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Constructing dynamic mathematical models of biological systems requires estimating unknown parameters from available experimental data, usually using a statistical fitting procedure. This procedure is usually called parameter identification, parameter estimation, model fitting, or model calibration. In animal science, parameter identification is often performed without analytic considerations on the possibility of determining unique values of the model parameters. These analytic studies are related to the notion of structural identifiability. The structural identifiability analysis is a powerful tool for model construction because it informs whether the parameter identification problem is well-posed. In case of lack of identifiability, structural identifiability analysis is helpful to determine which actions (e.g., model reparameterization, choice of new data measurements) are needed to render the model parameters identifiable (when possible). The mathematical technicalities associated with structural identifiability analysis are very sophisticated. However, the development of dedicated, freely available software tools enables the application of identifiability analysis without needing to be an expert in mathematics and computer programming. We refer to such a non-expert user as a practitioner for hands-on purposes. In this paper, we propose to adopt a practitioner approach that takes advantage of available software tools to integrate identifiability analysis in the modeling practice in the animal science field. The application of structural identifiability implies switching our regard of the parameter identification problem as a downstream process (after data collection) to an upstream process (before data collection). This upstream approach will substantially improve the workflow of model construction toward robust and valuable models in animal science. Illustrative examples with different levels of complexity support our work. The source codes of the examples are provided for learning purposes and to promote open science practices.

INTRODUCTION

Modeling the dynamics of a biological system is an exercise of translating the knowledge of the phenomena that drives system behavior into ordinary differential equations (ODE). Its state variables (sometimes called compartments in animal science literature) and its parameters define a dynamic mathematical model. The parameter values are often unknown and must be estimated from experimental data via parameter identification (also termed parameter estimation, model calibration, or model fitting). Parameter identification is the mathematical process of finding the numerical values of the model parameters that best fit the variables given the available data. Parameter identification is essentially an optimization problem that aims to minimize the distance between the model-predicted and observed (measured data) values. The problem can be formulated in the Maximum Likelihood approach or within a Bayesian framework [START_REF] Walter | Identification of Parametric Models from Experimental Data[END_REF][START_REF] Reed | Technical note: Bayesian calibration of dynamic ruminant nutrition models[END_REF]. For nonlinear problems, the optimization can result in multiple local solutions. To avoid the convergence of local solutions, global and hybrid global-local optimization methods have been developed [START_REF] Walter | Identification of Parametric Models from Experimental Data[END_REF][START_REF] Banga | Optimization in computational systems biology[END_REF]. As modelers, we will be interested to know whether the optimization problem has a unique solution. Structural identifiability analysis aims to assess the possibility of estimating a unique best value of the model parameters from available measurements. This identifiability property is of particular importance in models where the parameters have biological meaning. The evaluation of structural identifiability is only based on the mathematical structure of the model but does not depend on the actual data. This qualitative property is based on the assumption that the model is accurate (no characterization error), the measurements are noise-free exact (no measurement errors), and that the model inputs and measurement times can be chosen freely. The rigorous mathematical framework of structural identifiability has been discussed by [START_REF] Walter | Identification of Parametric Models from Experimental Data[END_REF], while a simple introduction targeted to the animal science community was provided by [START_REF] Muñoz-Tamayo | Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling?[END_REF].

This paper aims to illustrate the power of identifiability analysis for developing robust predictive models. We also aimed to promote the use of identifiability analysis within the modeling construction workflow in animal science

DEFINING PARAMETER IDENTIFIABILITY

Structural Identifiability

Let us consider the following ODE model shown in Eq. [1]. d𝐱(𝑡) d𝑡 = 𝐟(𝐱, 𝐮, 𝐩), 𝐲(𝑡) = 𝐠(𝐱, 𝐮, 𝐩), 𝐱(𝟎) = 𝐱 𝟎 (𝐩)

Where 𝐱 is the vector of state variables, 𝐲 is the output vector (measurements), 𝐮 is the input vector and 𝐩 is the parameter vector. The model structure is defined by the vector functions 𝐟, 𝐠, which can be linear or nonlinear. A parameter 𝑝 i is structurally identifiable if it can be uniquely recovered from information on the input and output variables. This property translates mathematically into the Eq. [2]. 𝐲(𝑡, 𝐩 ̂) = 𝐲(𝑡, 𝐩 * ) ⟹ 𝑝̂𝑖 = 𝑝 𝑖 *

(2) Structural identifiability can be local or global. The parameter 𝑝 i is structurally locally identifiable if it can be estimated in a neighborhood of its nominal value, but a finite number of possible values exist in the parameter space that holds Eq. [2]. The parameter 𝑝 i is structurally globally identifiable if it can be uniquely estimated in the whole parameter space [START_REF] Barreiro | Benchmarking tools for a priori identifiability analysis[END_REF]. If none of the previous conditions hold, the parameter 𝑝 i is non-identifiable. It should be noted that the assessment of identifiability analysis may, in some cases, dependent on the initial conditions of the state variables [START_REF] Denis-Vidal | Some effective approaches to check the identifiability of uncontrolled nonlinear systems[END_REF][START_REF] Saccomani | Parameter identifiability of nonlinear systems: the role of initial conditions[END_REF]. Indeed, in some cases, certain initial conditions may lead to the loss of identifiability. [START_REF] Joubert | Assessing the role of initial conditions in the local structural identifiability of large dynamic models[END_REF] proposed a method to identify some problematic initial conditions impacting parameter identifiabiality.

