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A B S T R A C T

Denitrification in soils is a very complex phenomenon due to the multiple factors it depends on. Therefore,
making accurate predictions has been an elusive task. In this study we measured N2O emissions daily during
7 days from a set of 20 undisturbed small soil cores that were subsequently scanned using X-ray micro-
tomography. Macropores, particulate organic matter (POM) and the mineral matrix were detected based on a
locally-adaptive segmentation method. We proposed an indicator based on the morphology of the soil micro-
structure to predict the N2O emissions. The indicator, 𝐼𝑑POM-air, relies on the hypothesis that more N2O will
be emitted when POM is occluded in the soil matrix, i.e. is located at large distances from the next air-filled
pore, most likely leading to anoxic conditions, favorable to the production of N2O. We computed 𝐼𝑑POM-air as
the average value of the geodesic distances from the surface of every POM to the closest air-filled pore. For
each of the 7 days of measurements 𝐼𝑑POM-air showed a linear trend (each day with an r2 > 0.75) with respect
to the N2O emissions, indicating that the spatial distributions of the POM and air-filled pores were key factors
to determine the N2O emissions in our soil cores.
1. Introduction

Planning a strategy to mitigate global warming requires an in-
depth understanding of the different mechanisms of greenhouse gas
emissions, in particular of N2O, which is one of the largest green-
house gases contributor to global warming (Stocker, 2014). The major
N2O emissions come from agricultural soils, tropical forests and the
ocean (Houghton et al., 2001, Mosier et al., 1998, Kroeze et al.,
1999). In soils, denitrification is considered to be the main source
of N2O emissions (Knowles, 1982), being the result of microbial res-
piratory processes during which soluble nitrogen oxides are used as
an alternative electron acceptor when oxygen is limiting. The general
requirements for denitrification are: the presence of a specific microbial
community, the presence of organic carbon compounds, the availability
of N-oxides and the limiting oxygen conditions (Philippot et al., 2007).
The latter is a function of the physical properties of the soil such

∗ Corresponding author.
E-mail address: Patricia.ortega@exalumno.unam.mx (P. Ortega-Ramírez).

as moisture and structure. In fact, the interaction between all these
properties causes the complex nature of denitrification in soils.

Many studies have tried to understand the factors that affect den-
itrification. These studies have to take place at a scale as close as
possible to microbial habitats where the N2O is produced (Parkin,
1987). Parry et al. (1999) studied the influence of the pore space struc-
ture and organic matter on denitrification in soil clods and measured
at local scale in soil thin-sections the distribution of distances. They
concluded that the pore space structure is the major factor explaining
the difference of mean denitrification emissions between soil clods
from pasture and cropped soils. In more recent studies, X-ray micro
computed tomography (𝜇CT) was used to understand the emissions of
N2O using information based on 3D reconstructed images of the soil
microstructure. Rabot et al. (2015) used 𝜇CT images of soil structure
at different hydric states, from which they measured different prop-
erties such as air-filled pore volume, water saturation and air-phase
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connectivity. They found that when the soil dried out, the reconnection
of the air-filled pore network with the atmosphere allowed high N2O
missions. Using also 𝜇CT images, Kravchenko et al. (2017) found that
n relatively dry soil POM had higher water content than the bulk soil,
llowing anoxic conditions and enhancement of the N2O production. In
rder to allow the transfer of N2O to the atmosphere, they concluded
hat the presence of large pores (diameter > 35 μm) was a necessary
ondition for maximizing the production of N2O. Kravchenko et al.
2018) put forward that effective predictors of N2O in soils could
e the volume fraction of: water filled pores (< 30 μm), air-filled
ores (30–90 μm), poorly aerated soil volume; and the volume of
OM isolated from the surface. Schlüter et al. (2019) studied artificial
otspots of growing microbial cultures embedded in sand with different
ater saturations, from which they found that denitrification depends
ot only on the amount of microbial hot spots, but also on their
patial distribution in the 3D space. Rohe et al. (2021) found that
2O+N2 emissions from repacked columns without particulate organic
atter could only be predicted well if at least one proxy for oxygen

onsumption and oxygen supply are considered. The best predictor
or oxygen supply turned out to be the image-derived anaerobic soil
olume fraction which was based on distances to air-filled pores in
he wet soil matrix. All these results confirm the important role of
oil microstructure in predicting N2O emissions from denitrification.
owever, to better predict denitrification, these studies indicate that
OM acts as hotspots of microbial activity and its propensity to turn
noxic depends on the distance to air-filled pores.

