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Abstract

We consider a two-patches SIR model where communication occurs
thru commuters, distinguishing explicitly permanently resident pop-
ulations from commuters populations. We give an explicit for-
mula of the reproduction number, and show how the propor-
tions of permanently resident populations impact it. We exhibit
non-intuitive situations for which allowing commuting from a safe
territory to another one where the transmission rate is higher
can reduce the overall epidemic threshold and avoid an outbreak.
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1 Introduction

Since the pioneer work of Kermack and McKendrick [26], the SIR model has
been very popular in epidemiology, as the basic model for infectious diseases
with direct transmission (e.g. [1]). It retakes great importance nowadays due
to the recent coronavirus pandemic. While early models were not spatialized,
the importance of accounting for spatial heterogeneity has been often reported
in the literature (see, e.g. [2, 22, 24, 25, 28, 36]). However, different mecha-
nisms come into play to explain the spatial spreading of a disease. Although
diffusion appears to be a natural process to describe the local propagation of
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an infectious agent among a population, which leads to models with partial
differential equations [33], it appears to be not well suited for describing long
distance spreading. In particular, transportation between cities comes into the
picture as a major source of rapid spreading among non-homogeneous pop-
ulations [3, 5, 10, 29, 30, 32, 37, 38, 43]. Meta-populations or multi-patches
models are then more appropriate to describe the spatial characteristics of the
propagation [4, 6, 17, 41, 42], as already well considered in ecology [20, 31].
These models require a precise description of the movements between patches,
which are most of the time assumed to be linear and thus encoded into a con-
nection matrix [4, 6]. Typically one obtains a system of ordinary differential
equations on a graph, which couples the communication dynamics with the
epidemiological one.

For diseases spreading among human populations living in different cities,
commuters (individuals housing in a city, traveling regularly for short periods
in a neighboring city, and coming back to their home city) play a crucial role
in the disease propagation among territories [22–24, 32, 43]. Such coupling
between patches have been already considered in the literature, distinguishing
among populations Ni attached to a city i the sub-population Nii present
in its permanent housing from other sub-populations Nij temporary present
in another city j 6= i (it can be also seen as multi-groups models as in [11,
18, 21]). However, such models explicitly assume that the whole population
housing in a given city can potentially commute to another one. We believe
that this is not always fully realistic and that a sub-population that never
(or very rarely) moves to another city should be distinguished from the sub-
population that visits at a regular basis another city. Therefore, we consider
an extension of such models, which explicitly takes into consideration two
kinds of movement: an Eulerian one which describes the flow between patches
that mixes populations, and an Lagrangian one which assigns home locations
of individuals, as described in the more general framework [9]. The study of
this extension, which has not yet been analyzed analytically in the literature,
to our knowledge, and how it impacts the disease spreading, is the primary
objective of the present work. For this purpose, we establish an analytical
expression of the reproduction number (as the epidemic threshold formerly
introduced and analyzed in [14–16, 39]) for the two patches case (that is also
valid for the particular case when the whole populations travel, for which the
exact expression of the reproduction number has not been yet provided in the
literature).

We also had in mind to consider heterogeneity among territories when
disease transmission differs from one city to another one. Typically, non-
pharmaceutical interventions (such as reducing physical distance in the
population) could be applied with different strength in each city, providing dis-
tinct transmission rates. When one territory being isolated presents a higher
reproduction number than the other territory, it can be considered as a core
group in the epidemiological terminology [8, 19], and commuters contribute
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then to spread the epidemics in both territories. We aim at analyzing more pre-
cisely how the proportions of commuters in each city can increase or decrease
the overall reproduction number. Intuitively, one may believe that the best
way to reduce the spreading is to encourage commuters from the city with the
lowest transmission rate not to travel to the other city, and on the opposite to
encourage as much as possible commuters from the other city to spend time
in the safer city. Indeed, we shall see that this is not always true... The second
objective of the present work is thus to study the minimization of the epidemic
threshold of the two-patches model with respect to these proportions, depend-
ing on the commuting rates. This analysis can potentially serve for decisions
making to prevent epidemic outbreak (as in [27] for instance).

The paper is organized as follows. In the next section, we present the com-
plete model in dimension 18 and give some preliminaries. Section 3 is devoted
to the analysis of the asymptotic behavior of the solutions of the model. We
give and demonstrate an explicit expression of the reproduction number, intro-
ducing four relevant quantities qij (i, j = 1, 2). In a corollary, we also give an
alternative way of computation, which is useful in the following. In Section
4, we study the minimization of the reproduction number with respect to the
proportions of commuters in each patch. Finally, Section 5 gives a numerical
illustration of the results, considering two territories with intrinsic basic repro-
duction numbers lower and higher than one. We depict the relative sizes of
the permanently resident populations that can avoid the outbreak of the epi-
demic depending on the commuting rates, and discuss the various cases. We
end with a conclusion.

2 The model

We follow the modeling of commuters proposed in [23] between two patches
(such as cities or territories), but here we consider in addition that a part
of the population in each patch do not commute (the permanently resident
sub-population). We consider populations of size Ni whose home belongs to a
patch i ∈ {1, 2}, structured in three groups:

1. permanently resident, being all the time in patch i, whose population size
is denoted Nir,

2. commuters to patch j, but located in patch i at time t, of population size
denoted Nii,

3. commuters to patch j and located in patch j at time t, of population size
denoted Nij .

