) and to integrate various 
developmental, genetic and environmental growth sig-
nals (Muller et al., 2007). Besides EXPs, XYLOGLUCAN 
ENDOTRANSGLUCOSEYLASE/HYDROLASEs (XTHs), 
PECTIN METHYLESTERASEs (PMEs) and pectin mate-
rials have been identified as key components of cell wall 
mechanics and therefore growth control (Cosgrove, 2015; 
Phyo et al.,  2017; Schmidt et al.,  2016; Vercruysse 
et al., 2020). The most recent discoveries also point towards 
a role for cell wall sensor pathways, such as FERONIA 
(Cheung & Wu,  2011; Li et al.,  2016) and THESEUS1 
(Cheung & Wu,  2011; Hématy et al.,  2007) receptor-like 
kinases (RLKs), in response to diverse signals. FERONIA 
activates the production of ROS, known to be important 
mediators for diverse processes, including cell expansion 
and stress resistance (Ji et al., 2020). Although a short list 
of cell expansion modulators has been established, their 
exact role on affecting cell wall extensibility is for most 
unknown, and the underlying molecular mechanisms are 
underexplored. It is of crucial importance to understand 
how these molecular actors coordinate the response to 
environmental stresses, because any growth modification 
in plant leaves is concurrent with, and possibly controlled 
by, changes in cell wall properties (Cosgrove,  2018). 
Particularly relevant will be a better understanding of 

their link to the water fluxes towards the growing cells 
(Touati et al., 2015), and therefore also plant growth, sur-
vival and stress resistance (Chenu et al.,  2009). This in-
dicates that basic mechanisms underlying organ growth 
may also link towards other processes that might be im-
portant for obtaining climate-resilient crops and a sustain-
able agriculture.

In eudicots, such as Arabidopsis, leaves are generally 
round and contain a reticulate venation pattern, whereas 
leaves of monocot grasses, such as maize, are narrow 
and long with a parallel-like venation pattern (Nelson & 
Dengler,  1997). Despite these distinct leaf shapes, sev-
eral studies demonstrated that the cellular and molecular 
mechanisms governing leaf growth in eudicots and mono-
cot grasses are largely conserved (Liu et al., 2009; Nelissen 
et al., 2016; Peterson et al., 2010; Raissig et al., 2017). In 
monocot leaves, however, the proliferation, expansion 
and mature developmental stages are predominantly sep-
arated in a spatial manner with dividing cells located near 
the base of the leaf, followed by expanding and mature 
cells positioned towards the tip of the leaf (Avramova 
et al.,  2015; Fournier et al.,  2005; Nelissen et al.,  2016). 
In addition, whereas stomata are distributed in a random 
manner in eudicots, solely following the ‘one-cell spacing 
rule’, stomata are organised in a linear manner in grass 
species (Liu et al.,  2009; Peterson et al.,  2010; Raissig 
et al., 2017). Accordingly, not all processes translate across 
species (Gong et al.,  2022), for instance, because grass 
leaves lack meristemoids, the stomatal precursors in eudi-
cot species, the process of meristemoid asymmetric cell di-
vision and the proteins regulating this process, are absent 
in monocot grasses (Gonzalez et al., 2015; Liu et al., 2009; 
Schneider et al., 2021; Vatén & Bergmann, 2012).

4.2  |  Improving crop phenology

Given the more frequent occurrence of extreme weather 
conditions, altering developmental stages is also a key fac-
tor to adapt the crop life cycle to abiotic stress. Although 
a longer growing season means more photosynthesis, 
earlier flowering might be an option to avoid heat stress 
during the grain-filling period (Gouache et al., 2012). For 
example, wheat phenology (number of days between the 
sowing and heading or flowering time) is regulated by a 
small number of loci (Bogard et al., 2014; Fischer, 2011; 
Trevaskis,  2010) and as such gives the opportunity for 
researchers and breeders to directly use this genetic in-
formation to enhance breeding programmes. In brief, 
wheat phenology is defined by three components (Le 
Gouis et al., 2012; Rousset et al., 2011): (i) vernalisation, 
that is the requirement for exposure to cold temperatures 
to induce the transition between the vegetative and the 
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reproductive phase, is mainly governed by the Vrn gene 
family, including Vrn-A1, Vrn-A2 and Vrn-B3 on homolo-
gous chromosomes 4, 5 and 7; (ii) the photoperiod, that is 
the sensitivity to the inductive effect of long days on the 
transition between the vegetative and the reproductive 
phase, is mainly governed by the Ppd-1 genes family lo-
cated on homologous chromosomes 2, including Ppd-D1, 
Ppd-B1 and Ppd-A1; and (iii) earliness per se, referred to as 
the remaining variability independent of vernalisation re-
quirement and photoperiod sensitivity, is the less known 
component with only one locus mapped as a Mendelian 
factor located on chromosome 1D (Eps-D1).