Models of N2O emission at the field scale like NOE (Hénault et al.,
005), Lanscape-DNDC (Haas et al., 2013), or DAYCENT (Parton et al.,
998) should improve their prediction by incorporating factors linked
o spatial organization at the microscale in soil structures. In another
ay, some mechanistic models are able to consider explicitly the soil

tructure in order to simulate the gas diffusion in the soil structure,
ike Rappoldt and Crawford (1999), who used fractal approaches;
r Laudone et al. (2011), who considered a pore network of micro and
acro pores. Rabot et al. (2015) linked the model NOE to a model

f gas transport. However, it is difficult to establish a link between
uch mechanistic models of soil structure, gas transport and the field
cale models of N2O emission. Another way to improve the models
ould be to add pertinent factors of soil micro organization that could
oderate the N2O fluxes calculated by macroscale models. However

inding relevant indicators remains quite challenging.
This research aims to propose an indicator condensing soil mi-

rostructure information in a meaningful way in order to facilitate the
rediction of N2O emissions from soil. This indicator is inspired by
he general requirements for denitrification to occur (Philippot et al.,
007). Assuming a similar presence of denitrifiers and N-oxides in our
amples, denitrification should be controlled by the limiting oxygen
onditions. Therefore, our indicator is based on the hypothesis that the
urther is the POM to air the larger must be the N2O emission. The study
arried out both N2O emission measurements in undisturbed soil cores
nd 3D 𝜇CT images of these soil cores. Several morphological indicators
ased on the 3D images of soil microstructure were calculated. Cor-
elations between N2O emissions and the different indicators showed
hat the best morphological indicators explaining N2O emissions is the
ndicator based on the geodesic distances between particulate organic
atter and the air-filled porosity. Although the scope of this paper

s not to determine the source mechanisms of N2O emissions, but to
etermine how the microstructure of the soil affects its emissions, dis-
repancies between N2O emissions and denitrification activity that arise
rom denitrification completeness and other N2O forming processes are
iscussed.

. Material and methods

.1. Experimental field

Soil was sampled from a cultivated field subjected to conventional
−1 −1
2

illage and management (a maximum of 199 ± 25 kg 𝑁 ha yr of
ineral 𝑁 fertilizers were applied) at ‘‘La Cage’’, Versailles, France.
he soil is classified by the World Reference Base for Soil Resources
WRB) as a Luvisol, with a silt loam texture (with 271 g kg−1 sand,
62 g kg−1 silt and 167 g kg−1 clay), with a total carbon content of
0.3 ± 1.2 g kg−1 and a pH of 7.4. The same soil plot was monitored
y Autret et al. (2019) using automatic chambers during 3.3 years
ncluding our sampling period. The measurements varied from 1.33 kg
a−1 yr−1 to 4.24 kg ha−1 yr−1. The largest emission peaks of N2O
ere mainly produced after fertilizer application in combination with

ainfall events, leading to the conclusion that the main source of
he measured N2O was denitrification, and that the soil contains a
icrobial community capable of denitrification.

.2. N2O emission measurements

We sampled 20 cores (five cm diameter and six cm height) in the
oil surface layer (0–10 cm). The cores were numbered arbitrarily.
he samples were saturated by capillary rise, in the laboratory during
days with a solution of ammonium nitrate. This added 150 mg of

itrogen to 1 kg of dry soil (corresponding to 90 kgN/ha) is about half
f the maximum of the mineral 𝑁 fertilizers applied in the field site. 𝑁

was indeed provided in a sufficient large amount so that denitrification
was not limited by absence of N.

Then, the samples were equilibrated at a water matric potential of
−3.16 kPa using a pressure plate, in order to have optimal conditions
for denitrification. Given the size of the water filled pore space of
our samples (higher than 60%), most of our emissions must be due
to denitrification. The soil cores were then placed in a measurement
chamber at a constant temperature of T = 15 ◦C for 7 days. The soil
moisture was monitored during the incubation. It was adjusted by
additional NH4NO3 solution if necessary to keep a constant moisture
value.

The N2O emitted per day by each soil core were measured with a
continuous infrared spectrometer measurement device called IMNOA
(Integrated Mesocosms for N2O Assessments). It measured the gas flow
by the connected chamber method (open cell). The installation system
allowed to measure the 20 samples in a row. The gas concentrations
were monitored continuously with a scan rate of one second, using an
infrared spectrometer QCLTILDAS (Aerodyne Research). Mixing ratio
of the N2O was corrected on water vapor dilution and on broadening
effects (Harazono et al., 2015; Deng et al., 2017). The duration of
the measurement for each cell was 10 min. A full description of our
measurement process can be found in Laville et al. (2019).

2.3. X-ray CT images acquisition

After the N2O measurements, the soil samples were scanned at
the University of Poitiers, with an X-ray 𝜇CT (EasyTom XL duo, RX
Solutions) at the same matric potential of −3.16 kPa. The micro-
tomographic acquisition was done in staking mode with 4320 projec-
tions distributed over three turns to scan the whole specimen, starting
and ending respectively with the top and bottom of the column in
the center of the field of view to reduce artifacts related to the beam
conicity. A micro-focus source (Hamamatsu L12161) set at 120 kV and
140 μA was used, coupled to a flat panel detector (Varian PaxScan
2520 DX; 1920 × 1536 matrix pixel; pixel pitch of 127 μm; 16 bits of
dynamics) with frame rate of 12.5 fps and an average of 20 images
(i.e. total exposure time of 1.6 s). An aluminum filter of 1.2 mm thick-
ness was used to reduce beam hardening effects. The reconstruction
was done with the XAct 10251 v1.1 (Rx-Solutions) software package
with a filtered back projection algorithm (Feldkamp method-cone beam
geometry with Tukey filter and a sinus apodization filter). The result is

a set of 16-bit cross sections with a voxel resolution of 32 μm.