We shall denote Nic = Nii +Nij the size of the total population of commuters
with their home in patch i. The individuals commutes to patch j at a rate λi
with a return rate µi. For each group g ∈ {ir, ii, ij} we denote by Sg, Ig, Rg
the sizes of susceptible, infected and recovered sub-populations. This modeling
implicitly assumes that at any time there is no individual out the territories,
that is traveling time is negligible. This assumption is therefore only valid
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for adjoining territories with short transportation times (by train, road...). It
would not be valid between distant territories connected for example by boat
or plane with non-negligible crossing times. In this case, it would be necessary
to consider additional nodes of in-transit populations, as it has been considered
for example in [12, 34] or in [35] where distance between nodes are explicitly
taken into consideration. This would of course complicates the model and its
study.

We consider the SIR model assuming that the recovery parameter γ is
identical everywhere while the transmission rate βi depends on the patch i but
is identical among each group. Typically lifestyle and hygienic measures may
differ between two cities, implying different values of β. Moreover, if two cities
are on both sides of the border between two countries, the strength of non-
pharmaceutical interventions are likely to be different, as is was for instance
the case between European countries during the SARS-2 outbreak. The model
is written as follows (with i 6= j in {1, 2}).

Ṡir = −βiSir
Iir + Iii + Iji
Nir +Nii +Nji

,

İir = βiSir
Iir + Iii + Iji
Nir +Nii +Nji

− γIir,

Ṙir = γIir,

Ṡii = −βiSii
Iir + Iii + Iji
Nir +Nii +Nji

− λiSii + µiSij ,

İii = βiSii
Iir + Iii + Iji
Nir +Nii +Nji

− γIii − λiIii + µiIij ,

Ṙii = γIii − λiRii + µiRij ,

Ṡij = −βjSij
Ijr + Ijj + Iij
Njr +Njj +Nij

+ λiSii − µiSij ,

İij = βjSij
Ijr + Ijj + Iij
Njr +Njj +Nij

− γIij + λiIii − µiIij ,

Ṙij = γIij + λiRii − µiRij

Parameters λi, µi represent switching rates of populations i, leaving home
and returning. This modeling implicitly assumes that movements between ter-
ritories are not synchronized, as often considered in multi-city models (see
e.g. [5, 6, 10, 22–24, 30, 36, 37, 41, 42]). Note that we also consider, in all
generality, that commuting is asymmetrical (i.e. λ1 and λ2 may be different,
as well as µ1, µ2). Typically, each territory may offer different activities that
attract commuters from the other territory, and thus different mean sojourn
times. One can check that the population sizes Nir, and Nic are constant.
Moreover Nii, Nij fulfill the system of equations



Springer Nature 2021 LATEX template

The role of permanently resident populations 5

{
Ṅii = −λiNii + µiNij ,

Ṅij = λiNii − µiNij
whose solutions verify

lim
t→+∞

Nii(t) = N̄ii :=
µi

λi + µi
Nic, lim

t→+∞
Nij(t) = N̄ij :=

λi
λi + µi

Nic (1)

We shall assume that populations are already balanced at initial time i.e. that
one has Nii = N̄ii, Nij = N̄ij (constant). For simplicity, we shall drop the
notation¯ in the following, and denote

Nip := Nir +Nii +Nji

which represents the (constant) size of the total population present in patch i.

3 The epidemic threshold

We denote the vectors

I = (I1r, I11, I12, I2r, I22, I21)>, S = (S1r, S11, S12, S2r, S22, S21)>

and consider the state vector

X =

[
I
S

]
which belongs to the invariant domain

D := {X ∈ R12
+ ; MX ≤ N}

where N is the vector

N = (N1r, N11, N12, N2r, N22, N21)>

and M the 6 × 12 matrix which consists in the concatenation of the identity
matrix I6 of dimension 6× 6

M = [I6, I6]

The disease free equilibrium is defined as

X? =

[
0
N

]
Let Ri be the intrinsic reproduction number in the patch i (i.e. when there is
no connection between patches), that is
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Ri :=
βi
γ
.

We give now an explicit expression of the epidemic threshold when the two
patches communicates via commuters.

Proposition 1 Let

R1,2 :=
q11 + q22 +

√
(q22 − q11)2 + 4q12q21

2
(2)

where 

q11 = R1

(
N1r
N1p

+ N11
N1p

γ+µ1

γ+λ1+µ1
+ N21
N1p

γ+λ2

γ+λ2+µ2

)
q22 = R2

(
N2r
N2p

+ N22
N2p

γ+µ2

γ+λ2+µ2
+ N12
N2p

γ+λ1

γ+λ1+µ1

)
q21 = R1

(
N11
N1p

λ1
γ+λ1+µ1

+ N21
N1p

µ2

γ+λ2+µ2

)
q12 = R2

(
N12
N2p

µ1

γ+λ1+µ1
+ N22
N2p

λ2
γ+λ2+µ2

)
(3)

Then, one has the following properties.

1. If R1,2 > 1, then X? is unstable.
2. If R1,2 < 1, then X? is exponentially stable with respect to the variable1 I.
3. If R1 = R2 := R, then R1,2 = R.