Increasing yield by altering the flowering time as a 
means to avoid heat stress during anthesis or grain fill-
ing could, however, also have a countereffect, because the 
duration and therefore total amount of radiation inter-
ception is directly linked to crop biomass accumulation 
(Monteith, 1972). Accordingly, an optimal balance among 
these processes will be required to optimise crop perfor-
mance. In parallel, alterations of developmental stages 
to counteract the effect of abiotic stresses will need to be 
accompanied by other adaptation strategies, such as im-
proving genetic tolerance against these stresses (Gojon 
et al., 2022).

4.3  |  Root development

In addition to the biological processes underlying the 
growth and development of the above-ground plant parts, 
the roots deserve discussion in the context of yield poten-
tial. Roots are still an under-appreciated component of 
crop productivity despite providing the means to capture 
soil water and essential mineral elements required to gen-
erate the canopy that provides photosynthates. In addi-
tion, a well-developed root system allows for an increased 
crop resilience in periods of water deficit, nutrient deficit 
and adverse soil conditions such as compaction (Pandey 
et al., 2021). Roots constitute a substantial proportion of 
plant biomass but are rarely measured in experiments 
involving yield components and their link with traits 
processes determining yield potential is usually not con-
sidered. Variation in root growth may represent a source 
of genetic improvement that could support higher canopy 
photosynthesis (Murchie & Reynolds,  2013). However, 
roots have a higher respiratory cost than shoots and form 
intricate growth-promoting interactions with microorgan-
isms in the soil (rhizosphere). Root system properties such 
as architecture (e.g. depth, root front velocity, root angle, 
seminal root number, root hairs and total root length) 
could be improved to enhance resource capture, espe-
cially under conditions where water, essential microbes or 
nutrients are (partially) limiting (Manschadi et al., 2006; 

Ober et al.,  2021; Xie et al.,  2017). Moreover, there may 
be signalling links between root processes and photosyn-
thetic function, such as the observation that lowering sto-
matal density via the gene EPIDERMAL PATTERNING 
FACTOR 1 (EPF1) can induce root aerenchyma formation 
(Mohammed et al., 2019).

To summarise, modulation of organ growth offers 
major potential for increasing plant yield. Various regula-
tors of leaf growth, their targets and interacting proteins 
as well as the interactions between these growth regula-
tory modules have been described (Beemster et al., 2005; 
Gonzalez et al., 2012; Hepworth & Lenhard, 2014; Nelissen 
et al., 2016; Tsukaya, 2013; Vercruysse et al., 2020). Besides 
getting a better view on the growth and development of 
the above-ground plant parts, root growth, development 
and architecture will need to be further unravelled in the 
coming decades. Specifically, a better understanding is 
required of how root phenotypes might influence other 
plant traits, such as photosynthesis or nutrient uptake, 
and vice versa. Root-to-shoot ratio is a plastic trait in 
plants (Ledo et al.,  2018). In the past, breeding has un-
relentessly favoured above-ground biomass production, 
often penalising root systems. For example, this has led to 
the neglect and even loss of perennial crop plants, mainly 
cereals (Crews & Cattani,  2018). In an increasingly dry 
and hot world, investing in a root system that provides suf-
ficient supply of water and nutrients to the above-ground 
biomass will also be a useful and complementary strategy 
to future-proofing plants (Lombardi et al., 2021).

5   |   CONCLUSIONS AND FUTURE 
POTENTIAL

To future-proof agriculture, our current crops will need 
to be re-imagined improving their performance. In this 
review, several major yield components and the under-
lying molecular mechanisms have been presented that 
contribute to intrinsic yield potential: photosynthesis, 
nutrient partitioning and remobilisation, leaf longevity, 
seed filling and some aspects of plant organ growth and 
development (Figure  1). Various molecular pathways 
underlying these biological processes have been identi-
fied that offer great potential to increase crop productiv-
ity. Manipulating C and N partitioning to enhance yield 
of harvestable plant organs, for instance, has been the 
basis of crop domestication and remains a major avenue 
for increasing not only yield but also stress resilience and 
nutritional value of seeds (Yadav et al.,  2015). Despite 
this, uncertainties remain, and significant research is 
needed to address them. Improving the efficiency by 
which light energy is converted into biomass has, for 
instance, not yet been a target of direct selection, and 
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the options to improve the light conversion efficiency to 
increase crop yield are still largely underexplored (Long 
et al., 2015; Zelitch, 1982).