Geoderma 429 (2023) 116224P. Ortega-Ramírez et al.
2.4. Particulate organic matter size fractionation

After scanning, we randomly selected 10 soil cores out of the 20
samples to measure the amount of POM and total organic carbon.
POM is defined as solid fragments of organic matter of size larger
than 50 μm (Besnard et al., 1996). Therefore, we applied a particle-
size fractionation of organic matter based on mechanical dispersion
(disaggregation of soil aggregates in water with glass beads) of the soil
as described by Balesdent et al. (1991). The purpose of this separation
is to isolate organic residues larger than 50 μm from finer organic
matter, dense mineral fractions and organo-mineral associations, by
sieving under water and density separation in water. To do so, the cores
were manually disrupted and homogenized to recover 50 g aliquot of
soil (out of the ≈ 180 g of each soil core). The 50 g of soil were
suspended in 180 ml of deionized water with 10 glass beads. The
aggregates ruptured by mechanical shaking overnight. Then, the light
particulate organic matter was separated from the heavier minerals by
flotation sedimentation in water. Coarse fractions > 50 μm were oven
dried at 40 ◦C, while the < 50 μm fraction was freeze-dried. For the
carbon content, the fractions were ground in a mortar with a pestle
and then sieved to 0.2 mm to ensure homogeneity. The organic carbon
content was measured by a CHN elemental analyzer (Vario Isotope
Select, 15171064, Germany). This process gave us the corresponding
mass and carbon content of each POM fraction.

2.5. Image processing and analysis

The workflow of the image processing and segmentation of the
3D reconstructed soil images is shown in Fig. 1. We first selected a
region of interest (ROI) from the raw images of 1753 × 1753 × 1700 ∼
5.2 × 109 voxels obtained after reconstruction. In our case, we selected
the cylinder inscribed inside the soil cores, with an average ROI volume
of 118 cm3 (Fig. 1a). This selection was done in Fiji/ImageJ Schindelin
et al. (2012) with the ‘‘set oval’’ and ‘‘clear outside’’ functions .

Afterwards, we applied different pre-processing steps to the raw
images before their segmentation (Fig. 1b), following the recommenda-
tions given in Schlüter et al. (2014). A non-local means filter (Buades
et al., 2011) as implemented in the Biomedgroup plugin of Fiji/imageJ
was employed for noise removal. The parameters of such plugin were
set to: a variance of the noise sigma = 15 and a smoothing factor of 1.
Additionally, an edge enhancement unsharp mask filter of radius = 1
was used to reduce partial volume effects due to image blurring where
the strength of the filter mask was set to 0.6. Finally, we corrected
radial drifts using the software toolbox QuantIm (Vogel et al., 2010)
with a method inspired by Iassonov and Tuller (2010).

We expect that, at the voxel resolution of 32 μm in our undisturbed
soil samples, we will be able to assign the gray level of each image voxel
to one of the different soil constituents: air, water, POM and minerals.
Given that water and POM have a similar density, the X-ray attenuation
through these materials results in a similar gray level. Schlüter et al.
(2014) showed that, when dealing with a multiphase 3D image which
has been previously denoised and edge-enhanced, the local multiclass
segmentation based on a watershed algorithm succeeds in correctly de-
tecting thin macropores and in avoiding misclassification of boundary
voxels into false organic matter coatings around macropores attributed
to incorrect assignment of partial volume voxels. Thus, we decided to
carry out the watershed segmentation algorithm to identify four classes:
air, POM+water, soil matrix and minerals. The soil matrix contains a
mixture of air, water, organic matter and minerals or organo-mineral
associations of a size smaller than the voxel resolution.

To perform this local segmentation we applied the Marker-
controlled Watershed method as implemented in the MorphoLibJ plu-
gin (Legland et al., 2016) in Fiji, which is based on the algorithm
of Beucher and Meyer (1990). This plugin requires as input images,
the gradient and a global segmentation in both cases of the gray scale
image. To create the global segmented image we used the Otsu method
3

Fig. 1. Image processing work flow example with a 2D slice of an X-ray scan: (a) raw
image of the ROI, (b) reduction of noise with non local means filter, edge enhancement
and radial correction (c) local segmentation with watershed algorithm. In (a) and (b)
the darker is the color the lighter is the material in (c) air in red, POM+water in green,
soil matrix in black, and minerals in blue.

(Otsu, 1979) with three thresholds computed with the software toolbox
QuantIm (Vogel et al., 2010). While the gradient was obtained with the
Fiji function of the same name.

To reduce the noise produced during the segmentation step, a
majority filter for a cubic kernel of 3 × 3 × 3 voxels was applied, using
the software toolbox QuantIm (Schlüter et al., 2014). This filter action
consists in replacing the current label by the most representative label
among all neighbors in a cubic kernel.

2.6. Computation of morphological properties

2.6.1. Volume fraction
Following the premise that the reduced oxygen supply to POM

should increase N2O emission from POM, we paid a special attention
to correctly distinguish air, water and POM in the segmented images.
However, as mentioned above, we could not distinguish water from
POM in the POM+water class. Since the soil cores were scanned at a
matric potential of −3.16 kPa, we used the Young–Laplace law equation
(Eq. (1)) to estimate an equivalent radius that could correspond to
radius of water-filled pores due to capillarity.

