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Abstract  
Constructing dynamic mathematical models of biological systems requires estimating unknown 
parameters from available experimental data, usually using a statistical fitting procedure. This procedure 
is usually called parameter identification, parameter estimation, model fitting, or model calibration. In 
animal science, parameter identification is often performed without analytic considerations on the 
possibility of determining unique values of the model parameters. These analytic studies are related to 
the notion of structural identifiability. The structural identifiability analysis is a powerful tool for model 
construction because it informs whether the parameter identification problem is well-posed. In case of 
lack of identifiability, structural identifiability analysis is helpful to determine which actions (e.g., model 
reparameterization, choice of new data measurements) are needed to render the model parameters 
identifiable (when possible). The mathematical technicalities associated with structural identifiability 
analysis are very sophisticated. However, the development of dedicated, freely available software tools 
enables the application of identifiability analysis without needing to be an expert in mathematics and 
computer programming. We refer to such a non-expert user as a practitioner for hands-on purposes. In 
this paper, we propose to adopt a practitioner approach that takes advantage of available software tools 
to integrate identifiability analysis in the modeling practice in the animal science field. The application of 
structural identifiability implies switching our regard of the parameter identification problem as a 
downstream process (after data collection) to an upstream process (before data collection). This upstream 
approach will substantially improve the workflow of model construction toward robust and valuable 
models in animal science. Illustrative examples with different levels of complexity support our work. The 
source codes of the examples are provided for learning purposes and to promote open science practices. 
 
Keywords: dynamic modeling, model calibration, parameter estimation, parameter identification, 
practical identifiability, structural identifiability. 
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INTRODUCTION 

 
 Modeling the dynamics of a biological system is an exercise of translating the knowledge of 
the phenomena that drives system behavior into ordinary differential equations (ODE). Its state 
variables (sometimes called compartments in animal science literature) and its parameters define a 
dynamic mathematical model. The parameter values are often unknown and must be estimated 
from experimental data via parameter identification (also termed parameter estimation, model 
calibration, or model fitting). Parameter identification is the mathematical process of finding the 
numerical values of the model parameters that best fit the variables given the available data. 
Parameter identification is essentially an optimization problem that aims to minimize the distance 
between the model-predicted and observed (measured data) values. The problem can be 
formulated in the Maximum Likelihood approach or within a Bayesian framework (Walter and 
Pronzato, 1997; Reed et al., 2016). For nonlinear problems, the optimization can result in multiple 
local solutions. To avoid the convergence of local solutions, global and hybrid global-local 
optimization methods have been developed (Walter and Pronzato, 1997; Banga, 2008). As 
modelers, we will be interested to know whether the optimization problem has a unique solution. 
Structural identifiability analysis aims to assess the possibility of estimating a unique best value of 
the model parameters from available measurements. This identifiability property is of particular 
importance in models where the parameters have biological meaning. The evaluation of structural 
identifiability is only based on the mathematical structure of the model but does not depend on the 
actual data. This qualitative property is based on the assumption that the model is accurate (no 
characterization error), the measurements are noise-free exact (no measurement errors), and that 
the model inputs and measurement times can be chosen freely. The rigorous mathematical 
framework of structural identifiability has been discussed by Walter and Pronzato (1997), while a 
simple introduction targeted to the animal science community was provided by Muñoz-Tamayo et 
al. (2018). 
 This paper aims to illustrate the power of identifiability analysis for developing robust 
predictive models. We also aimed to promote the use of identifiability analysis within the modeling 
construction workflow in animal science 
 

DEFINING PARAMETER IDENTIFIABILITY 
 

Structural Identifiability 
 Let us consider the following ODE model shown in Eq. [1]. 
d𝐱(𝑡)

d𝑡
= 𝐟(𝐱, 𝐮, 𝐩),  

𝐲(𝑡) = 𝐠(𝐱, 𝐮, 𝐩),   𝐱(𝟎) = 𝐱𝟎(𝐩)        (1) 
 
Where 𝐱 is the vector of state variables, 𝐲 is the output vector (measurements),  𝐮 is the input vector 
and 𝐩 is the parameter vector. The model structure is defined by the vector functions 𝐟, 𝐠, which 
can be linear or nonlinear. A parameter 𝑝i is structurally identifiable if it can be uniquely recovered 
from information on the input and output variables. This property translates mathematically into 
the Eq. [2]. 
𝐲(𝑡, 𝐩̂) = 𝐲(𝑡, 𝐩∗) ⟹ 𝑝̂𝑖 = 𝑝𝑖

∗        (2) 
 Structural identifiability can be local or global. The parameter 𝑝i is structurally locally 
identifiable if it can be estimated in a neighborhood of its nominal value, but a finite number of 
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possible values exist in the parameter space that holds Eq. [2]. The parameter 𝑝i is structurally 
globally identifiable if it can be uniquely estimated in the whole parameter space (Barreiro and 
Villaverde, 2022). If none of the previous conditions hold, the parameter 𝑝i is non-identifiable. It 
should be noted that the assessment of identifiability analysis may, in some cases, dependent on 
the initial conditions of the state variables  (Denis-Vidal et al., 2001; Saccomani et al., 2003). Indeed, 
in some cases, certain initial conditions may lead to the loss of identifiability. Joubert et al. (2021) 
proposed a method to identify some problematic initial conditions impacting parameter 
identifiabiality.  
 