Existing Methods and Software Tools. A variety of methods exists to test the structural identifiability of dynamic models. They include the Laplace transform (for linear models), direct test, differential algebra, Taylor series, and generating series [START_REF] Chis | Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods[END_REF][START_REF] Miao | On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics[END_REF]. In addition, many software tools are freely available to assess structural identifiability (locally or globally). Table 1 lists common and recent software tools and the information on their availability. Some of these tools are implemented in commercial programming languages like Matlab, Mathematica, and Maple, while others are implemented in free and open-source environments like Reduce and Julia [START_REF] Bezanson | Julia: A Fresh Approach to Numerical Computing[END_REF]. Benchmarking studies have been performed to compare identifiability software tools [START_REF] Raue | Comparison of approaches for parameter identifiability analysis of biological systems[END_REF][START_REF] Hong | SIAN: Software for structural identifiability analysis of ODE models[END_REF][START_REF] Dong | Differential elimination for dynamical models via projections with applications to structural identifiability[END_REF]. [START_REF] Barreiro | Benchmarking tools for a priori identifiability analysis[END_REF] provided a comprehensive benchmarking study assessing 12 software tools for identifiability analysis. Their study discussed the strengths and weaknesses of different tools and provided software selection guidelines. For global identifiability analysis, the authors recommend using the Maple implementation of SIAN, and StructuralIdentifability.

Practical Identifiability

Developments in structural identifiability analysis have reached a high degree of maturity, which has led some authors to declare the issue of determining structural identifiability as a closed file [START_REF] Wieland | On structural and practical identifiability[END_REF]. Since structural identifiability is a qualitative property, a quantitative assessment of the parameters' accuracy is needed to fully characterize the parameters' identifiability for a given experimental data set. This assessment is related to the notion of practical identifiability, and it should be said that structural non-identifiability implies practical nonidentifiability.

Briefly, practical identifiability analysis is centered on the numerical determination of the confidence intervals of the parameter estimates. Different methods are available for the computation of parameter confidence intervals, including the Fisher Information Matrix (FIM) based approach, Monte Carlo simulation, Bayesian method, and Profile Likelihood. Practical identifiability methods were reviewed by [START_REF] Lam | Practical identifiability of parametrised models: A review of benefits and limitations of various approaches[END_REF], and their characteristics in terms of computational cost and statistical interpretability were discussed by [START_REF] Villaverde | Assessment of Prediction Uncertainty Quantification Methods in Systems Biology[END_REF]. Software tools for parameter identification allow for practical identifiability analysis based either on the FIM [START_REF] Muñoz-Tamayo | IDEAS: A parameter identification toolbox with symbolic analysis of uncertainty and its application to biological modelling[END_REF][START_REF] Balsa-Canto | AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology[END_REF] or on the Profile Likelihood Approach [START_REF] Raue | Data2Dynamics: a modeling environment tailored to parameter estimation in dynamical systems[END_REF].

It is important to emphasize that the conceptual development of practical identifiability analysis is less mature than structural identifiability [START_REF] Wieland | On structural and practical identifiability[END_REF]. The logic sequence between the two identifiability notions of data collection explains that structural identifiability is also called a priori identifiability, while practical identifiability is termed a posteriori identifiability. The joint integration of structural and practical identifiability analyses offers a powerful armory to tackle the parameter identification of models of biological systems [START_REF] Miao | On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics[END_REF][START_REF] Saccomani | The Union between Structural and Practical Identifiability Makes Strength in Reducing Oncological Model Complexity: A Case Study[END_REF]. In addition to structural and practical identifiability analyses, sensitivity analysis can provide helpful information on parameter identifiability. A sensitivity analysis study allows for assessing how the model outputs are affected by different sources of variation, including the model parameters [START_REF] Saltelli | Sensitivity analysis[END_REF]. That is, how the change of a parameter impacts the behavior of the model output. Sensitivity analysis is central to identifying the phenomena that play a significant role in system behavior and ranking the model parameters regarding their influence on the model outputs. Various model developments in animal science include sensitivity analysis to evaluate the effect of variation of parameters and input variables on the model behavior [START_REF] Doeschl-Wilson | Unravelling the relationship between animal growth and immune response during micro-parasitic infections[END_REF][START_REF] Tedeschi | Predicting milk and forage intake of nursing calves[END_REF][START_REF] Puillet | Disentangling the relative roles of resource acquisition and allocation on animal feed efficiency: Insights from a dairy cow model[END_REF][START_REF] Dougherty | The AusBeef model for beef production: II. sensitivity analysis[END_REF][START_REF] Van Lingen | Bayesian mechanistic modeling of thermodynamically controlled volatile fatty acid, hydrogen and methane production in the bovine rumen[END_REF].

The FIM-based approach for practical identifiability is based on the calculation of the sensitivity of the model to its parameters. Indeed, if the model outputs are highly sensitive to a small perturbation of a given parameter, this parameter is likely to be identifiable [START_REF] Miao | On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics[END_REF]. The information provided by sensitivity analysis is useful, for example, to discard parameters with little influence on the model outputs and to reduce the number of parameters estimated with the model calibration.