𝑟𝑒𝑞 =
2𝛾 cos 𝜃

𝑃
. (1)

Assuming that water is fully wetting so that the contact angle at
the air–water–solid interface is 𝜃 = 0◦, for an interfacial tension 𝛾 of
water of 0.075 𝑁𝑚−1, and 𝑃 the absolute value of the matric potential,
the resulting equivalent radius is 𝑟𝑒𝑞 = 47 μm, which corresponds to
1.5 voxels of the 3D images. We subsequently assumed that voxels
of the POM+water class whose size is smaller than 𝑟𝑒𝑞 are filled with
water. However, taking into account that 𝑟𝑒𝑞 is close to the resolution
limit, this phase may also contain misallocated voxels due to the
partial volume effect. The rest of the POM+water class voxels will
be considered to contain only POM. In doing so, the 3D images are
further distinguished into five material classes: air-filled pores, water-
filled pores, POM, soil matrix and minerals. The volume fraction of each
class was determined by voxel counting.
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For the POM class, we proposed as a first approximation a classifi-
cation of the size of each POM cluster by comparing them to a sphere
of equivalent volume and the size of the POM cluster was associated
to the diameter of the equivalent sphere. We defined the same classes
than the measured one (50-200 μm, 200-2000 μm, > 2000 μm). The POM
clusters were identified by the ‘‘Particle analyzer’’ function of the BoneJ
plugin of Fiji (Doube, 2021).

2.6.2. Pore size distribution and connectivity of air-filled pores
To assess the role of air-filled pores in the gaseous diffusion of

N2O produced in the soil microbial habitats, we characterized the
morphology of these pores by calculating their cumulative pore size
distribution (PSD). For each sample, we created a 3D-image with only
the air-filled pore class as the foreground and the rest of the classes as
the background. To this image we used a 3D morphological opening
function applied to the air-filled pore class, with a sphere of radius 𝑟 as
the structuring element. Openings were calculated for different radius
values, from 1, 2, . . . ,5, 8, 10, 15 and 20 voxels, corresponding to pore
radius between 32 μm to 640 μm (Vogel, 1997). For each structuring
element, we counted the number of remaining voxels of the resulting
image, which correspond to air-filled pores larger than the diameter of
the structuring element. The opening functions were calculated with
the MorholibJ plugin of Fiji (Legland et al., 2016).

To compare the connectivity of the air phase within each soil core,
we calculated the size of the largest cluster of air-filled pores using the
‘‘Particle Analyzer’’ function of the BoneJ plugin of Fiji.

2.6.3. Geodesic distance between POM and air-filled pores
In order to understand the production of N2O in the soil microbial

habitats, we proposed a spatial microscopic descriptor, 𝐼𝑑POM-air, that
describes the proximity of POM to air-filled pores. This descriptor is a
global measure of the average geodesic distances between the surface
of POM and the nearest air-filled pores within each soil core. Only
the POM surface was considered assuming that once that the oxygen
makes contact with the POM the denitrification process is affected. It is
expected that the larger this descriptor is, the greater the denitrification
and N2O emissions will be.

The spatial descriptor 𝐼𝑑POM-air is obtained by first computing the
geodesic distances between the voxels belonging to the surface of a
POM and the nearest voxel of air. The geodesic distance is the length of
the shortest path joining two points while staying inside a determined
region (Lantuéjoul and Beucher, 1981). In this case, the assembly of
soil matrix and minerals act as the determined region. We named this
distance, 𝐺𝐷POM-air(𝑖), with 𝑖 = 1, 2,… , 𝜕𝑃𝑂𝑀 , where 𝜕𝑃𝑂𝑀 is the total
number of voxels belonging to the surface of POM in all the ROI.
Therefore we denoted

𝑆𝐺𝐷POM-air =
𝜕𝑃𝑂𝑀
∑

𝑖=1
𝐺𝐷POM-air (𝑖) , (2)

to the sum of geodesic distances (SGD) from every voxel on the surface
of every POM in a soil core. We then defined the spatial descriptor as

𝐼𝑑POM-air =
𝑆𝐺𝐷POM-air

𝜕POM
. (3)

𝐼𝑑POM-air has length units (μm) and it is a way to quantitatively de-
cribe the distribution of distances between POM and air-filled porosity.

To compute 𝐺𝐷POM-air(𝑖), we used the function ‘‘Interactive
Geodesic Distance Map’’ of the plugin MorphoLibJ of Fiji. This plugin
requires two 3D binary images computed from the locally segmented
soil image: one with the air and the other with the POM as the
foreground. The background of each image is the assembly of the
respective remaining materials. From these images, we computed the
GDM.

Fig. 2 illustrates the calculation of the geodesic distances between
the surface of the POM clusters and the nearest air-filled pore, i.e., the
𝐺𝐷 used to calculate 𝐼𝑑 (Eq. (3), and (2)). Figs. 2b and
4

𝑃𝑂𝑀−𝑎𝑖𝑟 POM-air
2c show the air and POM foreground images extracted from the locally
segmented images from which the GDM (Fig. 2d) is computed. GDM
consists of a color scale image the darker the color of the voxel, the
shorter is the distance to an air voxel (for instance we can verify how
the darker areas in Fig. 2d correspond to the areas where the air voxels
are located in Fig. 2b.). The histogram of 𝐺𝐷POM-air(𝑖) for each column
follows approximately a 𝜒2 distribution, as distances are non-negative
(Fig. 2e). The 𝐼𝑑POM-air per column then corresponds to the mean value
of the 𝐺𝐷POM-air(𝑖) distribution, as defined in Eq. (3). As a matter of
fact, the distribution is not Gaussian and therefore using the normal
standard deviation around the mean is not informative, as it would
lead to apparently-possible negative distances. Instead, the associated
uncertainty is provided by one 𝜒2-standard deviation understood as the
square root of the second central moment, which in such a distribution
corresponds to the square root of twice the mean.