Food security will require a sustainable increase in 
crop yields with guaranteed nutritional value. Whilst im-
proving nutritional quality is outside the scope of this re-
view, methods to increase protein, vitamin and nutrient 
levels can be found in Scharff et al. (2021), and any future 
crop improvement strategies must consider both yield and 
nutritional quality. This is of particular importance given 
that in the context of rising CO2, some loss of nutritional 
value is also expected (Donnelly et al.,  1999; Ebi et al., 
2021; Myers et al., 2014).

To meet both food and nutritional security, we will 
need to improve crop nutrient economy whilst simul-
taneously increasing agricultural production without 
increasing the use of fertilisers, which pose further pres-
sure on the environment. It is clear that improving the 
photosynthetic processes, nutrient remobilisation, and 
growth and development of root and shoot systems can 
contribute to achieve these goals. So far, these traits have 
been studied independently, but metabolic pathways 
are integrated in the organismal physiology of plants. 
Connections between traits determining crop yield have 
become more clear, indicating that, although impinging 
on individual processes offers perspectives to increase 
crop productivity, the processes underlying crop yield 
are strongly interlinked and should be considered holis-
tically to develop high-yielding crops and avoid adverse 
off-target effects. Therefore, it will be important not only 
to extend knowledge of individual pathways, regulators 
and their contributions to plant performance, but to 
also analyse how genes, at the network level, cooperate 
to exert specific functions and to reveal the connections 
between the different networks and biological processes. 
For instance, N uptake and use are not only essential de-
terminants of efficient photosynthesis but are also highly 
interlinked with photorespiration in different tissues and 
organs, both at the intracellular and intercellular level 
(Nunes-Nesi et al., 2010). N uptake and use are also in-
fluenced by plant growth and development, for example 
through plasticity of root structural and transport charac-
teristics that modulate exploration of the soil and intake 
capacity (Gautrat et al., 2021; De Pessemier et al., 2022). 
In turn, the capacities of the roots to acquire N depend on 
C fixation by photosynthesis, with root C availability rep-
resenting a major constraint affecting root architecture 
and development (Freixes et al.,  2002). These multiple 
interconnections between N assimilation and C metab-
olism are of major importance for crop production, and 
eco-physiological studies have demonstrated that C and 
N intake are the major limiting variables in models of 
plant biomass production (Foulkes et al., 2009).

The challenge in breeding for crop optimisation lies 
in combining or stacking promising plant traits, requir-
ing a holistic approach that encompasses the manifold 
processes underlying productivity (Figure 1). This is be-
coming possible because of improved technical, (field) 
phenotyping and network engineering capacities (Araus 
et al., 2018; Juliana et al., 2019; Reynolds et al., 2020), 
for which crop modelling approaches show high po-
tential (Yin et al., 2022). In addition to increasing crop 
performances by using modern breeding tools (marker-
assisted selection and/or genomic selection), a recent 
advance in climate change adaptation is the combined 
use of crop models and genomic prediction to define 
cultivar ideotypes (Bogard et al.,  2014, 2021; Gouache 
et al., 2017). Compared to the classical crop modelling 
approach, defining ideotypes using marker-based crop 
model parameters that take into account the genetic 
structures of phenology and other traits in the avail-
able germplasm (e.g. Gu et al., 2014; Kadam et al., 2019) 
avoids the risk of defining ‘pure in silico’ ideotypes that 
may be difficult to obtain by breeding or marker-assisted 
selection due to genetic limitations, such as linkage drag 
and pleiotropic effects.

Superior high-yield crop varieties will need to be 
harnessed in the context of imminent effects of climate 
change. Abiotic stresses, such as heat, salinity, water 
management (e.g. drought, flooding) and freezing, will 
need to be met with strategies for resistance, resilience 
and/or acclimation and better resource (e.g. water, phos-
phorus, N and minerals) uptake and use efficiency (Gojon 
et al., 2022). Part of the grand challenge to improve crop 
yields is to combine yield potential with resilience to 
both biotic and abiotic stressors (Harbinson et al., 2021). 
Future crops must have good yield stability with a high 
resilience to adverse climate and volatile weather condi-
tions if we are to minimise the environmental impact of 
agriculture. Notwithstanding the complexity of the sys-
tem, some important control points have been identified 
that could be explored to improve crop productivity. For 
some processes, optimisation in low-stress conditions 
was also shown to increase crop performance under 
abiotic stress conditions (Nuccio et al., 2015; Voss-Fels 
et al., 2019). Alterations of the T6P/SnRK1 pathway, for 
instance, result in positive changes in photosynthesis, 
growth and development (Paul et al., 2001, 2020; Pellny 
et al., 2004) in non-stressed conditions, as well as with 
drought stress during the flowering period (Nuccio 
et al., 2015).
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