 Existing Methods and Software Tools. A variety of methods exists to test the structural 
identifiability of dynamic models. They include the Laplace transform (for linear models), direct test, 
differential algebra, Taylor series, and generating series (Chis et al., 2011; Miao et al., 2011). In 
addition, many software tools are freely available to assess structural identifiability (locally or 
globally). Table 1 lists common and recent software tools and the information on their availability. 
Some of these tools are implemented in commercial programming languages like Matlab, 
Mathematica, and Maple, while others are implemented in free and open-source environments like 
Reduce and Julia (Bezanson et al., 2017). Benchmarking studies have been performed to compare 
identifiability software tools (Raue et al., 2014; Hong et al., 2019; Dong et al., 2022). Barreiro and 
Villaverde (2022) provided a comprehensive benchmarking study assessing 12 software tools for 
identifiability analysis. Their study discussed the strengths and weaknesses of different tools and 
provided software selection guidelines. For global identifiability analysis, the authors recommend 
using the Maple implementation of SIAN, and StructuralIdentifability. 
 
Practical Identifiability 

Developments in structural identifiability analysis have reached a high degree of maturity, 
which has led some authors to declare the issue of determining structural identifiability as a closed 
file (Wieland et al., 2021). Since structural identifiability is a qualitative property, a quantitative 
assessment of the parameters' accuracy is needed to fully characterize the parameters' 
identifiability for a given experimental data set. This assessment is related to the notion of practical 
identifiability, and it should be said that structural non-identifiability implies practical non-
identifiability. 

Briefly, practical identifiability analysis is centered on the numerical determination of the 
confidence intervals of the parameter estimates. Different methods are available for the 
computation of parameter confidence intervals, including the Fisher Information Matrix (FIM) based 
approach, Monte Carlo simulation, Bayesian method, and Profile Likelihood. Practical identifiability 
methods were reviewed by Lam et al. (2022), and their characteristics in terms of computational 
cost and statistical interpretability were discussed by Villaverde et al. (2022). Software tools for 
parameter identification allow for practical identifiability analysis based either on the FIM (Muñoz-
Tamayo et al., 2009; Balsa-Canto et al., 2016) or on the Profile Likelihood Approach (Raue et al., 
2015).  

It is important to emphasize that the conceptual development of practical identifiability 
analysis is less mature than structural identifiability (Wieland et al., 2021). The logic sequence 
between the two identifiability notions of data collection explains that structural identifiability is 
also called a priori identifiability, while practical identifiability is termed a posteriori identifiability. 
The joint integration of structural and practical identifiability analyses offers a powerful armory to 
tackle the parameter identification of models of biological systems (Miao et al., 2011; Saccomani 
and Thomaseth, 2018).  
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Table 1. Software tools for structural identifiability analysis. 
 

Tool Description 

DAISY  URL: https://daisy.dei.unipd.it  
Language: Reduce 
Reference: Bellu et al. (2007); Saccomani et al. (2019) 

ObservabilityTest URL: https://github.com/sedoglavic/ObservabilityTest 
Language: Maple 
Reference: Sedoglavic (2002) 

IdentifiabilityAnalysis URL:  
https://www.fcc.chalmers.se/software/other-
software/identifiabilityanalysis/ 
Language: Mathematica 
Reference: Karlsson et al. (2012) 

STRIKE-GOLDD 4.0 URL: https://github.com/afvillaverde/strike-goldd 
Language: Matlab 
Reference: Villaverde et al. (2016); Díaz-Seoane et al. (2022) 

GenSSI 2.0 URL: https://github.com/genssi-developer/GenSSI 
Language: Matlab 
Reference: Chiş et al. (2011); Ligon et al. (2018) 

COMBOS URL: http://biocyb1.cs.ucla.edu/combos/ 
Language: Maxima, web application 
Reference: Meshkat et al. (2014) 

SIAN URL: https://github.com/alexeyovchinnikov/SIAN-Julia 
https://github.com/pogudingleb/SIAN  
Language: Maple and Julia 
Reference: Hong et al. (2019) 

Structural Identifiability 
Toolbox 

URL: https://maple.cloud/app/6509768948056064 
Language: Maple, web application 
Reference: Ilmer et al. (2021) 

StrucID  URL: available upon request from the authors 
Language: Matlab 
Reference: Stigter and Joubert (2021) 

StructuralIdentifiability  URL: https://github.com/SciML/StructuralIdentifiability.jl 
Language: Julia 
Reference: Dong et al. (2022) 

NonlinearObservabilityTest URL: https://eng.ox.ac.uk/non-lineardynamics/resources/ 
Language: Matlab 
Reference: Shi and Chatzis (2022) 