The 𝐼𝑑POM-air descriptor is a global measure of the shortest distance
of all the voxels belonging to the surface of POM objects to the closer
air-filled pore. Therefore, it does not distinguish the role of large or
small POM sizes in the emission of N2O. To explore the role of POM
size in the production of N2O, we recalculated the same descriptor in
the local segmented image where POM and air-filled pores smaller than
a spherical structuring element of a radius of 2, 3, 4, and 5 voxels were
successively eliminated.

2.7. Statistical treatment

Linear regressions were carried out between explanatory variables
retrieved from microstructure analysis and N2O emissions as response
variable. These regressions were carried out for individual days rather
than the week averages to check for changes in the predictability
of N2O emissions with time. The strategy we use to compute the
uncertainty of the slope in our linear regressions is a 5-fold cross-
validation. The method consists of iteratively splitting the data such
that 80% of it is used for fitting the model. This means that the 20%
of data that is unseen during fitting will be different in each of the five
possible iterations.

In the case of an ordinary least squares linear regression, ones
end up computing five different pairs (intercept, slope) i.e., one per
each set, and each one corresponding to an equally valid model. Such
analysis makes the linear regression more robust to outliers while
providing an approximation to the distribution of possible coefficients
that are compatible with the observed data.

3. Results

3.1. N2O emissions

Fig. 3 shows the cumulative N2O emissions during the 7 days
of measurements for each soil core. Emissions were variable with
no particular trend over time. During the first day a large varia-
tion between the samples was observed with an average amount of
48.9 μg𝑁2𝑂/Kg𝐷𝑟𝑦𝑆𝑜𝑖𝑙(𝐷𝑆) and standard deviation of 42.6 μg𝑁2𝑂/Kg𝐷𝑆 .
Four samples emitted less than 10 μg𝑁2𝑂/Kg𝐷𝑆 whereas three samples
emitted more than 100 μg𝑁2𝑂/Kg𝐷𝑆 . Generally, the differences in N2O
emissions between the samples were maintained during the 7 days The
ranking from low- to high emitting cores was rather consistent over
time. However, in some instances like core 14, there was a proportional
drop in N2O emissions occurring already at the second day.

3.2. Volume fraction and morphological properties of air-filled pores

The volume fraction of the different classes per soil core are given
in Fig. 4. On average, the air-filled pores, POM, water-filled pores, soil
matrix, and mineral fractions were: 10.74%, 2.56%, 0.46%, 84.56%,
and 0.15% with a coefficient of variation of 0.38, 0.23, 0.23, 0.08, and

0.66, respectively. The water-filled pore fraction, computed from the
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Fig. 2. Workflow of the image analysis process, illustrated with a transverse section of one of our columns. (a) the locally segmented image (air in red, POM in green, soil matrix
in black, and minerals in blue). (b) and (c) have the air and the POM as the foreground respectively. (d) is the GDM of the background of (c) to the air-filled pores in (b). (e)
shows the counting number that a 𝐺𝐷POM-air(𝑖) appears on the whole sample. The white square locates a region (9.6 mm × 9.6 mm) that will be displayed in Fig. 12.
Fig. 3. Cumulative amounts of N2O emitted per soil core during the 7 days of
measurements.

POM+water class (see Section 2.6.1) represented thus 15% of this class
fraction.

The cumulative PSD of the air-filled pores varied largely between
the soil samples (Fig. 5). For instance, the extreme variations are at
a radius of 150 μm are found in core 11 and core 8 where porosity
occupied by pores of radius smaller that 150 μm is 20% and 50%
respectively. As the radius increases, so does the difference in the
cumulative PSD till the maximal radius of 250 μm.

The connectivity of the air phase was high in the soil cores where
the largest cluster of air-filled pores consisted, on average, of 88 ± 12%
of the total air porosity.

3.3. POM characterization

The experimental POM size fractionation in the ten analyzed soil
cores showed an average POM content of 13.4 ± 4.4 mg/g𝐷𝑆 par-
titioned in: 0.4 ± 0.6 mg/g (POM>2 mm), 3.2 ± 2.8 mg/g
5

𝐷𝑆 𝐷𝑆
(0.2<POM<2 mm), 9.8 ± 5.0 mg/g𝐷𝑆 (0.05<POM<0.2 mm). The dis-
tribution of POM in our samples was very heterogeneous across the soil
cores.

The volume occupied by POM identified in the segmented 𝜇CT im-
ages of the same ten soil cores, was on average 26.11 ±
4.98 mm3/cm3

soil. When comparing the size of each cluster of POM
to spheres of equivalent volume, and associating the diameter of
the sphere to the size of POM, POM was partitioned into 7.86 ±
4.11 mm3/cm3

soil (POM>2 mm), 17.56 ± 2.45 mm3/cm3
soil

(0.2<POM<2 mm) and 0.66 ± 0.67 mm3/cm3
soil (0.05<POM<0.2 mm),

according to particle analyzer algorithm. The experimental method
reports a big proportion of the volume occupied by the smallest fraction
(50-200 μm), whereas the computed method reports the opposite.