Proof Write the dynamics of X as Ẋ = f(X). The Jacobian matrix J of f at X? is
of the form

J =

[
A 0
? B

]
with A = F − V

where

F =



β1
N1r
N1p

β1
N1r
N1p

0 0 0 β1
N1r
N1p

β1
N11
N1p

β1
N11
N1p

0 0 0 β1
N11
N1p

0 0 β2
N12
N2p

β2
N12
N2p

β2
N12
N2p

0

0 0 β2
N2r
N2p

β2
N2r
N2p

β2
N2r
N2p

0

0 0 β2
N22
N2p

β2
N22
N2p

β2
N22
N2p

0

β1
N21
N1p

β1
N21
N1p

0 0 0 β1
N21
N1p


,

1We refer to [40] for the definition of partial stability.
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V =



γ 0 0 0 0 0

0 γ + λ1 −µ1 0 0 0

0 −λ1 γ + µ1 0 0 0

0 0 0 γ 0 0

0 0 0 0 γ + λ2 −µ2

0 0 0 0 −λ2 γ + µ2


and

B =



0 0 0 0 0 0

0 −λ1 µ1 0 0 0

0 λ1 −µ1 0 0 0

0 0 0 0 0 0

0 0 0 0 −λ2 µ2

0 0 0 0 λ2 −µ2


Note that F is a non-negative matrix and V is a non-singular M-matrix. We recall
(see for instance from [39]) that one has the property

maxRe(Spec(A)) <
>

0⇐⇒ ρ(FV −1) <
>

1

The computation of the matrix M := FV −1 gives the following expression

M =



R1
N1r
N1p

R1
N1r(γ+µ1)

N1p(γ+λ1+µ1)
R1

N1rµ1
N1p(γ+λ1+µ1)

0 R1
N1rλ2

N1p(γ+λ2+µ2)
R1

N1r(γ+λ2)
N1p(γ+λ2+µ2)

R1
N11
N1p

R1
N11(γ+µ1)

N1p(γ+λ1+µ1)
R1

N11µ1
N1p(γ+λ1+µ1)

0 R1
N11λ2

N1p(γ+λ2+µ2)
R1

N11(γ+λ2)
N1p(γ+λ2+µ2)

0 R2
N12λ1

N2p(γ+λ1+µ1)
R2

N12(γ+λ1)
N2p(γ+λ1+µ1)

R2
N12
N2p

R2
N12(γ+µ2)

N2p(γ+λ2+µ2)
R2

N12µ2
N1p(γ+λ2+µ2)

0 R2
N2rλ1

N2p(γ+λ1+µ1)
R2

N2r(γ+λ1)
N2p(γ+λ1+µ1)

R2
N2r
N2p

R2
N2r(γ+µ2)

N2p(γ+λ2+µ2)
R2

N2rµ2
N1p(γ+λ2+µ2)

0 R2
N22λ1

N2p(γ+λ1+µ1)
R2

N22(γ+λ1)
N2p(γ+λ1+µ1)

R2
N22
N2p

R2
N22(γ+µ2)

N2p(γ+λ2+µ2)
R2

N22µ2
N1p(γ+λ2+µ2)

R1
N21
N1p

R1
N21(γ+µ1)

N1p(γ+λ1+µ1)
R1

N21µ1
N1p(γ+λ1+µ1)

0 R1
N21λ2

N1p(γ+λ2+µ2)
R1

N21(γ+λ2)
N1p(γ+λ2+µ2)


Let us consider the diagonal matrix

D :=



R1
N1r
N1p

R1
N11
N1p

R2
N12
N2p

R2
N2r
N2p

R2
N22
N2p

R1
N21
N1p
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and the matrix Q = D−1MD, whose computation gives the expression

Q =



R1
N1r
N1p

R1
N11(γ+µ1)

N1p(γ+λ1+µ1)
R2

N12µ1
N2p(γ+λ1+µ1)

0 R2
N22λ2

N2p(γ+λ2+µ2)
R1

N21(γ+λ2)
N1p(γ+λ2+µ2)

R1
N1r
N1p

R1
N11(γ+µ1)

N1p(γ+λ1+µ1)
R2

N12µ1
N2p(γ+λ1+µ1)

0 R2
N22λ2

N2p(γ+λ2+µ2)
R1

N21(γ+λ2)
N1p(γ+λ2+µ2)

0 R1
N11λ1

N1p(γ+λ1+µ1)
R2

N12(γ+λ1)
N2p(γ+λ1+µ1)

R2
N2r
N2p

R2
N22(γ+µ2)

N2p(γ+λ2+µ2)
R1

N21µ2
N1p(γ+λ2+µ2)

0 R1
N11λ1

N1p(γ+λ1+µ1)
R2

N12(γ+λ1)
N2p(γ+λ1+µ1)

R2
N2r
N2p

R2
N22(γ+µ2)

N2p(γ+λ2+µ2)
R1

N21µ2
N1p(γ+λ2+µ2)

0 R1
N11λ1

N1p(γ+λ1+µ1)
R2

N12(γ+λ1)
N2p(γ+λ1+µ1)

R2
N2r
N2p

R2
N22(γ+µ2)

N2p(γ+λ2+µ2)
R1

N21µ2
N1p(γ+λ2+µ2)

R1
N1r
N1p

R1
N11(γ+µ1)

N1p(γ+λ1+µ1)
R2

N12µ1
N2p(γ+λ1+µ1)

0 R2
N22λ2

N2p(γ+λ2+µ2)
R1

N21(γ+λ2)
N1p(γ+λ2+µ2)


The matrix Q is non-negative and irreducible. By Perron-Frobenius Theorem (see

for instance [7]), this matrix admits a unique positive eigenvector (up to a scalar
multiplication) that corresponds to the simple (positive) eigenvalue ` = ρ(Q) =
ρ(M).