Parameter Identifiability in Animal Science

In the animal nutrition field, the concept of structural identifiability was introduced by [START_REF] Boston | Identifiability and Accuracy: Two critical problems associated with the application of models in nutrition and the health sciences[END_REF] and further detailed by [START_REF] Tedeschi | Identifiability and accuracy: a closer look at contemporary contributions and changes in these vital areas of mathematical modelling[END_REF], with a focus on linear models. Later on, Muñoz-Tamayo et al. ( 2018) expanded on the mathematical elements and notions associated with the structural identifiability analysis for nonlinear ODE models and discussed the relevance of identifiability analysis in the modeling construction. Despite these efforts to promote structural identifiability analysis in the modeling arena in animal science, this approach is still seldom applied to the study of dynamic models. Therefore, in our paper, we focus on dynamic models described by ODE. However, identifiability analysis also applies to statistical models. Examples of identifiability analysis of statistical models applied in animal genetics have also been addressed [START_REF] Cantet | On identifiability of (co)variance components in animal models with competition effects[END_REF][START_REF] Shariati | Identifiability of parameters and behaviour of MCMC chains: a case study using the reaction norm model[END_REF].

Few dynamic modeling studies integrate structural identifiability analysis. These studies include a model for the transmission of mastitis in dairy cows [START_REF] White | The structural identifiability and parameter estimation of a multispecies model for the transmission of mastitis in dairy cows with postmilking teat disinfection[END_REF], a Gompertz-based model to describe the body weight dynamics of piglets at weaning [START_REF] Revilla | Towards the quantitative characterisation of piglets' robustness to weaning: A modelling approach[END_REF], a model to quantify the response of feed intake of pigs facing a perturbation [START_REF] Nguyen-Ba | A procedure to quantify the feed intake response of growing pigs to perturbations[END_REF], a model to characterize body condition score variations in sheep [START_REF] Macé | PhenoBR: a model to phenotype body condition dynamics in meat sheep[END_REF], a model to describe the methanogenesis by rumen archaea (Muñoz-Tamayo et al., 2019a), and a model to describe in vivo methane production from cattle (Muñoz-Tamayo et al., 2019b).

Although structural identifiability has been rarely applied in the animal science field, considerations of the practical and numerical issues of the model calibration are obliged aspects that modelers face to find an adequate strategy that facilitates the numerical estimation of the model parameters. For example, sensitivity analysis was applied to two mathematical models developed to describe the susceptibility of porcine alveolar macrophages to an RNA virus [START_REF] Doeschl-Wilson | Combining laboratory and mathematical models to infer mechanisms underlying kinetic changes in macrophage susceptibility to an RNA virus[END_REF]. This approach allows for a reduction in the number of parameters identified by fixing the values of a subset of the parameters. Similarly, sensitivity analysis was used to perform a stepwise fitting procedure to estimate the parameters of a model of the bovine estrous cycle [START_REF] Boer | Validation of a mathematical model of the bovine estrous cycle for cows with different estrous cycle characteristics[END_REF]. A two-step parameter identification strategy to limit practical identifiability issues was implemented to identify the parameters of a lactation model that account for perturbations [START_REF] Ben Abdelkrim | Lactation curve model with explicit representation of perturbations as a phenotyping tool for dairy livestock precision farming[END_REF]. In a modeling development describing the interaction between the growth rate of the developing embryo and the uterine environment in cows, identifiability analysis was performed to guarantee the unicity of the parameters [START_REF] Shorten | A mathematical model of the interaction between bovine blastocyst developmental stage and progesterone-stimulated uterine factors on differential embryonic development observed on Day 15 of gestation[END_REF]. However, no details were provided about how the identifiability analysis was done. We might infer that the authors refer to practical identifiability analysis extracted from the standard error calculation by the Markov chain Monte Carlo method. The profile likelihood approach [START_REF] Murphy | On profile likelihood[END_REF][START_REF] Raue | Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood[END_REF] was applied to assess the practical identifiability of a model developed to describe the effect of diet composition on sheep weight [START_REF] Vargas-Villamil | A multi-inverse approach for a holistic understanding of applied animal science systems[END_REF].

Our objective in this paper follows up on our previous attempts to promote identifiability analysis in the modeling exercise in our field. We will illustrate the power of identifiability analysis using models at different levels of complexity. Following open science practices [START_REF] Muñoz-Tamayo | Seven steps to enhance open science practices in animal science[END_REF], the source codes with the implementation of identifiability analysis for all the examples are freely available at https://github.com/rafaelmunoztamayo/identifiability_examples.

THE POWER OF MODEL SIMPLIFICATION

We consider here the process of protein hydrolysis in the context of cheese ripening. In this hydrolytic process, lactic acid bacteria break down milk proteins (e.g., β-casein) into various peptides, which are further metabolized. The following model describes the hydrolysis of the intact β-casein by the PI-type protease of Lactococcus lactis in a batch system [START_REF] Muñoz-Tamayo | Hydrolysis of β-casein by the cell-envelope-located PI-type protease of Lactococcus lactis: A modelling approach[END_REF].

𝑑𝑥 𝑑𝑡 = -𝑘 • E • 𝑥 𝐾 m •(1+ 𝐼 𝑘 I )+𝑥 (3)
Where 𝑥 is the concentration of β-casein (mol/L), 𝐸 (mol/L) is the concentration of the protease, 𝐼 (mol/L) is the concentration of the inhibitor compound(s), 𝑘 is the catalytic rate constant (mol 𝑥 /(mol E• min)), 𝐾 m (mol/L) is the affinity substrate constant and 𝑘 I is the inhibition constant (mol/L). The model in Eq. ( 3) can be categorized as a mechanistic model. It is derived from a mass balance, and its parameters are biologically meaningful (interpretable).

Let us consider that only the concentration β-casein (mol/L) was measured at different sampling times. The concentration of the enzyme 𝐸 is known and constant (𝐸 = 1). We will then need information about the inhibitor 𝐼 to set up the parameter identification problem. During the hydrolysis, there is a competition between the intact protein and the released peptides for the active sites of the protease. Indeed, the kinetic function in Eq. ( 3) is called a competition inhibition kinetic rate. We can then consider that the inhibitor is the sum of all peptides released. Accordingly, 𝐼 = 𝑥 0 -𝑥, where 𝑥 0 is the initial concentration of β-casein . The initial concentration 𝑥 0 is known (𝑥 0 = 10).