We fitted a linear regression forcing the intercept to zero1 (r20 =
0.89) with a slope of 0.81 ± 0.06 g𝑃𝑂𝑀/cm3

𝑃𝑂𝑀 (Fig. 6, which can
be associated to the bulk POM density (Kravchenko et al., 2014). The
strategy we used to compute the bulk POM density is a 5-fold cross-
validation, as mentioned in Section 2.7. The mean slope (solid blue line
in Fig. 6) is then interpreted as the expectation value for the density
while the uncertainty corresponds to the standard deviation of the set
of the 5 cross-validated slopes.

3.4. Understanding the N2O emissions through soil microstructure

3.4.1. Air-filled porosity and POM
We correlated the accumulated N2O emissions of each soil core

during each of the 7 days of measurements and the air-filled porosity
(Fig. 7a shows this correlation with the seventh day as an example).
Although the soil cores where the air fraction is higher were the
soil cores that emitted less N2O, the linear dependence was found
to be weak for air-filled porosity at each of the 7 days (r2 <0.52).
The variability in N2O emissions explained by POM volume fraction
(Fig. 7b), or carbon content was even weaker (r2 < 0.30 for the POM

1 r20 is the coefficient of determination when the intercept is forced to zero).
Given the formulas associated to compute r20 and r2, in this case r20 is higher
than r2) (Eisenhauer, 2003)
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Fig. 4. Volume fraction of the five material classes air-filled pores, POM, water-filled pores, soil matrix, and minerals obtained after watershed segmentation (a) for the case of
soil core 3, (b) volume fraction of the air-filled pores, POM and water-filled pores for each soil core. Note that the soil matrix may contain water and POM of size smaller than
the voxel resolution of 32 μm.
Fig. 5. Cumulative PSD of the air-filled pores computed for radius from 1 voxel till
20 voxels (32 μm to 640 μm).

and r2 < 0.50 for the carbon), irrespective of the investigated day.
However, a less expected result is that N2O emissions were negatively
correlated to POM. It might be related to wrongly assigned voxels due
to partial volume effects present when the pore area is large. Therefore,
a much more successful attempt is proposed in the following section.

3.4.2. N2O emission function of 𝐼𝑑POM-air
The variation of N2O emissions between the soil samples could

therefore be less dependent on how much POM or air porosity is in
a sample, but how good is the access of the POM to the air-filled
pores. To check this assumption we performed linear regression of
daily N2O emissions with 𝐼𝑑POM-air for the entire week (Fig. 8). We
found a positive linear relationship with coefficients of regression r2 of
: 0.75, 0.81, 0.80, 0.80, 0.79 0.79, 0.78 for day 1, day 2, . . . , day 7
respectively. These values are much higher than the ones found for the
other calculated morphological parameters 3.4.1.

3.4.3. The role of POM sizes and air-filled pores
When small air-filled pores and POM are progressively removed

(Fig. 9), the GDMs showed larger and larger values of 𝐺𝐷POM-air(𝑖)
(keeping the 𝜒2 distribution shape as in Fig. 2e), as can be seen in
Fig. 9a to Fig. 9e there is an increase in the presence of light colors.

Fig. 10 shows the plot of the 𝐼𝑑POM-air𝑅𝑖 (where i = 1,2, . . . ,5)
descriptors calculated for each soil core in function of the accumulated
N2O emissions during the seventh day of measurements. During each
of the 7 days we noticed the expected increase of the intercept as
the radius of the structuring element increases, whereas the regression
6

Fig. 6. Comparison of POM mass measured through the laboratory fractionation
method and POM volume identified in the segmented 𝜇 CT image. The shaded region
in blue corresponds to the set of cross-validated linear regressions with intercept forced
to zero and slopes ranging in 0.81 ± 0.06 mg/mm3.

coefficients 𝑟2 remained similar for all the radius and days (average r2
= 0.77 ± 0.05).

The 𝜒2 distribution of 𝐺𝐷POM-air(𝑖) (histogram in Fig. 2e) showed
largest frequencies for the small 𝐺𝐷POM-air(𝑖). This result may imply
the presence of many small air-filled pores very close to POM, or the
presence of many small particles of POM close to air-filled pores. The
effect of removing the small air-filled pores and POM decreased the
frequency of small 𝐺𝐷POM-air(𝑖) leading to a smaller slopes as the radius
increases (Fig. 10).

4. Discussion

4.1. POM detection

It has been proved experimentally that POM plays a crucial role at
explaining N2O production and its variability (Parry et al., 2000; Surey
et al., 2021). Individual microbial hotspots formed on particulate or-
ganic matter may contribute more to N2O emissions than the vast
volume occupied by mineral-associated organic matter (Parkin, 1987).
Therefore, a detailed POM inventory represents an untapped potential
for improving N2O emissions.