Note that the rank of Q is two. We posit

Y = (1, 1, 0, 0, 0, 1)>, Z = (0, 0, 1, 1, 1, 0)>

and define QY , QZ the first and third lines, respectively, of the matrix Q. Then, for
any vector X ∈ R6, on has one has QX = (QYX)Y + (QZX)Z. We look for an
positive eigenvector X of the form X = αY + (1−α)Z with α ∈ (0, 1). One has then

QX = αQY + (1− α)QZ

= α
(
(QY Y )Y + (QZY )Z

)
+ (1− α)

(
(QY Z)Y + (QZZ)Z

)
=
(
α(QY Y ) + (1− α)(QY Z)

)
Y +

(
α(QZY ) + (1− α)(QZZ)

)
Z (4)

On the other hand, as X is an eigenvector, one has

QX = `X = α`Y + (1− α)`Z (5)

The vectors Y and Z being orthogonal, one obtains from (4)-(5) the conditions{
αQY Y + (1− α)QY Z = α`
αQZY + (1− α)QZZ = (1− α)`

(6)

Let r = 1−α
α . Eliminating ` in the two previous equations, r is the positive solution

of the polynomial
r2QY Z + r(QY Y −QZZ)−QZY = 0

and ` = QY Y + rQY Z. One obtains the expression of the eigenvalue

` =
QY Y +QZZ +

√
(QY Y −QZZ)2 + 4(QY Z)(QZY )

2

Finally, from the expression of Q, one gets

q11 = QY Y = R1

(
N1r
N1p

+ N11
N1p

γ+µ1

γ+λ1+µ1
+ N21
N1p

γ+λ2

γ+λ2+µ2

)
q22 = QZZ = R2

(
N2r
N2p

+ N22
N2p

γ+µ2

γ+λ2+µ2
+ N12
N2p

γ+λ1

γ+λ1+µ1

)
q21 = QZY = R1

(
N11
N1p

λ1
γ+λ1+µ1

+ N21
N1p

µ2

γ+λ2+µ2

)
q12 = QY Z = R2

(
N12
N2p

µ1

γ+λ1+µ1
+ N22
N2p

λ2
γ+λ2+µ2

)
and thus ` = R1,2, which is exactly ρ(M).
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i. When R1,2 > 1, the matrix A has at least one eigenvalue with positive real
part and the matrix J as well. The equilibrium X? is thus unstable on D.

ii. When R1,2 < 1, the matrix A is Hurwitz, but X? is not an hyperbolic equi-
librium. However, on can write the dynamics of the vector I as an non-autonomous
system

İ = g(t, I) :=



β1S1r(t)
I1r+I11+I21

N1p
− γI1r

β1S11(t) I1r+I11+I21
N1p

− (γ + λ1)I11 + µ1I12

β2S12(t) I2r+I22+I12
N2p

+ λ1I11 − (γ + µ1)I12

β2S2r(t)
I2r+I22+I12

N2p
− γI2r

β2S22(t) I2r+I22+I12
N2p

− (γ + λ2)I22 + µ2I21

β1S21(t) I1r+I11+I21
N1p

+ λ2I22 − (γ + µ2)I21


Note that this dynamics is cooperative and as for any t ≥ 0 one has Sij(t) ≤ Nij for
ij ∈ {1r, 11, 12, 2r, 22, 21}, one gets

g(t, I) ≤ ḡ(I) := AI, I ≥ 0

Therefore, any solution I(·) of İ = g(t, I) with I(0) = I0 ≥ 0 verifies 0 ≤ I(t) ≤ Ī(t)

for any t ≥ 0, where Ī(·) is solution of the linear dynamics ˙̄I = ḡ(Ī) with Ī(0) = I0.
As A is Hurwitz, we conclude that X? is exponentially stable with respect to I,
which proves point ii.

iii. For the particular case R1 = R2 := R, the transpose of the matrix M writes

M
>

= R



N1r
N1p

N11
N1p

0 0 0
N21
N1p

N1r(γ+µ1)
N1p(γ+λ1+µ1)

N11(γ+µ1)
N1p(γ+λ1+µ1)

N12λ1
N2p(γ+λ1+µ1)

N2rλ1
N2p(γ+λ1+µ1)

N22λ1
N2p(γ+λ1+µ1)

N21(γ+µ1)
N1p(γ+λ1+µ1)

N1rµ1
N1p(γ+λ1+µ1)

N11µ1
N1p(γ+λ1+µ1)

N12(γ+λ1)
N2p(γ+λ1+µ1)

N2r(γ+λ1)
N2p(γ+λ1+µ1)

N22(γ+λ1)
N2p(γ+λ1+µ1)

N21µ1
N1p(γ+λ1+µ1)

0 0
N12
N2p

N2r
N2p

N22
N2p

0

N1rλ2
N1p(γ+λ2+µ2)

N11λ2
N1p(γ+λ2+µ2)

N12(γ+µ2)
N2p(γ+λ2+µ2)

N2r(γ+µ2)
N2p(γ+λ2+µ2)