 
In addition to structural and practical identifiability analyses, sensitivity analysis can provide 

helpful information on parameter identifiability. A sensitivity analysis study allows for assessing how 
the model outputs are affected by different sources of variation, including the model parameters 
(Saltelli et al., 2000). That is, how the change of a parameter impacts the behavior of the model 
output. Sensitivity analysis is central to identifying the phenomena that play a significant role in 

https://daisy.dei.unipd.it/
https://github.com/sedoglavic/ObservabilityTest
https://www.fcc.chalmers.se/software/other-software/identifiabilityanalysis/
https://www.fcc.chalmers.se/software/other-software/identifiabilityanalysis/
https://github.com/afvillaverde/strike-goldd
https://github.com/genssi-developer/GenSSI
http://biocyb1.cs.ucla.edu/combos/
https://github.com/alexeyovchinnikov/SIAN-Julia
https://github.com/pogudingleb/SIAN
https://maple.cloud/app/6509768948056064
https://github.com/SciML/StructuralIdentifiability.jl
https://eng.ox.ac.uk/non-lineardynamics/resources/
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system behavior and ranking the model parameters regarding their influence on the model outputs. 
Various model developments in animal science include sensitivity analysis to evaluate the effect of 
variation of parameters and input variables on the model behavior (Doeschl-Wilson et al., 2009; 
Tedeschi and Fox, 2009; Puillet et al., 2016; Dougherty et al., 2017; van Lingen et al., 2019).  

The FIM-based approach for practical identifiability is based on the calculation of the 
sensitivity of the model to its parameters. Indeed, if the model outputs are highly sensitive to a small 
perturbation of a given parameter, this parameter is likely to be identifiable (Miao et al., 2011). The 
information provided by sensitivity analysis is useful, for example, to discard parameters with little 
influence on the model outputs and to reduce the number of parameters estimated with the model 
calibration. 
 
Parameter Identifiability in Animal Science 

In the animal nutrition field, the concept of structural identifiability was introduced by 
Boston et al. (2007) and further detailed by Tedeschi and Boston (2010), with a focus on linear 
models. Later on, Muñoz-Tamayo et al. (2018) expanded on the mathematical elements and notions 
associated with the structural identifiability analysis for nonlinear ODE models and discussed the 
relevance of identifiability analysis in the modeling construction. Despite these efforts to promote 
structural identifiability analysis in the modeling arena in animal science, this approach is still seldom 
applied to the study of dynamic models. Therefore, in our paper, we focus on dynamic models 
described by ODE. However, identifiability analysis also applies to statistical models. Examples of 
identifiability analysis of statistical models applied in animal genetics have also been addressed 
(Cantet and Cappa, 2008; Shariati et al., 2009).  

Few dynamic modeling studies integrate structural identifiability analysis. These studies 
include a model for the transmission of mastitis in dairy cows (White et al., 2002), a Gompertz-based 
model to describe the body weight dynamics of piglets at weaning (Revilla et al., 2019), a model to 
quantify the response of feed intake of pigs facing a perturbation (Nguyen-Ba et al., 2020), a model 
to characterize body condition score variations in sheep (Macé et al., 2020), a model to describe the 
methanogenesis by rumen archaea (Muñoz-Tamayo et al., 2019a), and a model to describe in vivo 
methane production from cattle (Muñoz-Tamayo et al., 2019b). 

Although structural identifiability has been rarely applied in the animal science field, 
considerations of the practical and numerical issues of the model calibration are obliged aspects 
that modelers face to find an adequate strategy that facilitates the numerical estimation of the 
model parameters. For example, sensitivity analysis was applied to two mathematical models 
developed to describe the susceptibility of porcine alveolar macrophages to an RNA virus (Doeschl-
Wilson et al., 2016). This approach allows for a reduction in the number of parameters identified by 
fixing the values of a subset of the parameters. Similarly, sensitivity analysis was used to perform a 
stepwise fitting procedure to estimate the parameters of a model of the bovine estrous cycle (Boer 
et al., 2017). A two-step parameter identification strategy to limit practical identifiability issues was 
implemented to identify the parameters of a lactation model that account for perturbations (Ben 
Abdelkrim et al., 2021). In a modeling development describing the interaction between the growth 
rate of the developing embryo and the uterine environment in cows, identifiability analysis was 
performed to guarantee the unicity of the parameters (Shorten et al., 2018). However, no details 
were provided about how the identifiability analysis was done. We might infer that the authors refer 
to practical identifiability analysis extracted from the standard error calculation by the Markov chain 
Monte Carlo method. The profile likelihood approach (Murphy and Van Der Vaart, 2000; Raue et al., 
2009) was applied to assess the practical identifiability of a model developed to describe the effect 
of diet composition on sheep weight  (Vargas-Villamil et al., 2020). 
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Our objective in this paper follows up on our previous attempts to promote identifiability 
analysis in the modeling exercise in our field. We will illustrate the power of identifiability analysis 
using models at different levels of complexity. Following open science practices (Muñoz-Tamayo et 
al., 2022), the source codes with the implementation of identifiability analysis for all the examples 
are freely available at https://github.com/rafaelmunoztamayo/identifiability_examples. 