The heterogeneous spatial distribution of POM in the 3D soil ar-
chitecture can be revealed by the use of 𝜇CT images. Although easily
recognizable shapes of POM can be visually detected, a systematic iden-
tification of POM still remains a challenge for segmentation algorithms
(Kravchenko et al., 2014; Kravchenko et al., 2018 Maenhout et al.,
2021; Schlüter et al., 2022a; Piccoli et al., 2019; Lammel et al., 2019).
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Fig. 7. Air (a) and POM (b) fractions per soil core as a function of the accumulated N2O emission during the seventh day, with their respective tendency line. The shaded area
corresponds to the 95% confidence interval band for the fitted slope and intercept (which implies a 95% chance that the true regression line fits within the confidence bands).
Fig. 8. 𝐼𝑑POM-air as a function of the N2O emissions measured during 7 days. The blue line is the linear regression fit, along with a translucent 95% confidence interval band. The
uncertainty of 𝐼𝑑POM-air (the horizontal bars) is exclusively due to the dispersion in the distribution of distances 𝐺𝐷POM-air(𝑖) in each soil core.
Few studies tried to quantitatively compare POM computed in 𝜇CT
images and experimental measurements (Kravchenko et al., 2014;Pic-
coli et al., 2019; Zheng et al., 2020). Similarly to Kravchenko et al.
(2014), the comparison of the measured total mass of POM from
laboratory measurement and the total volume of POM computed from
7

𝜇CT images indicated a linear relationship. The value of the derived
POM bulk density of 0.81 g/cm3 is somewhat smaller than the value
of 0.98 g/cm3 found in Kravchenko et al. (2014). It is at the lower
end of the range of densities of biochemicals (0.8–1.7 g/cm3) and
consistent with the fact that operationally, in the method proposed
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Fig. 9. 2D slice of a soil core to exemplify the evolution of the GDM. In (a) is the GDM of the original image (See Section 3.4.2), (b) to (e) are the GDMs while eliminating POM
and air-filled pores of radius = 2, 3, 4, and 5 voxels respectively.
Fig. 10. N2O emissions at day 7 in function of the descriptors 𝐼𝑑POM-air𝑅𝑖 . Each of them
present its linear regression along with a translucent 95% confidence interval band.

by Balesdent et al. (1996), POM are separated by flotation in water.
However, it is smaller than the density of soil POM, usually considered
in the literature to range between 1.20 and 1.64 g/cm3 in studies where
fractionations were carried out with heavier liquids (Chenu and Plante,
2006; Mayer et al., 2004; Leuther et al., 2022).

Additional explanations to the density value that we found, are
related to the quality of 𝜇CT images and POM segmentation. On the
one hand, the low value of POM bulk density can reflect the different
stages of decomposition of the plant residues in the soil which form
assemblages of different spatial organization and density of organic
molecules and voids (Elyeznasni et al., 2012; Kravchenko et al., 2014).
Due to too low 𝜇CT scan resolution, the gray levels associated with
POM objects encompass a lot of void volume leading to artificially low
densities. On the other hand, the multi-class segmentation and/or the
separation of classes between water and POM may have not prevented
all misclassification of voxels. This probably led to a larger POM volume
than the real one. We tested the sensitivity of such POM misclassifica-
tion by systematically removing POM coatings and POM objects smaller
than 64 μm diameter by applying a morphological opening on the
segmented POM as proposed in Kravchenko et al. (2014). The resulting
POM volume was smaller and was linearly related to the mass of POM
(r20 = 0.83) with a slope of 1.4 ± 0.2 g/cm3 and the intercept forced
to 0, as we expect the mass to be exactly zero for vanishing volume
and vice-versa. This value is within the range of density of organic
molecules. This modification to the POM at image analysis level shows
how important it is to find accurate methods and establish a standard
methodology to identify POM in 𝜇CT images. An improved method of
8

POM detection might be a segmentation based on machine-learning
that takes gradient and texture information at several spatial scales into
account in addition to gray scale information, as it was done in Schlüter
et al. (2022a,b). Eventually, the accurate and robust determination
of POM volumes and POM densities by microstructure analysis might
lead to a better prediction of potential hotspots for microbial activity
in soil and render destructive methods unnecessary. In addition, only
the image-based POM analysis yields additional information about its
position within the pore network.

There was a considerable discrepancy in POM size classes between
both methods. This discrepancy comes at no surprise since (1) the effec-
tive diameter of fibrous POM cannot be determined from its volume and
(2) the mechanical dispersion of soil prior to sieving may have caused
a bias towards smaller chunks of POM as compared to its intact state
during imaging. Eventually, the size of POM is irrelevant for predicting
N2O emissions, as long as its position within the intact pore network is
accounted for.

4.2. N2O predictions

The working hypothesis that the oxygen supply of POM from air-
filled pores would be a good predictor of N2O emissions was confirmed
by the incubation results. The oxygen supply was quantitatively de-
scribed by a single number, the descriptor 𝐼𝑑POM-air, calculated at the
scale of the soil cores by using the concept of geodesic distances. This
descriptor encloses information on the microstructure of the soil via the
geodesic distances of POM to the closest air-filled pore.