N22(γ+µ2)
N2p(γ+λ2+µ2)

N21λ2
N1p(γ+λ2+µ2)

N1r(γ+λ2)
N1p(γ+λ2+µ2)

N11(γ+λ2)
N1p(γ+λ2+µ2)

N12µ2
N1p(γ+λ2+µ2)

N2rµ2
N1p(γ+λ2+µ2)

N22µ2
N1p(γ+λ2+µ2)

N21(γ+λ2)
N1p(γ+λ2+µ2)



One can check that one has M>U = RU where U = (1, 1, 1, 1, 1, 1)>. As U is a
positive vector, we deduce from the Perron-Frobenius Theorem that one has ρ(M) =
ρ(MT ) = R, which ends the proof. �

Remark 1 More generally, the next-generation matrix M = FV −1 can be shown to
have a rank equal to the number n of patches, and that its Perron vector can be
expressed as a convex combination of a family of orthogonal vectors in the image of
M . This implies that the positive eigenvalue of M (i.e. the reproduction number)
is also the positive eigenvalue of the n-dimensional positive matrix given by the
decomposition of the image of this vectors by the matrix M .
Alternatively, one may consider the epidemic spread in a virgin population as a
Markov process, to determine the expected numbers of secondary cases in each patch,
and obtain this n×n matrix, as described in [13]. This method consists in a first-step
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analysis by determining the mean residence times of an infected individual of each
group in each of the patches. Then, for a given patch the expected numbers of new
infected present in each path are given by the products of the mean residence times
by the transmission rate, averaged by the constant distribution given in (1).
This explains why the formula (2) takes the expression of a root of the characteristic
polynomial of a 2 by 2 matrix.

Remark 2 The explicit expression (2) of the epidemic threshold given in Proposition
1 is also relevant in absence of permanently resident populations, which has not been
yet provided explicitly in the literature (up to our knowledge).

Corollary 2 One has

min (R1,R2) ≤ R1,2 ≤ max (R1,R2) .

Proof Denote by M(R1,R2) the matrix FV −1 for the parameters R1, R2, and let
R− := min (R1,R2), R+ := max (R1,R2). From the expression of the non-negative
matrices M , one gets

M(R−,R−) ≤M(R1,R2) ≤M(R+,R+)

which implies (see for instance [7]) the inequalities

ρ(M(R−,R−)) ≤ ρ(M(R1,R2)) ≤ ρ(M(R+,R+))

and thus
R− ≤ R1,2 ≤ R+.

�

Alternatively, the number R1,2 can be determined as follows.

Corollary 3 Assume R2 > R1. Then, one has

R1,2 = αR1 + (1− α)R2 (7)

where α ∈ [0, 1) is the smallest root of the polynomial

P (α) = α2(R2 −R1)− α(R2 −R1 + q12 + q21) + q12

Proof One can check, from expressions (3), that one has q11 + q21 = R1 and q22 +
q12 = R2. Then, from (6), one get

R1,2 = l = αR1 + (1− α)R2 (8)

where α is a root of the polynomial P obtained from (6) by eliminating l, that is

P (α) = α2(R2 −R1)− α(R2 −R1 + q12 + q21) + q12

From Corollary 2, we know that α belongs to [0, 1]. Note that one has P (0) = q12 ≥ 0
and P (1) = −q21 ≤ 0. Therefore, when R2 − R1 > 0, P admits exactly one root
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in [0, 1) and another one in [1,→). However, if α = 1 one should have q21 = 0 and
thus λ1 = 0, µ2 = 0, which implies N11 = N1c, N12 = 0, N22 = 0, N21 = N2c.
Then, one obtains q11 = R1, q22 = R2 and from the expression (2) on gets R1,2 =
max(R1,R2) = R2 which contradicts α = 1. We conclude that α belongs to [0, 1)
and is thus the smallest root of P . �

Remark 3 When there is no communication between patches (that is N1r = N1p =
N1, N2r = N2p = N2), one has q21 = 0 and q12 = 0. If R2 > R1, resp. R1 > R2,
one has α = 0, resp. α = 1, which gives

R1,2 = max(R1,R2).

We look now for a characterization of the minimum value of the threshold
R1,2.

4 Minimization of the epidemic threshold

In this section, we assume that the mixing is fast compared to the recovery rate
(as its is often considered in the literature), which amounts to have numbers
λi, µi large compared to γ. Our objective is to study how the proportions of
commuters in the populations impact the value of R1,2.

Given R1, R2, we consider the approximation R̃1,2 of the threshold R1,2

which consists in keeping γ = 0 in the expressions (3). For convenience, we
posit the numbers

ηi :=
λi

λi + µi
∈ (0, 1) (i = 1, 2)

One has a first result about the variations of R̃1,2 with respect to N1c, N2c.

Proposition 4 Fix parameters Ni, βi, γ, λi, µi (i = 1, 2) such that R2 > R1.