 
THE POWER OF MODEL SIMPLIFICATION  

 We consider here the process of protein hydrolysis in the context of cheese ripening. In this 
hydrolytic process, lactic acid bacteria break down milk proteins (e.g., β-casein) into various 
peptides, which are further metabolized. The following model describes the hydrolysis of the intact 
β-casein by the PI-type protease of Lactococcus lactis in a batch system (Muñoz-Tamayo et al., 2011). 
𝑑𝑥

𝑑𝑡
= −𝑘 ∙ E ∙

𝑥

𝐾m∙(1+
𝐼

𝑘I
)+𝑥

         (3) 

Where 𝑥 is the concentration of β-casein (mol/L), 𝐸 (mol/L) is the concentration of the protease, 𝐼 
(mol/L) is the concentration of the inhibitor compound(s), 𝑘 is the catalytic rate constant (mol 𝑥 
/(mol E∙ min)), 𝐾m(mol/L) is the affinity substrate constant and 𝑘I is the inhibition constant (mol/L). 
The model in Eq. (3) can be categorized as a mechanistic model. It is derived from a mass balance, 
and its parameters are biologically meaningful (interpretable).  

Let us consider that only the concentration β-casein (mol/L) was measured at different 
sampling times. The concentration of the enzyme 𝐸 is known and constant (𝐸 = 1). We will then 
need information about the inhibitor 𝐼 to set up the parameter identification problem. During the 
hydrolysis, there is a competition between the intact protein and the released peptides for the 
active sites of the protease. Indeed, the kinetic function in Eq. (3) is called a competition inhibition 
kinetic rate. We can then consider that the inhibitor is the sum of all peptides released. Accordingly, 
𝐼 =  𝑥0 − 𝑥, where 𝑥0 is the initial concentration of β-casein . The initial concentration 𝑥0 is known 
(𝑥0 = 10). 

Identifiability analysis was done with DAISY, NonlinearObservabilityTest, COMBOS, GenSSI 
2.0, STRIKE-GOLDD 4.0, StructuralIdentifiability, and SIAN (implemented in Julia). The results led to 
the conclusion that the parameters 𝑘, 𝐾m,𝑘I are non-identifiable. This result should not discourage 

us. We are actually in a very typical situation of over-parameterization (too many parameters). If we 
have information on prior values of any of the three parameters, we can set the parameter as known 
and let the other remaining parameters be estimated. Fixing the value of one parameter as known 
will render the other parameters globally identifiable. However, what happens if we do not have 
any prior information on any of the three parameters or if we set an incorrect prior value? A solution 
still exists; it is to re-parameterize the model. The model of this example is simple, and we can 
engage the parameterization by hand. By manipulation Eq. (3), we obtain the following reduced 
model, shown in Eqs (4)-(6)  
𝑑𝑥

𝑑𝑡
= −𝑏1 ∙ E ∙

𝑥

𝑏2−𝑥
          (4) 

with  

𝑏1 =
𝑘∙𝑘I

𝐾m−𝑘I
           (5) 

𝑏2 =
𝐾m∙(𝑘I+𝑥0)

𝐾m−𝑘I
          (6) 

 The parameters 𝑏1, 𝑏2 are globally identifiable. The reparameterization helps here to 
improve the identifiability properties of the model. On the other hand, we lose parameter 
interpretability (Lema-Perez et al., 2019).  The reparameterization task within the model-building 
process is indeed an exercise of trade-offs. In this simple example, the reparameterization can be 

https://github.com/rafaelmunoztamayo/identifiability_examples
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done by inspection. However, for more complex models, the reparameterization can be challenging 
to reach by simple inspection. The Matlab application StrucID (Stigter and Joubert, 2021) allows the 
detection of the lack of identifiability in ODE models. The analysis provides information on 
correlations between potential non-identifiable parameters. This information can be further used 
within the procedure developed by Joubert et al. (2020) to obtain suitable reparameterizations to 
improve the identifiability of the model. The reparameterization process is, however, complicated 
and requires expert knowledge of mathematics and computer programming. In this regard, the 
COMBOS, STRIKE-GOLDD 4.0 tools, and the web application developed by Ilmer et al. (2021) provide 
useful functionality since they allow the computation of identifiable combinations of parameters 
that are individually non-identifiable. These combinations can indeed inform reparameterizations 
for model simplification and to guarantee structural identifiability. Moreover, in some cases, the 
resulting identifiable combinations can have biological meaning for the system under study (Ilmer 
et al., 2021). The automatic reparameterization in STRIKE-GOLDD 4.0 is performed by the 
implementation of the AutoRepar procedure (Massonis et al., 2021). The web tool web application 
developed by Ilmer et al. (2021) uses the SIAN algorithm (Hong et al., 2019) for identifiability testing 
and the algorithm developed by Ovchinnikov et al. (2021) for computing identifiable combinations. 
GenSSI 2.0 has an implementation of parameter transformation to facilitate the removal of non-
identifiable parameters.  
 