Other studies have used the concept of geodesic distances to under-
stand denitrification. Rohe et al. (2021) computed geodesic distances
in 𝜇CT soil images between non-air voxels (except minerals) to the con-
nected air-filled pores, to calculate the anaerobic soil volume fraction.
This indicator, combined with measured CO2 emissions succeeded to
predict N2O emissions. In Rohe et al. (2021) all POM was removed
prior to soil packing, which explains why air distances were measured
in the entire soil matrix, in which mineral-associated organic matter
was distributed homogeneously. In our study within intact soil, large
amounts of POM were present, which justified to focus the analysis of
air-distances on these microbial hotspots and disregard the contribution
of N2O emissions from the soil matrix. Parry et al. (1999), computed
in 2D soil thin-sections the geodesic distances of any point of the
soil matrix to air-filled pores. They found a larger average distance
in cropped soil clods compared to pasture soil clods where the latter
had lower mean denitrification rates. They further concluded that
the heterogeneous POM distribution in the cropped soil clods played
an important role in the skewed distribution of denitrification. Our
descriptor supported this hypothesis.
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Fig. 11. Selected view of a 2D cross-section of a segmented image showing air, POM+water, soil matrix and minerals. In (a) the raw image after pre-processing filters (the darker
is the color the lighter is the material); in (b) the global segmented image; in (c) the local segmented image. In (b) and (c) the colors black, dark gray, light gray and white
correspond to air, POM+water, soil matrix, and minerals, respectively. Red arrows indicate locations of false organic coatings in the global segmentation method.
Fig. 12. Zoom to the geodesic distance obtained in 2. In blue are the air-filled pores, and in color scale the surface of the POM. (a) shows a 2D slice, (b) the same region but in
3D.
The 𝐼𝑑POM-air indicator alone largely explained the measured N2O
emissions and was superior to the predictive power of volume fractions
of POM and air-filled porosity alone. Similar values of the linear
regression coefficients were obtained throughout the 7 days of mea-
surements, indicating the robustness of 𝐼𝑑POM-air as a good indicator of
the production of N2O (Fig. 8). The soil cores with small 𝐼𝑑POM-air were
the ones featuring smaller N2O emissions, confirming that the farther
is POM from air, the bigger are the N2O emissions. When removing
successively the small POM and air-filled pore objects, the quality of
the linear regression between 𝐼𝑑POM-air and N2O emissions remained
similar (Fig. 10). This indicated that even if the multiclass segmentation
may have over classified partial volume voxels into POM, it has a
low impact on the linearity of the relation between 𝐼𝑑POM-air and N2O
fluxes. It also implies that it is not the size of the air-filled pores nor that
of POM that controlled the N2O emissions in our experiment, but rather
the distribution of distances between these materials independently of
their size.

4.3. Limitations

The sole measurement of N2O emissions without additional iso-
topic information cannot discriminate between different N2O formation
processes. Likewise, without data on the N2 production, we lack infor-
mation to understand whether N2O emissions are low because it is not
formed at all, it is reduced to N2 before being emitted or it is trapped
in disconnected pores. At least the latter process, which was evident at
high water saturations in Rohe et al. (2021) can be largely excluded for
our intact soil cores with a natural pore network incubated at −3.1 kPa,
as the air-filled porosity exhibited high connectivity. Independent N2O
emission data from field monitoring campaigns from were the soil cores
were extracted (Autret et al., 2019) strongly suggest that denitrification
is the most dominating N2O formation at this matric potential. Most
likely N O reduction was not a dominating process at this matric
9

2

potential and only contributed little to the unexplained variability of
N2O emission, as bulk oxygen supply was still relatively high and only
limited locally in microbial hotspots. Therefore, the predictive power of
the introduced microstructural parameter on N2O emissions was very
good under these experimental conditions, despite the lack of detailed
process understanding.

5. Conclusions

The objective of the present study was to explore the interplay
between soil microscopic structure and soil N2O emissions. We took
advantage of the inherent spatial variability of N2O emissions, partic-
ulate organic matter and soil structure at the scale of small cores and
implemented an innovative combination of experimental measurement,
visualization and image analyses. This led us to the conclusion that it
was not the volume fraction of POM and air-filled pores but their spatial
distribution that controlled the N2O emissions of the soil cores. This
study on undisturbed soil samples highlights how the distribution of
POM with respect to air-filled pores can strongly affect the N2O emis-
sions of soils. To confirm the robustness of this descriptor we suggest to
evaluate it in other pedoclimatic conditions and segmentation methods
to identify POM in 𝜇CT images.
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Appendix. Supplementary material

A.1. Segmentation

In this supplementary section we compare the multi-class image
obtained after the watershed local segmentation (Fig. 11c) to the raw
image (Fig. 11a) and the image segmented by the global Otsu’s segmen-
tation method (Fig. 11b). We observed that the global segmentation
systematically assigned POM+water class to the voxels bordering air-
filled pores, whereas the local segmentation method did not (see red
arrows in Figs. 11b and 11c which indicate false organic coatings in
the global segmented image).

A.2. 3D visualization of the 𝐺𝐷𝑃𝑂𝑀−𝑎𝑖𝑟

In Section 2.6.3 is explained how we computed the GDM. In order to
improve the comprehension of this concept, Fig. 12 presents a closeup
of the red square area drawn in Fig. 2 but embedded in a 3D space.
The air-filled pores (previously black in Fig. 2b are now represented in
blue; the values of the geodesic distances (earlier shown in gray colors
in Fig. 2) are now represented in a palette of colors from red to green,
where the redder the color, the greater its geodesic distance; and the
remaining voxels which can be soil matrix, minerals, but also interior
parts of the POM are now represented in black.
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