Identifiability analysis was done with DAISY, NonlinearObservabilityTest, COMBOS, GenSSI 2.0, STRIKE-GOLDD 4.0, StructuralIdentifiability, and SIAN (implemented in Julia). The results led to the conclusion that the parameters 𝑘, 𝐾 m, 𝑘 I are non-identifiable. This result should not discourage us. We are actually in a very typical situation of over-parameterization (too many parameters). If we have information on prior values of any of the three parameters, we can set the parameter as known and let the other remaining parameters be estimated. Fixing the value of one parameter as known will render the other parameters globally identifiable. However, what happens if we do not have any prior information on any of the three parameters or if we set an incorrect prior value? A solution still exists; it is to re-parameterize the model. The model of this example is simple, and we can engage the parameterization by hand. By manipulation Eq. (3), we obtain the following reduced model, shown in Eqs ( 4)-( 6)

𝑑𝑥 𝑑𝑡 = -𝑏 1 • E • 𝑥 𝑏 2 -𝑥 (4) with 𝑏 1 = 𝑘•𝑘 I 𝐾 m -𝑘 I (5) 𝑏 2 = 𝐾 m •(𝑘 I +𝑥 0 ) 𝐾 m -𝑘 I (6)
The parameters 𝑏 1 , 𝑏 2 are globally identifiable. The reparameterization helps here to improve the identifiability properties of the model. On the other hand, we lose parameter interpretability [START_REF] Lema-Perez | On parameter interpretability of phenomenological-based semiphysical models in biology[END_REF]. The reparameterization task within the model-building process is indeed an exercise of trade-offs. In this simple example, the reparameterization can be done by inspection. However, for more complex models, the reparameterization can be challenging to reach by simple inspection. The Matlab application StrucID [START_REF] Stigter | Computing Measures of Identifiability, Observability, and Controllability for a Dynamic System Model with the StrucID App[END_REF] allows the detection of the lack of identifiability in ODE models. The analysis provides information on correlations between potential non-identifiable parameters. This information can be further used within the procedure developed by [START_REF] Joubert | An efficient procedure to assist in the re-parametrization of structurally unidentifiable models[END_REF] to obtain suitable reparameterizations to improve the identifiability of the model. The reparameterization process is, however, complicated and requires expert knowledge of mathematics and computer programming. In this regard, the COMBOS, STRIKE-GOLDD 4.0 tools, and the web application developed by [START_REF] Ilmer | Web-Based Structural Identifiability Analyzer[END_REF] provide useful functionality since they allow the computation of identifiable combinations of parameters that are individually non-identifiable. These combinations can indeed inform reparameterizations for model simplification and to guarantee structural identifiability. Moreover, in some cases, the resulting identifiable combinations can have biological meaning for the system under study [START_REF] Ilmer | Web-Based Structural Identifiability Analyzer[END_REF]. The automatic reparameterization in STRIKE-GOLDD 4.0 is performed by the implementation of the AutoRepar procedure [START_REF] Massonis | AutoRepar: A method to obtain identifiable and observable reparameterizations of dynamic models with mechanistic insights[END_REF]. The web tool web application developed by [START_REF] Ilmer | Web-Based Structural Identifiability Analyzer[END_REF] uses the SIAN algorithm [START_REF] Hong | SIAN: Software for structural identifiability analysis of ODE models[END_REF] for identifiability testing and the algorithm developed by [START_REF] Ovchinnikov | Computing all identifiable functions of parameters for ODE models[END_REF] for computing identifiable combinations. GenSSI 2.0 has an implementation of parameter transformation to facilitate the removal of nonidentifiable parameters.

THE POWER OF SELECTING WHAT TO MEASURE

The following example uses a mathematical model describing methane production (CH4) by rumen methanogenic archaea in an in vitro batch system (Muñoz-Tamayo et al., 2019a). The main route of CH4 production in the rumen is the hydrogenotrophic pathway, where the microbes utilize hydrogen (H2) and carbon dioxide (CO2) as substrates. H2, CO2, and CH4 are in liquid and gas phases and participate in the transport phenomenon between the two phases. The model studied here included only the liquid-gas transfer for CO2, while for H2 and CH4, only the concentration in the gas phase was modeled. This choice was supported by the low solubility of H2 and CH4. The model equations are:

𝑑𝑥 H 2 𝑑𝑡 = μ max • exp (- 𝐾 s •𝑉 g 𝑛 g,H 2 ) • 𝑥 H 2 -𝑘 d • 𝑥 H 2 (7) 𝑑𝑠 CO 2 𝑑𝑡 = - -𝑌 CO 2 • μ max 𝑌 • exp (- 𝐾 s •𝑉 g 𝑛 g,H 2 ) • 𝑥 H 2 -𝑘 L a • (𝑠 CO 2 -𝐾 H,CO 2 • 𝑅 • 𝑇 • 𝑛 g,CO 2 /𝑉 g ) (8) 𝑑𝑛 g,H 2 𝑑𝑡 = - μ max 𝑌 • exp (- 𝐾 s •𝑉 g 𝑛 g,H 2 ) • 𝑉 L • 𝑥 H 2 (9) 𝑑𝑛 g,CO 2 𝑑𝑡 = 𝑉 L • 𝑘 L a • (𝑠 CO 2 -𝐾 H,CO 2 • 𝑅 • 𝑇 • 𝑛 g,CO 2 /𝑉 g ) (10) 𝑑𝑛 g,CH 4 𝑑𝑡 = 𝑌 CH 4 • μ max 𝑌 • exp (- 𝐾 s •𝑉 g 𝑛 g,H 2 ) • 𝑉 L • 𝑥 H 2 (11)
where 𝑠 CO 2 is the concentration (mol/L) of carbon dioxide in the liquid phase and 𝑥 H 2 is the biomass concentration (mol/L) of hydrogenotrophic methanogens. The number of moles in the gas phase is represented by the variables 𝑛 g,H 2 , 𝑛 g,CO 2 , 𝑛 g,CH 4 . The gas phase volume 𝑉 g = 20 mL and the liquid phase volume 𝑉 L = 6 mL. Liquid-gas transfer for carbon dioxide is determined by the mass transfer coefficient 𝑘 L a (h -1 ) and the Henry's law coefficient 𝐾 H,CO 2 (M/bar). 𝑅 (bar•(M • K) -1 ) is the ideal gas law constant and 𝑇 is the temperature (K). Microbial decay follows a first-order kinetic rate with 𝑘 d (h -1 ) the death cell rate constant. The parameters 𝑌, 𝑌 CO 2 , 𝑌 CH 4 are the yield factors (mol/mol H2) of microbial biomass, CO2 and CH4 that account for the stoichiometry of the reactions. The model uses the microbial growth function proposed by (Desmond-Le [START_REF] Quemener | A thermodynamic theory of microbial growth[END_REF], with hydrogen as the limiting substrate

𝜇 = 𝜇 max • exp (- 𝐾 s •𝑉 g 𝑛 g,H 2 ) ( 12 
)
where 𝜇 is the growth rate (h -1 ), μ max (h -1 ) is the maximum specific growth rate constant and 𝐾 s (mol/L) the affinity constant. An implementation of the model in the Open Source software Scilab is available at https://doi.org/10.5281/zenodo.3271611. Let us assume that only the concentration of methanogens 𝑥 H 2 and the moles of hydrogen 𝑛 g,H 2 are measured. We are interested in assessing the identifiability of the biological parameters μ max , 𝐾 s, 𝑘 d , 𝑌, 𝑌 CO 2 , 𝑌 CH 4 . All initial concentrations are known. The remaining (physical-related) parameters are known.

The previous model is non-rational since it includes an exponential function. Identifiability analysis was done with GenSSI 2.0 and STRIKE-GOLDD 4.0, which are a few tools that can analyze non-rational models. Under the observation conditions, the parameters μ max , 𝐾 s, 𝑘 d , 𝑌 are globally identifiable, while 𝑌 CO 2 , 𝑌 CH 4 are non-identifiable. The result of the non-identifiable parameters is not surprising. We can check by inspection of the model equations that it will be impossible to estimate the parameters 𝑌 CO 2 , 𝑌 CH 4 without measuring, respectively, CO2 and CH4. Indeed, we need the information on these quantities to estimate the relation of moles consumed or produced by mol of H2 utilized. Thus, the complete set of parameters is globally identifiable if 𝑥 H 2 , 𝑛 g,H 2 , 𝑛 g,CO 2 , 𝑛 g,CHO 4 are measured.

We can continue our analysis to illustrate the importance of integrating biological knowledge into the model. Methanogenesis is a process involving methane and microbial biomass production. We can represent the process in two reactions: R1: 4 H2 + CO2  CH4 + 2 H2O R2: 10 H2 + 5 CO2 + NH3  C5H7O2N + 8 H2O where C5H7O2N is the chemical formula for microbial biomass. Knowing the stoichiometry of the reactions can enable us to reduce the number of yield parameters. The yield factor 𝑌 is the number of moles of microbial biomass produced per mol of H2 via reaction R2. We can then express the fraction (𝑓) of H2 utilized in reaction R1 for methane production as a function of 𝑌: 𝑓 = 1 -10 • 𝑌 (13) The number ten in Eq. ( 13) is the stoichiometry coefficient of H2 in R2. The yield factors of CO2 and CH4 can now be expressed as functions of 𝑓:

𝑌 CO 2 = ( 1 4 ) • 𝑓 + ( 5 10 ) • (1 -𝑓) (14) 
𝑌 CH 4 = ( 1 4 
) • 𝑓 (15) This means that the number of parameters is now reduced to 4 parameters instead of 6. All the parameters are identifiable under the scenario where 𝑥 H 2 and 𝑛 g,H 2 are measured.

THE POWER OF ANALYSING COMPLEX MODELS

With the recent progress in computational methods, structural identifiability testing (at least locally) can be applied to complex nonlinear models. For example, previous studies [START_REF] Ligon | GenSSI 2.0: multiexperiment structural identifiability analysis of SBML models[END_REF][START_REF] Barreiro | Benchmarking tools for a priori identifiability analysis[END_REF] showed that SIAN, StructuralIdentifiability, IdentifiabilityAnalysis, and GenSSI 2.0 were able to test the identifiability of models with more than 20 states variables and 20 parameters. IdentifiabilityAnalysis was used to assess the local structural identifiability of a model with about 100 states and 100 parameters [START_REF] Karlsson | An Efficient Method for Structural Identifiability Analysis of Large Dynamic Systems[END_REF]). In the following example, we consider a mathematical model that represents the rumen fermentation under in vitro conditions [START_REF] Muñoz-Tamayo | Mechanistic modelling of in vitro fermentation and methane production by rumen microbiota[END_REF]. Figure 1 shows the schematics of the model. The model has 18 state variables and 30 parameters. A Matlab implementation of the model is freely available at https://doi.org/10.5281/zenodo.4047640. An implementation is also available in the R-package microPop [START_REF] Kettle | microPop: Modelling microbial populations and communities in R[END_REF]). An implementation in Scilab is also available at https://doi.org/10.5281/zenodo.4090332 for an extended model that accounts for the effect of the macroalgae Asparagopsis taxiformis on rumen fermentation and methane production [START_REF] Muñoz-Tamayo | Modelling the impact of the macroalgae Asparagopsis taxiformis on rumen microbial fermentation and methane production[END_REF]. The original model includes algebraic equations to compute the pH dynamically. For our identifiability exercise, we set the pH to a constant value of 6.6.