1. For any N1c ∈ (0, N1), the map N2c 7→ R̃1,2(N1c, N2c) is decreasing.

2. The map N1c 7→ R̃1,2(N1c, N2c) is increasing at (N1c, N2c) when

η2(1− η2)N2c > (1− η1)(N2 − η2N2c) (9)

3. The map N1c 7→ R̃1,2(N1c, N2c) is increasing, resp. decreasing, at (N1c, N2c)
if the numbers A and B are negative, resp. positive, where

A := R2

N2

2 − η1( 1
2 − η1)N1c − ( 3

2 − η2)η2N2c

N2 − η2N2c + η1N1c

−R1

N1

2 − ( 3
2 − η1)η1N1c − η2( 1

2 − η2)N2c

N1 − η1N1c + η2N2c
,
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B := R2
(1− η1)(N2 − η2N2c)− η2(1− η2)N2c

(N2 − η2N2c + η1N1c)2

−R1
(1− η1)(N1 + η2N2c) + η2(1− η2)N2c

(N1 − η1N1c + η2N2c)2

Proof Following Corollary 3, one has

R̃1,2 = α̃R1 + (1− α̃)R2 (10)

where α̃ is the smallest root of the polynomial

P̃ (α) = α2(R2 −R1)− α(R2 −R1 + q̃12 + q̃21) + q̃12

where q̃12, q̃21 are the approximations of q12, q21 defined in (3). Let us note that one
can write Nii = (1 − ηi)Nic, Nij = ηiNic (for j 6= i) and also Nip = Ni − ηiNic +
ηjNjc, which leads to the following expressions of q̃12, q̃21

q̃21 = R1
(1− η1)η1N1c + η2(1− η2)N2c

N1 − η1N1c + η2N2c
, q̃12 = R2

η1(1− η1)N1c + (1− η2)η2N2c

N2 − η2N2c + η1N1c
(11)

For simplicity, we shall drop the notation ˜ in the rest of the proof. Note than α
being the smallest root of P , it verifies

α <
R2 −R1 + q12 + q21

2(R2 −R1)
(12)

Let us differentiate the equality P (α) = 0 with respect to q12 and q21:

2α
∂α

∂q12
(R2 −R1)− ∂α

∂q12
(R2 −R1 + q12 + q21)− α+ 1 = 0

2α
∂α

∂q21
(R2 −R1)− ∂α

∂q21
(R2 −R1 + q12 + q21)− α = 0

which gives

∂α

∂q12
=

1− α
R2 −R1 + q12 + q21 − 2α(R2 −R1)

∂α

∂q21
=

−α
R2 −R1 + q12 + q21 − 2α(R2 −R1)

Then, one can write

∂α

∂Nic
=

∂α

∂q12

∂q12

∂Nic
+
∂α

∂q21

∂q21

∂Nic
=

(1− α) ∂q12∂Nic
− α ∂q21∂Nic

R2 −R1 + q12 + q21 − 2α(R2 −R1)
(i = 1, 2)

and from inequality (12), we obtain that the signs of the derivatives ∂α
∂Nic

are given
by the sign of the numbers

σi := (1− α)
∂q12

∂Nic
− α ∂q21

∂Nic
(i = 1, 2) (13)
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We begin by the dependency with respect to N2c. One has first

∂q12

∂N2c
= R2η2

(1− η2)(N2 + η1N1c) + η1(1− η1)N1c

(N2 + η1N1c − η2N2c)2
> 0

Note that one has

q21 =
R1(N2 + η1N1c − η2N2c)

R2(N1 − η1N1c + η2N2c)
q12 (14)

and thus

∂q21

∂N2c
=
R1(N2 + η1N1c − η2N2c)

R2(N1 − η1N1c + η2N2c)

∂q12

∂N2c
− R1η2(N1 +N2)

R2(N1 − η1N1c + η2N2c)2
q12

Then, one gets the inequality

σ2 >

(
1− α− αR1(N2 + η1N1c − η2N2c)

R2(N1 − η1N1c + η2N2c)

)
∂q12

∂N2c

On another hand, one gets from P (α) = 0 the inequality

(1− α)q12 − αq21 = α(1− α)(R2 −R1) > 0

and with (14)

(1− α)q12 − αq21 =

(
1− α− αR1(N2 + η1N1c − η2N2c)

R2(N1 − η1N1c + η2N2c)

)
q12 > 0

We then conclude that σ2 is positive, and from (10) we deduce that the map N2c 7→
R1,2 is decreasing. This proves the point i.

We study now the dependency with respect to N1c. A calculation of the partial
derivative gives

∂q12

∂N1c
= R2η1

(1− η1)(N2 − η2N2c)− η2(1− η2)N2c

(N2 − η2N2c + η1N1c)2
(15)

and

∂q21

∂N1c
= R1η1

(1− η1)(N1 + η2N2c) + η2(1− η2)N2c

(N1 − η1N1c + η2N2c)2
> 0 (16)

When ∂q12
∂N1c

< 0, we can conclude that σ1 is negative and R1,2 is thus increasing
with respect to N1c. This condition is equivalent to (9). This proves the point ii.

When this last condition is not satisfied, having ∂q12
∂N1c

< ∂q21
∂N1c

with α > 1
2 is another

sufficient condition to obtain σ1 < 0 from expression (13). However, having α > 1
2

amounts to have P ( 1
2 ) > 0, that is

R2 −R1

4
− R2 −R1 + q12 + q21

2
+ q12 > 0

or equivalently
R2

2
− q12 <

R1

2
− q21

One can check that this last condition is equivalent to A < 0 and that the condition
∂q12
∂N1c

< ∂q21
∂N1c

is equivalent to B < 0. In the same manner, having A > 0 and B > 0

implies α < 1
2 and ∂q12

∂N1c
> ∂q21

∂N1c
, which is a sufficient condition to have σ1 > 0, and

thus R1,2 increasing with respect to N1c. This proves the point iii. �
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This result suggests that the map N1c 7→ R̃1,2(N1c, N2c) is not necessarily

monotonic, differently to the map N2c 7→ R̃1,2(N1c, N2c). We show now that
the possibilities of its variations are limited.