THE POWER OF SELECTING WHAT TO MEASURE 
The following example uses a mathematical model describing methane production (CH4) by 

rumen methanogenic archaea in an in vitro batch system (Muñoz-Tamayo et al., 2019a). The main 
route of CH4 production in the rumen is the hydrogenotrophic pathway, where the microbes utilize 
hydrogen (H2) and carbon dioxide (CO2) as substrates. H2, CO2, and CH4 are in liquid and gas phases 
and participate in the transport phenomenon between the two phases. The model studied here 
included only the liquid-gas transfer for CO2, while for H2 and CH4, only the concentration in the gas 
phase was modeled. This choice was supported by the low solubility of H2 and CH4. The model 
equations are:  
𝑑𝑥H2

𝑑𝑡
= μmax ∙ exp (−

𝐾s∙𝑉g

𝑛g,H2

) ∙ 𝑥H2
− 𝑘d ∙ 𝑥H2

      (7) 

 
𝑑𝑠CO2

𝑑𝑡
= −

−𝑌CO2∙μmax

𝑌
∙ exp (−

𝐾s∙𝑉g

𝑛g,H2

) ∙ 𝑥H2
− 𝑘La ∙ (𝑠CO2

− 𝐾H,CO2
∙ 𝑅 ∙ 𝑇 ∙ 𝑛g,CO2

/𝑉g) (8) 

𝑑𝑛g,H2

𝑑𝑡
= −

μmax

𝑌
∙ exp (−

𝐾s∙𝑉g

𝑛g,H2

) ∙ 𝑉L ∙ 𝑥H2
       (9) 

𝑑𝑛g,CO2

𝑑𝑡
= 𝑉L ∙ 𝑘La ∙ (𝑠CO2

− 𝐾H,CO2
∙ 𝑅 ∙ 𝑇 ∙ 𝑛g,CO2

/𝑉g)     (10) 

𝑑𝑛g,CH4

𝑑𝑡
=

𝑌CH4∙μmax

𝑌
∙ exp (−

𝐾s∙𝑉g

𝑛g,H2

) ∙ 𝑉L ∙ 𝑥H2
       (11) 

where 𝑠CO2
 is the concentration (mol/L) of carbon dioxide in the liquid phase and 𝑥H2

 is the biomass 

concentration (mol/L) of hydrogenotrophic methanogens. The number of moles in the gas phase is 
represented by the variables 𝑛g,H2

, 𝑛g,CO2
, 𝑛g,CH4

. The gas phase volume 𝑉g = 20 mL and the liquid 

phase volume 𝑉L = 6 mL. Liquid-gas transfer for carbon dioxide is determined by the mass transfer 
coefficient 𝑘La (h-1) and the Henry's law coefficient 𝐾H,CO2

 (M/bar). 𝑅 (bar∙(M ∙ K)-1) is the ideal gas 

law constant and 𝑇 is the temperature (K). Microbial decay follows a first-order kinetic rate with 𝑘d 
(h-1) the death cell rate constant. The parameters 𝑌, 𝑌CO2

, 𝑌CH4
are the yield factors (mol/mol H2) of 

microbial biomass, CO2 and CH4 that account for the stoichiometry of the reactions. The model uses 
the microbial growth function proposed by (Desmond-Le Quemener and Bouchez, 2014), with 
hydrogen as the limiting substrate 
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𝜇 = 𝜇max ∙ exp (−
𝐾s∙𝑉g

𝑛g,H2

)         (12) 

where 𝜇 is the growth rate (h-1), μmax (h-1) is the maximum specific growth rate constant and 
𝐾s(mol/L) the affinity constant. An implementation of the model in the Open Source software Scilab 
is available at https://doi.org/10.5281/zenodo.3271611. 

Let us assume that only the concentration of methanogens 𝑥H2
 and the moles of hydrogen 

𝑛g,H2
are measured. We are interested in assessing the identifiability of the biological parameters 

μmax, 𝐾s,𝑘d, 𝑌, 𝑌CO2
, 𝑌CH4

. All initial concentrations are known. The remaining (physical-related) 

parameters are known.   
The previous model is non-rational since it includes an exponential function. Identifiability 

analysis was done with GenSSI 2.0 and STRIKE-GOLDD 4.0, which are a few tools that can analyze 
non-rational models. Under the observation conditions, the parameters μmax, 𝐾s,𝑘d, 𝑌 are globally 
identifiable, while 𝑌CO2

, 𝑌CH4
are non-identifiable. The result of the non-identifiable parameters is 

not surprising. We can check by inspection of the model equations that it will be impossible to 
estimate the parameters 𝑌CO2

, 𝑌CH4
without measuring, respectively, CO2 and CH4. Indeed, we need 

the information on these quantities to estimate the relation of moles consumed or produced by mol 
of H2 utilized. Thus, the complete set of parameters is globally identifiable if 
𝑥H2,𝑛g,H2

, 𝑛g,CO2
, 𝑛g,CHO4

 are measured.  