We will consider the following 14 parameters for identifiability analysis: 𝑘 hyd,ndf (hydrolysis rate constant of cell wall carbohydrates), 𝑘 hyd,nsc (hydrolysis rate constant of non-structural carbohydrates), 𝑘 hyd,pro (hydrolysis rate constant of proteins), 𝑘 m,su , (maximum specific utilization rate constant of amino sugars), 𝐾 s,su (substrate affinity constant of sugars), 𝑌 su (microbial yield factor of sugars utilizers), 𝑘 m,aa (maximum specific utilization rate constant of amino acids), 𝐾 s,aa, (substrate affinity constant of amino acids), 𝑌 aa (microbial yield factor of amino acids utilizers), 𝑘 m,H 2 (maximum specific utilization rate constant of hydrogen), 𝐾 s,H 2 (substrate affinity constant of hydrogen utilization, 𝑌 H 2 (microbial yield factor of hydrogen utilizers), and 𝜆 1 , 𝜆 2 (flux distribution parameters). 2016). Feed polymers (fiber, non-fiber carbohydrates, and proteins) are hydrolyzed into sugar and amino acid pools. The action of specific functional microbial groups further ferments these pools. Fermentation products are acetate, butyrate, propionate, carbon dioxide (CO2), and hydrogen (H2). In the liquid phase, the microbial group of hydrogen utilizers uses H2 and CO2 to produce methane (CH4). The CO2, H2, and CH4 participate in a liquid-gas (g) transport phenomenon (represented by double arrows). Ammonia is used as the sole nitrogen source for hydrogen utilizers and sugar utilizers. Dead microbes are recycled in the trophic chain as non-fibers and protein polymers. using symbolic computation. This can be a limitation issue in animal science, where non-rational functions (e.g., exponential functions) are common. Although, in some cases, transformations are possible to render the non-rational model in polynomial or rational form (see [START_REF] Muñoz-Tamayo | Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling?[END_REF] for an example of a transformation).

When identifiability tools fail to assess identifiability, the numerical approach implemented in the StrucID app can help identify correlations between potential non-identifiable parameters quickly. This valuable information can be used further to refine models and reduce the set of parameters to be checked for identifiability. The method implemented in StrucID app is not restricted to rational models. The methods developed within the practical identifiability framework [START_REF] Lam | Practical identifiability of parametrised models: A review of benefits and limitations of various approaches[END_REF][START_REF] Villaverde | Assessment of Prediction Uncertainty Quantification Methods in Systems Biology[END_REF] also provide valuable resources to assess a posteriori identifiability when structural identifiability testing is out of reach.

Finally, it is important to point out that automatic methods for identifiability testing are not free of error. In some cases, identifiability tools can yield incorrect results [START_REF] Dong | Differential elimination for dynamical models via projections with applications to structural identifiability[END_REF]. It is thus advisable to use different tools simultaneously to assess the correctness of the results [START_REF] Joubert | Assessing the role of initial conditions in the local structural identifiability of large dynamic models[END_REF][START_REF] Barreiro | Benchmarking tools for a priori identifiability analysis[END_REF].

THE POWER OF DESIGNING OPTIMAL EXPERIMENTS

Parameter identification is often addressed like a downstream process after collecting data. By following this approach, the modeler has minimal room for maneuvering to improve the model's accuracy. By incorporating identifiability analysis, we can follow an upstream approach to increase the room for maneuver of the modeler in the modeling construction process. The previous examples illustrate that the first benefit of identifiability analysis is providing valuable information about what to measure to render the model parameters identifiable. This part is done within the framework of structural identifiability. To complete the picture, we will need to know under which experimental conditions the measurements should be done on the real system to guarantee accurate parameter estimates. This part is addressed by practical identifiability analysis. To illustrate the usefulness of practical identifiability for optimal experiment design (OED) for parameter estimation, let us consider the following model that represents the utilization of a substrate 𝑥 2 by a microbe 𝑥 1 in a continuous system, as shown in Eqs. [16] and [17].

𝑑𝑥 1 𝑑𝑡 = 𝑥 1 •𝑥 2 𝑥 2 +𝑘+𝑥 2 2 /𝑘 𝐼 -𝐷 • 𝑥 1 (16) 𝑑𝑥 2 𝑑𝑡 = - 𝑥 1 •𝑥 2 𝑥 2 +𝑘+𝑥 2 2 /𝑘 𝐼 + 𝐷 • (𝑢 -𝑥 2 ) ( 17 
)
Where 𝐷 is the known dilution rate of the system and 𝑢 is the input substrate concentration. We would like to determine the shape of 𝑢 to perform an experiment that allows estimating accurately the parameters 𝑘, 𝑘 𝐼 from available measurements of 𝑥 1 , 𝑥 2 . Under these observation conditions, the parameters are structurally globally identifiable. The accuracy of the estimates translates into small confidence intervals. Our objective function can be set up as an optimization problem where we want to find 𝑢 such that the volume of the confidence intervals is minimized. One approach to address the OED problem is maximizing the determinant of the FIM. [START_REF] Muñoz-Tamayo | Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling?[END_REF] discussed the details of the calculation of the FIM and its use in the OED. This procedure requires defining nominal values for the parameters. For our example, we set 𝑘 = 2, 𝑘 𝐼 = 50. We solve the OED problem for two cases. In the first one, we considered the input substrate concentration to be constant over time (𝑢 c ). In the second case, we considered the input substrate concentration to vary on time (𝑢 d ). For that we parameterized 𝑢 d as a piecewise linear function.