Proposition 5 Under hypotheses of Proposition 4, for each N2c ∈ (0, N2) the map
N1c 7→ R̃1,2(N1c, N2c) possesses one of the three properties

1. it is decreasing on (0, N1),
2. it is increasing on (0, N1),
3. there exists N?

1c ∈ (0, N1) such that it is decreasing on (0, N?
1c) and

increasing on (N?
1c, N1).

Proof Fix N2c ∈ (0, N2). If the map N1c 7→ R̃1,2(N1c, N2c) is not monotonic, there

exists N̂1c ∈ (0, N1) such that
∂R̃1,2

∂N1c
(N̂1c, N2c) = 0. For simplicity, we shall drop

the notation˜ in the rest of the proof. Following the proof of Proposition 4, one has
R1,2 = αR1 + (1− α)R2 with

∂α

∂N1c
=

(1− α) ∂q12∂N1c
− α ∂q21

∂N1c

R2 −R1 + q12 + q21 − 2α(R2 −R1)
:=

σ1

ν

where ν > 0. Therefore, one has ∂α
∂N1c

= 0 and σ1 = 0 at N1c = N̂1c, and thus

∂2α

∂N2
1c

∣∣∣∣
N1c=N̂1c

=

∂σ1
∂N1c

ν

∣∣∣∣∣
N1c=N̂1c

=
(1− α)∂

2q12
∂N2

1c
− α∂

2q21
∂N2

1c

ν

∣∣∣∣∣∣
N1c=N̂1c

From expressions (15) and (16), a calculation of the partial derivatives gives

∂2q12

∂N2
1c

=
−2η1

∂q12
∂N1c

N1 − η1N1c + η2N2c
,

∂2q21

∂N2
1c

=
2η1

∂q21
∂N1c

N2 − η2N2c + η1N1c

where ∂q21
∂N1c

> 0 and from σ1 = 0 one gets ∂q12
∂N1c

> 0 for N1c = N̂1c. Finally, one
obtains

∂2R1,2

∂N2
1c

(N̂1c, N2c) = −(R2 −R1)
∂2α

∂N2
1c

(N̂1c, N2c) < 0

Consequently, any extremum of the map N1c 7→ R1,2(N1c, N2c) is a local minimizer,
which implies that this map has at most one local minimizer. �

Finally, we give conditions for which the minimization of the thresholdR1,2

presents a trichotomy.

Proposition 6 Let parameters βi, γ be such that R2 > R1 and assume that N1, N2

satisfy N1R2 > N2R1. Then, provided that γ is small enough compared to λi and µi,
the function (N1c, N2c) 7→ R1,2(N1c, N2c) admits an unique minimum at (N?

1c, N
?
2c)

with N?
2c = N2. Moreover, one has the following properties.

1. N?
1c = 0 if η2 > 1− η1,

2. N?
1c = N1 if η1 and η2 are sufficiently small,
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3. there exists η1, η2 for which N?
1c ∈ (0, N1).

Proof We first show that the announced properties are satisfied for the approximate
function R̃1,2.

From Propositions 4 and 5, we know that R̃1,2 admits an unique minimum at

(N̂1c, N̂2c) with N̂2c = N2. For N2c = N2, the condition (9) simply writes η2 > 1−η1

which implies from point ii. of Proposition 4 that one has N̂1c = 0 when this condition
is fulfilled. This shows that point 1 is verified for the function R̃1,2.

One obtains the limits

lim
η1,η2→0

A =
R2

2
− R1

2
> 0, lim

η1,η2→0
B =

R2

N2
− R1

N1
> 0

which show that numbers A and B are positive when η1, η2 are small, and thus one
has N̂1c = N1 from point iii of Proposition 4. This shows that point 2 is verified for
the function R̃1,2.

Take now any N1c ∈ (0, N1). When η2 > 1−η1, one has
∂R̃1,2

∂N1c
(N1c, N2) > 0, and

for η1, η2 small,
∂R̃1,2

∂N1c
(N1c, N2) < 0 is verified. Then, by continuity of the function

R̃1,2 with respect to parameters η1, η2, one deduce that the existence of values η̂1,

η̂2 for which
∂R̃1,2

∂N1
(N1c, N2) = 0. As the function R̃1,2 cannot have more than a

local extremum (see Proposition 5), we deduce that N1c realizes the minimum of the
function N1c 7→ R̃1,2(N1c, N2) when η1 = η̂1 and η2 = η̂2. This shows that point 3

is verified for the function R̃1,2.