We can continue our analysis to illustrate the importance of integrating biological knowledge 
into the model. Methanogenesis is a process involving methane and microbial biomass production. 
We can represent the process in two reactions: 
R1: 4 H2  + CO2   CH4 + 2 H2O 
R2: 10 H2  + 5 CO2 + NH3  C5H7O2N  + 8 H2O  
where C5H7O2N is the chemical formula for microbial biomass. Knowing the stoichiometry of the 
reactions can enable us to reduce the number of yield parameters. The yield factor 𝑌 is the number 
of moles of microbial biomass produced per mol of H2 via reaction R2. We can then express the 
fraction (𝑓) of H2 utilized in reaction R1 for methane production as a function of 𝑌:  
𝑓 = 1 − 10 ∙ 𝑌          (13) 
The number ten in Eq. (13) is the stoichiometry coefficient of H2 in R2. The yield factors of CO2 and 
CH4 can now be expressed as functions of 𝑓: 

𝑌CO2
= (

1

4
) ∙ 𝑓 + (

5

10
) ∙ (1 − 𝑓)        (14) 

𝑌CH4
= (

1

4
) ∙ 𝑓           (15) 

This means that the number of parameters is now reduced to 4 parameters instead of 6. All the 
parameters are identifiable under the scenario where 𝑥H2

 and 𝑛g,H2
are measured.  

 
THE POWER OF ANALYSING COMPLEX MODELS  

 With the recent progress in computational methods, structural identifiability testing (at least 
locally) can be applied to complex nonlinear models. For example, previous studies (Ligon et al., 
2018; Barreiro and Villaverde, 2022) showed that SIAN, StructuralIdentifiability, 
IdentifiabilityAnalysis, and GenSSI 2.0 were able to test the identifiability of models with more than 
20 states variables and 20 parameters. IdentifiabilityAnalysis was used to assess the local structural 
identifiability of a model with about 100 states and 100 parameters (Karlsson et al., 2012). In the 
following example, we consider a mathematical model that represents the rumen fermentation 
under in vitro conditions (Muñoz-Tamayo et al., 2016). Figure 1 shows the schematics of the model. 
The model has 18 state variables and 30 parameters. A Matlab implementation of the model is freely 
available at https://doi.org/10.5281/zenodo.4047640. An implementation is also available in the R-

https://doi.org/10.5281/zenodo.3271611
https://doi.org/10.5281/zenodo.4047640
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package microPop (Kettle et al., 2018). An implementation in Scilab is also available at 
https://doi.org/10.5281/zenodo.4090332 for an extended model that accounts for the effect of the 
macroalgae Asparagopsis taxiformis on rumen fermentation and methane production (Muñoz-
Tamayo et al., 2021). The original model includes algebraic equations to compute the pH 
dynamically. For our identifiability exercise, we set the pH to a constant value of 6.6. 

We will consider the following 14 parameters for identifiability analysis: 𝑘hyd,ndf (hydrolysis 

rate constant of cell wall carbohydrates), 𝑘hyd,nsc (hydrolysis rate constant of non-structural 

carbohydrates), 𝑘hyd,pro (hydrolysis rate constant of proteins), 𝑘m,su, (maximum specific utilization 

rate constant of amino sugars), 𝐾s,su (substrate affinity constant of sugars), 𝑌su (microbial yield 
factor of sugars utilizers), 𝑘m,aa (maximum specific utilization rate constant of amino acids), 
𝐾s,aa,(substrate affinity constant of amino acids), 𝑌aa (microbial yield factor of amino acids utilizers), 

𝑘m,H2
(maximum specific utilization rate constant of hydrogen), 𝐾s,H2

 (substrate affinity constant of 

hydrogen utilization, 𝑌H2
 (microbial yield factor of hydrogen utilizers), and 𝜆1, 𝜆2 (flux distribution 

parameters).  

 
Figure 1. Schematics of the mathematical model of the rumen in vitro fermentation developed by 
Muñoz-Tamayo et al. (2016). Feed polymers (fiber, non-fiber carbohydrates, and proteins) are 
hydrolyzed into sugar and amino acid pools. The action of specific functional microbial groups 
further ferments these pools. Fermentation products are acetate, butyrate, propionate, carbon 
dioxide (CO2), and hydrogen (H2). In the liquid phase, the microbial group of hydrogen utilizers uses 
H2 and CO2 to produce methane (CH4). The CO2, H2, and CH4 participate in a liquid-gas (g) transport 
phenomenon (represented by double arrows). Ammonia is used as the sole nitrogen source for 
hydrogen utilizers and sugar utilizers. Dead microbes are recycled in the trophic chain as non-fibers 
and protein polymers.  

https://doi.org/10.5281/zenodo.4090332
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The initial conditions were set to be known. Identifiability testing was done with 

StructuralIdentifiability, GenSSI 2.0, and STRIKE-GOLDD 4.0. We run the tests on a laptop with 
Windows 64 Gb RAM, Intel Core i9-10885H (8 cores, 2.4 GHz). We first considered that 12 state 
variables were observed. The remaining unobserved state variables were the concentrations of CO2, 
H2, CH4 in the liquid phase and the concentration of the 3 microbial functional groups. The runtimes 
for the local structural identifiability analysis were 2.5 s for STRIKE-GOLDD 4.0, and 4.2 s for  
StructuralIdentifiability. The runtimes for global structural analysis were 2.6 min for 
StructuralIdentifiability and 25 min for GenSSI 2.0. Under the tested condition, the parameters are 
globally identifiable. 