The OED problem requires an intermediate level in computer programming skills. We used the IDEAS toolbox [START_REF] Muñoz-Tamayo | IDEAS: A parameter identification toolbox with symbolic analysis of uncertainty and its application to biological modelling[END_REF] to generate the functions for the OED problem. IDEAS is freely available at http://genome.jouy.inra.fr/logiciels/IDEAS. The files for the OED example are available at https://github.com/rafaelmunoztamayo/identifiability_examples. The toolbox Amigo 2 [START_REF] Balsa-Canto | AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology[END_REF] has the functionality of addressing OED problems for parameter estimation.

Figure 2 shows the obtained optimal inputs and the responses of the model variables. It is challenging to draw conclusions of this figure. However, when we look at the standard deviations (SD) of the parameter estimates obtained from the two cases in Table 2, we can clearly see the difference. The determinant of the FIM for 𝑢 d is 660 times higher than for 𝑢 c , which translates into smaller confidence intervals. The standard deviations obtained with 𝑢 d are 31% and 72% of those obtained with 𝑢 c for 𝑘 and 𝑘 𝐼 , respectively. Dynamic input induces better stimuli to system behavior and thus results in data with higher informative content than those obtained with constant input. This example shows the usefulness of OED in producing informative data for parameter estimation, and this capability can be used to avoid useless experiments. It should be said, however, that the use of the FIM for the calculation of confidence intervals is valid under linearity and asymptotic conditions [START_REF] Walter | Identification of Parametric Models from Experimental Data[END_REF]. Approaches like the profile likelihood allow for overcoming the shortcomings of the FIM-based approach [START_REF] Wieland | On structural and practical identifiability[END_REF]. 

SUMMARY

In this paper, we showed that incorporating identifiability analysis in the workflow of model construction provides substantial benefits to obtaining reliable models. Structural and practical identifiability analyses inform on the conditions required to guarantee a unique and accurate estimation of the parameters. In case of lack of identifiability, identifiability analysis provides valuable information on possible actions to cure the non-identifiability (when possible). This information includes model reduction, reparameterization, and specifications on optimal measurements. Existing freely available software tools enable the application of structural identifiability analysis without needing to be an expert in mathematics and computer programming. Recent software tools for structural identifiability analysis allow handling complex models, but identifiability testing might be out of reach in some cases. In this case, numerical approaches within the practical identifiability framework can address the identifiability question. We believe this paper will motivate the modeling community in animal science to integrate identifiability analysis in their model developments. Such integration can be easily done following a practitioner approach taking advantage of the variety of available software tools dedicated to identifiability testing. However, we must stress that the practitioner approach advocated in this paper is only possible thanks to the open science practices adopted by the parameter identifiability community in making their software toolboxes freely available. The parameter identifiability topic is a great example of how adopting open science practices can contribute to scientific progress. We, animal scientists, should learn from such efforts to make Open Science the new normal in our field [START_REF] Muñoz-Tamayo | Seven steps to enhance open science practices in animal science[END_REF]. By sharing data, code scripts, and software tools and making our research freely accessible, we substantially strengthen the scientific progress of the animal science domain.
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Figure 1 .

 1 Figure 1. Schematics of the mathematical model of the rumen in vitro fermentation developed by Muñoz-Tamayo et al.(2016). Feed polymers (fiber, non-fiber carbohydrates, and proteins) are hydrolyzed into sugar and amino acid pools. The action of specific functional microbial groups further ferments these pools. Fermentation products are acetate, butyrate, propionate, carbon dioxide (CO2), and hydrogen (H2). In the liquid phase, the microbial group of hydrogen utilizers uses H2 and CO2 to produce methane (CH4). The CO2, H2, and CH4 participate in a liquid-gas (g) transport phenomenon (represented by double arrows). Ammonia is used as the sole nitrogen source for hydrogen utilizers and sugar utilizers. Dead microbes are recycled in the trophic chain as non-fibers and protein polymers.

Figure 2 .

 2 Figure 2. Responses of the variables of a mathematical model of microbial growth under two inputs of substrate concentration (u) were obtained to maximize the accuracy of the parameter estimates within an optimal experiment design. Dashed lines are the responses considering constant substrate input 𝑢 c and solid lines are the responses for a dynamic substrate input 𝑢 d .

Table 1 .