Finally, note that the exact threshold R1,2 amounts to replace in the expression

of q̃12, q̃21 the numbers ηi by λi+γ
λi+µi+γ

, which is continuous with respect to γ and

equal to ηi for γ = 0. By continuity of R̃1,2 with respect to q̃12, q̃21 , we deduce that
uniqueness of the minimizer of R1,2 and properties 1. to 3. are also fulfilled by the
function (N1c, N2c) 7→ R1,2, provided that γ is small enough. �

5 Numerical illustration

We consider two territories of same population size N = N1 = N2 with dif-
ferent transmission rates such that one has R1 < 1 < R2 (values are given in
Table 1). Typically, some precautionary measures (such as social distance) are
taken in the first territory so that the disease cannot spread in this territory if
it is closed, while the epidemic can spread in the second territory in absence of
communication with territory 1. We aim at studying how the epidemic can die
out when commuting occur between territories, depending on the proportions
of resident in each population, denoted

pi =:=
Nir
N

= 1− Nic
N

, (i = 1, 2)

(in other words, how to obtain R1,2 < 1 playing with p1, p2). Note that when
N1 = N2, the threshold R1,2 depends on the proportions p1, p2 independently
of N .
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γ β1 β2 R1 R2

0.3 0.27 0.33 0.9 1.1

Table 1 Characteristics numbers of the epidemic

Conditions of Proposition 6 are satisfied provided that commuting parame-
ters λi, µi are large enough. We have considered three sets of these parameters,
given in Table 2, that correspond to the three possible situations depicted in
Proposition 6.

case λ1 µ1 λ2 µ2 η1 η2

A 10 10 10 1 0.5 0.9090909
B 10 100 10 100 0.009901 0.009901
C 10 10 10 70 0.5 0.125

Table 2 Three sets of commuting parameters

The approximate expression R̃1,2 turns out to be a very good approxi-
mation of the exact value R1,2, even in case A for which γ is not so small
compared to µ2 (see Table 3).

case A B C

max
p1,p2

|R̃1,2 −R1,2| 1.9 10−3 1.4 10−4 6 10−4

Table 3 Quality of the approximation R̃1,2

Figures 1, 2, 3 show families of curves p1 7→ R1,2 for different values of
p2 ∈ [0, 1]. One can observe that theses curves possess the properties given by
Propositions 4 and 5:

- they are either decreasing, increasing or decreasing down to a minimum and
then increasing,

- they are ordered and the lower one is obtained for p2 = 0 (i.e. N2c = N2).

This last feature is intuitive: the more there are commuters from territory 2
(that spend time in territory 1 where the conditions of transmission disease is
lower), the less the epidemic spreads. A way to reduce the value of R1,2 is thus
to encourage commuting towards territory 1 (whatever are the commuting
rates). However, the role of the resident population in territory 1 is far less
intuitive because it does depends on the commuting rates.

1. In case A, commuters from territory 2 return more rarely to home than
commuters from territory 1 do. The condition of point 1 of Proposition 6 is
fulfilled. Then, the threshold R1,2 can be made small (and below 1) when
the proportion of resident in territory 1 is high i.e. when the inhabitants of
territory 1 are encouraged not to commute.
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2. In case B, both commuters return rapidly to their home. This means that
the numbers of commuters from one territory present in the other one at a
given time is low. Then the condition of point 2 of Proposition 6 is fulfilled.
Here, it is better to encourage inhabitants of territory 1 to commute to the
other territory where the disease spreads yet more easily... which is counter-
intuitive at first sight. Indeed, commuters do not spend much time in the
other territory, and therefore heuristically have less time to encounter and
transmit the disease...

3. In case C, commuters from territory 2 return more rapidly to home than
commuters from territory 1 do, on the opposite of case A. Conditions of
points 1 and 2 of Proposition 6 are not fulfilled here and we are in an
intermediate situation for which point 3 of Proposition 6 occurs. It is theo-
retically possible to have R1,2 < 1 on the condition that the proportion of
commuters of territory 1 is well balanced.

Finally, this example shows that changing only the return rates µ1, µ2 allows
to obtain the three possible scenarios, but other changes could also exhibit
them.

Fig. 1 R1,2 as a function of p1 in case A (each curve corresponds to a value of p2 ∈ [0, 1])



Springer Nature 2021 LATEX template

18 The role of permanently resident populations

Fig. 2 R1,2 as a function of p1 in case B (each curve corresponds to a value of p2 ∈ [0, 1])

Fig. 3 R1,2 as a function of p1 in case C (each curve corresponds to a value of p2 ∈ [0, 1])



Springer Nature 2021 LATEX template

The role of permanently resident populations 19

6 Conclusion

In this work, we have been able to provide an explicit expression of the repro-
duction number, although the model is in dimension 18. This expression has
allowed us to study its minimization with respect to the proportions of per-
manently resident populations in each patch. We discovered a trichotomy of
cases, with some counter intuitive situations. In each case, it is always benefi-
cial to have commuters traveling to a safer city where the transmission rate is
lower. However, for the safer city, three situations occurs:

- either it is better to avoid commuting to the other city,
- or on the opposite encouraging commuting to the more risky city reduces

the reproduction number,
- and in a third case there exists an optimal intermediate proportion of

commuters of the safer city which minimizes the epidemic threshold.

In some sense, the permanently resident populations, which have been ignored
in former modeling, can play an hidden role in an epidemic outbreak. This
is illustrated on an example for which only right proportions of commuters
(or permanently resident) avoid the outbreak. This suggests that counter-
intuitive situations may also occur when considering networks with more than
two nodes. The present study focuses on the reproduction number and how it
can be reduced. The impacts of resident proportions on other epidemiological
characteristics, such as the peak level or the finite size, may be the matter a
future work. The extension of the present results to more general networks is
also a future perspective.
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