In the paper by Muñoz-Tamayo et al. (2016), the parameter estimation was defined for a 
subset of 10 parameters: 𝑘hyd,nsc, 𝑘hyd,pro, 𝑘m,su, 𝑌su, 𝑘m,aa, 𝑌aa, 𝑘m,H2

, 𝑌H2
, 𝜆1, 𝜆2. The remaining 

model parameters were fixed as known. This strategy was meant to facilitate the model calibration 
routine.  The observed variables were the concentrations of acetate, butyrate, propionate, 
ammonia, and the moles of H2, CO2, and CH4 in the gas phase. When the model was built, no 
structural identifiability analysis was done. In the present exercise, we used StructuralIdentifiability 
and GenSSI 2.0 for identifiability testing. Both tools were incapable of testing the global 
identifiability of the parameters under the observation conditions. The analysis with both tools 
indicated that the model parameters are locally identifiable. The runtime with 
StructuralIdentifiability was 3.0 s. The runtime with GenSSI 2.0 was 34 min, but this time included 
the test on global identifiability, which was unsuccessful. STRIKE-GOLDD 4.0 exhibited an error in 
the process and could not assess the identifiability. We further evaluated the local structural 
identifiability of the 14 model parameters under the most restricted observation condition (that is, 
one single measurement). The result with StructuralIdentifiability informed that measuring any 
volatile fatty acid (acetate, butyrate, propionate) yielded local identifiability of the parameters. This 
result is encouraging for the rumen modelers, although we might recognize that this outcome might 
appear surprising. The reason for the identifiability of the model parameters is associated with the 
nonlinear structure of the model. Although model complexity is not a reliable indicator to compare 
the identifiability properties between models (Roper et al., 2010), nonlinear complex models are 
likely more identifiable than linear models (Walter and Pronzato, 1996). The rumen fermentation 
model shares a similar structure to the Anaerobic Digestion Model No.1 (ADM1) developed to 
represent the digestion in reactors for wastewater treatment (Batstone et al., 2002). An 
identifiability analysis on ADM1  (Nimmegeers et al., 2017) led to similar results to those presented 
here. That is, a minimal set of measurements can guarantee local structural identifiability. The 
authors explained that the structural identifiability results from many interconnections between the 
state variables of the model. Such interconnection, however, also applies to the parameter set 
leading to practical identifiability issues. Optimal experiment design can help to remediate practical 
identifiability issues, as discussed in the next section.  

This example shows that existing identifiability analysis tools allow for handling complex 
models. Although for some models, it may not be possible to perform parameter identifiability 
analysis. What to do in these cases? We discuss some solutions here below. 

 
What can we do when identifiability testing is not possible? 

Although the development of advanced tools for structural identifiability testing, might 
occur for some models with high complexity and limited observation conditions that current 
software tools cannot find solutions to the identifiability problem. As mentioned above, from the 
tools shown in Table 1, only GenSSI 2.0 and STRIKE-GOLDD 4.0 can analyze non-rational models 
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using symbolic computation. This can be a limitation issue in animal science, where non-rational 
functions (e.g., exponential functions) are common. Although, in some cases, transformations are 
possible to render the non-rational model in polynomial or rational form (see Muñoz-Tamayo et al.  
(2018) for an example of a transformation).  

When identifiability tools fail to assess identifiability, the numerical approach implemented 
in the StrucID app can help identify correlations between potential non-identifiable parameters 
quickly. This valuable information can be used further to refine models and reduce the set of 
parameters to be checked for identifiability. The method implemented in StrucID app is not 
restricted to rational models. The methods developed within the practical identifiability framework 
(Lam et al., 2022; Villaverde et al., 2022) also provide valuable resources to assess a posteriori 
identifiability when structural identifiability testing is out of reach.   

Finally, it is important to point out that automatic methods for identifiability testing are not 
free of error. In some cases, identifiability tools can yield incorrect results (Dong et al., 2022). It is 
thus advisable to use different tools simultaneously to assess the correctness of the results (Joubert 
et al., 2021; Barreiro and Villaverde, 2022).  
  

THE POWER OF DESIGNING OPTIMAL EXPERIMENTS 
Parameter identification is often addressed like a downstream process after collecting data. 

By following this approach, the modeler has minimal room for maneuvering to improve the model's 
accuracy. By incorporating identifiability analysis, we can follow an upstream approach to increase 
the room for maneuver of the modeler in the modeling construction process. The previous examples 
illustrate that the first benefit of identifiability analysis is providing valuable information about what 
to measure to render the model parameters identifiable. This part is done within the framework of 
structural identifiability. To complete the picture, we will need to know under which experimental 
conditions the measurements should be done on the real system to guarantee accurate parameter 
estimates. This part is addressed by practical identifiability analysis. To illustrate the usefulness of 
practical identifiability for optimal experiment design (OED) for parameter estimation, let us 
consider the following model that represents the utilization of a substrate 𝑥2 by a microbe 𝑥1 in a 
continuous system, as shown in Eqs. [16] and [17]. 
𝑑𝑥1

𝑑𝑡
=

𝑥1∙𝑥2

𝑥2+𝑘+𝑥2
2/𝑘𝐼

− 𝐷 ∙ 𝑥1         (16) 