 1 Software tools for structural identifiability analysis.

	Tool		Description
	DAISY		URL: https://daisy.dei.unipd.it
			Language: Reduce
			Reference: Bellu et al. (2007); Saccomani et al. (2019)
	ObservabilityTest	URL: https://github.com/sedoglavic/ObservabilityTest
			Language: Maple
			Reference: Sedoglavic (2002)
	IdentifiabilityAnalysis	URL:
			https://www.fcc.chalmers.se/software/other-
			software/identifiabilityanalysis/
			Language: Mathematica
			Reference: Karlsson et al. (2012)
	STRIKE-GOLDD 4.0	URL: https://github.com/afvillaverde/strike-goldd
			Language: Matlab
			Reference: Villaverde et al. (2016); Díaz-Seoane et al. (2022)
	GenSSI 2.0		URL: https://github.com/genssi-developer/GenSSI
			Language: Matlab
			Reference: Chiş et al. (2011); Ligon et al. (2018)
	COMBOS		URL: http://biocyb1.cs.ucla.edu/combos/
			Language: Maxima, web application
			Reference: Meshkat et al. (2014)
	SIAN		URL: https://github.com/alexeyovchinnikov/SIAN-Julia
			https://github.com/pogudingleb/SIAN
			Language: Maple and Julia
			Reference: Hong et al. (2019)
	Structural	Identifiability	URL: https://maple.cloud/app/6509768948056064
	Toolbox		Language: Maple, web application
			Reference: Ilmer et al. (2021)
	StrucID		URL: available upon request from the authors
			Language: Matlab
			Reference: Stigter and Joubert (2021)
	StructuralIdentifiability	URL: https://github.com/SciML/StructuralIdentifiability.jl
			Language: Julia
			Reference: Dong et al. (2022)
	NonlinearObservabilityTest	URL: https://eng.ox.ac.uk/non-lineardynamics/resources/
			Language: Matlab
			Reference: Shi and Chatzis (2022)

Table 2 .

 2 Comparison of the two optimal substrate inputs on the accuracy of the estimates of a model of microbial growth.Constant input substrate 𝑢 c Dynamic input substrate 𝑢 d

	Determinant of the FIM	1.27*10 10	8.40*10 12
	SD 𝑘	0.0247	0.0076
	SD 𝑘 𝐼	0.0282	0.0202

The initial conditions were set to be known. Identifiability testing was done with StructuralIdentifiability, GenSSI 2.0, and STRIKE-GOLDD 4.0. We run the tests on a laptop with Windows 64 Gb RAM, Intel Core i9-10885H (8 cores, 2.4 GHz). We first considered that 12 state variables were observed. The remaining unobserved state variables were the concentrations of CO2, H2, CH4 in the liquid phase and the concentration of the 3 microbial functional groups. The runtimes for the local structural identifiability analysis were 2.5 s for STRIKE-GOLDD 4.0, and 4.2 s for StructuralIdentifiability. The runtimes for global structural analysis were 2.6 min for StructuralIdentifiability and 25 min for GenSSI 2.0. Under the tested condition, the parameters are globally identifiable.

In the paper by et al. ( 2016), the parameter estimation was defined for a subset of 10 parameters: 𝑘 hyd,nsc , 𝑘 hyd,pro , 𝑘 m,su , 𝑌 su , 𝑘 m,aa , 𝑌 aa , 𝑘 m,H 2 , 𝑌 H 2 , 𝜆 1 , 𝜆 2 . The remaining model parameters were fixed as known. This strategy was meant to facilitate the model calibration routine. The observed variables were the concentrations of acetate, butyrate, propionate, ammonia, and the moles of H2, CO2, and CH4 in the gas phase. When the model was built, no structural identifiability analysis was done. In the present exercise, we used StructuralIdentifiability and GenSSI 2.0 for identifiability testing. Both tools were incapable of testing the global identifiability of the parameters under the observation conditions. The analysis with both tools indicated that the model parameters are locally identifiable. The runtime with StructuralIdentifiability was 3.0 s. The runtime with GenSSI 2.0 was 34 min, but this time included the test on global identifiability, which was unsuccessful. STRIKE-GOLDD 4.0 exhibited an error in the process and could not assess the identifiability. We further evaluated the local structural identifiability of the 14 model parameters under the most restricted observation condition (that is, one single measurement). The result with StructuralIdentifiability informed that measuring any volatile fatty acid (acetate, butyrate, propionate) yielded local identifiability of the parameters. This result is encouraging for the rumen modelers, although we might recognize that this outcome might appear surprising. The reason for the identifiability of the model parameters is associated with the nonlinear structure of the model. Although model complexity is not a reliable indicator to compare the identifiability properties between models [START_REF] Roper | Cellular signaling identifiability analysis: A case study[END_REF], nonlinear complex models are likely more identifiable than linear models [START_REF] Walter | On the identifiability and distinguishability of nonlinear parametric models[END_REF]. The rumen fermentation model shares a similar structure to the Anaerobic Digestion Model No.1 (ADM1) developed to represent the digestion in reactors for wastewater treatment [START_REF] Batstone | The IWA Anaerobic Digestion Model No 1 ( ADM1)[END_REF]. An identifiability analysis on ADM1 [START_REF] Nimmegeers | Identifiability of large-scale nonlinear dynamic network models applied to the ADM1-case study[END_REF] led to similar results to those presented here. That is, a minimal set of measurements can guarantee local structural identifiability. The authors explained that the structural identifiability results from many interconnections between the state variables of the model. Such interconnection, however, also applies to the parameter set leading to practical identifiability issues. Optimal experiment design can help to remediate practical identifiability issues, as discussed in the next section.

This example shows that existing identifiability analysis tools allow for handling complex models. Although for some models, it may not be possible to perform parameter identifiability analysis. What to do in these cases? We discuss some solutions here below.

What can we do when identifiability testing is not possible?

Although the development of advanced tools for structural identifiability testing, might occur for some models with high complexity and limited observation conditions that current software tools cannot find solutions to the identifiability problem. As mentioned above, from the tools shown in Table 1, only GenSSI 2.0 and STRIKE-GOLDD 4.0 can analyze non-rational models