𝑑𝑥2

𝑑𝑡
= −

𝑥1∙𝑥2

𝑥2+𝑘+𝑥2
2/𝑘𝐼

+ 𝐷 ∙ (𝑢 − 𝑥2)        (17) 

Where 𝐷 is the known dilution rate of the system and 𝑢 is the input substrate concentration. We 
would like to determine the shape of 𝑢 to perform an experiment that allows estimating accurately 
the parameters 𝑘, 𝑘𝐼  from available measurements of 𝑥1, 𝑥2. Under these observation conditions, 
the parameters are structurally globally identifiable. The accuracy of the estimates translates into 
small confidence intervals. Our objective function can be set up as an optimization problem where 
we want to find 𝑢 such that the volume of the confidence intervals is minimized. One approach to 
address the OED problem is maximizing the determinant of the FIM. Muñoz-Tamayo et al. (2018) 
discussed the details of the calculation of the FIM and its use in the OED. This procedure requires 
defining nominal values for the parameters. For our example, we set 𝑘 = 2, 𝑘𝐼 = 50. We solve the 
OED problem for two cases. In the first one, we considered the input substrate concentration to be 
constant over time (𝑢c). In the second case, we considered the input substrate concentration to vary 
on time (𝑢d). For that we parameterized 𝑢d as a piecewise linear function. 

The OED problem requires an intermediate level in computer programming skills. We used 
the IDEAS toolbox (Muñoz-Tamayo et al., 2009) to generate the functions for the OED problem. 
IDEAS is freely available at http://genome.jouy.inra.fr/logiciels/IDEAS. The files for the OED example 

http://genome.jouy.inra.fr/logiciels/IDEAS
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are available at https://github.com/rafaelmunoztamayo/identifiability_examples. The toolbox 
Amigo 2 (Balsa-Canto et al., 2016) has the functionality of addressing OED problems for parameter 
estimation. 

Figure 2 shows the obtained optimal inputs and the responses of the model variables. It is 
challenging to draw conclusions of this figure. However, when we look at the standard deviations 
(SD) of the parameter estimates obtained from the two cases in Table 2, we can clearly see the 
difference. The determinant of the FIM for 𝑢d is 660 times higher than for 𝑢c, which translates into 
smaller confidence intervals. The standard deviations obtained with 𝑢d are 31% and 72% of those 
obtained with 𝑢c for 𝑘 and 𝑘𝐼, respectively. Dynamic input induces better stimuli to system behavior 
and thus results in data with higher informative content than those obtained with constant input. 
This example shows the usefulness of OED in producing informative data for parameter estimation, 
and this capability can be used to avoid useless experiments. It should be said, however, that the 
use of the FIM for the calculation of confidence intervals is valid under linearity and asymptotic 
conditions (Walter and Pronzato, 1997). Approaches like the profile likelihood allow for overcoming 
the shortcomings of the FIM-based approach (Wieland et al., 2021). 
 

 
Figure 2. Responses of the variables of a mathematical model of microbial growth under two inputs 
of substrate concentration (u) were obtained to maximize the accuracy of the parameter estimates 
within an optimal experiment design. Dashed lines are the responses considering constant substrate 
input 𝑢c and solid lines are the responses for a dynamic substrate input 𝑢d. 

 
 
Table 2. Comparison of the two optimal substrate inputs on the accuracy of the estimates of a model 
of microbial growth.  
 

 Constant input substrate 𝑢c Dynamic input substrate 𝑢d 

Determinant of the FIM 1.27*1010 8.40*1012 

SD 𝑘 0.0247 0.0076 
SD 𝑘𝐼 0.0282  0.0202 

 
SUMMARY 

In this paper, we showed that incorporating identifiability analysis in the workflow of model 
construction provides substantial benefits to obtaining reliable models. Structural and practical 

https://github.com/rafaelmunoztamayo/identifiability_examples
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identifiability analyses inform on the conditions required to guarantee a unique and accurate 
estimation of the parameters. In case of lack of identifiability, identifiability analysis provides 
valuable information on possible actions to cure the non-identifiability (when possible). This 
information includes model reduction, reparameterization, and specifications on optimal 
measurements. Existing freely available software tools enable the application of structural 
identifiability analysis without needing to be an expert in mathematics and computer programming. 
Recent software tools for structural identifiability analysis allow handling complex models, but 
identifiability testing might be out of reach in some cases. In this case, numerical approaches within 
the practical identifiability framework can address the identifiability question. We believe this paper 
will motivate the modeling community in animal science to integrate identifiability analysis in their 
model developments. Such integration can be easily done following a practitioner approach taking 
advantage of the variety of available software tools dedicated to identifiability testing. However, we 
must stress that the practitioner approach advocated in this paper is only possible thanks to the 
open science practices adopted by the parameter identifiability community in making their software 
toolboxes freely available. The parameter identifiability topic is a great example of how adopting 
open science practices can contribute to scientific progress. We, animal scientists, should learn from 
such efforts to make Open Science the new normal in our field  (Muñoz-Tamayo et al., 2022). By 
sharing data, code scripts, and software tools and making our research freely accessible, we 
substantially strengthen the scientific progress of the animal science domain. 
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