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Abstract

I estimate the relationship between income, the number of days of exposure to the four
main air pollutants and the proportion of ”cocktail days” with French municipal data
over the period 2012-2018. I find contrasting results between rural and urban areas.
The most affluent urban municipalities have on average a lower number of pollution
days compared to the poorest urban municipalities. In urban areas, the pollution days
are composed of an equal proportion of cocktail days between the poorest and the most
affluent municipalities. On the other hand, in the rural areas the better-off munici-
palities have on average a higher number of days of pollution, composed of more toxic
mixtures, compared to the poorer municipalities. I also show that the pollution levels
and the difference in the number of pollution days between the better-off and poorer

municipalities are higher in urban areas.
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1 Introduction

Exposure to air pollution has negative effects on health, productivity, cognitive performance
and educational outcomesﬂ. The overexposure of a part of the population to pollution thus
reduces its earning potential, challenges the principle of equal opportunity and increases
health inequalities. Quantifying environmental inequalities is important for determining
optimal environmental policies that take into account these equity concerns. In this paper,
I have two main objectives. First, to quantify the difference in air pollution exposure days
between the richest and poorest municipalities. Second, to assess inequalities in exposure to
air pollutant cocktails.

This study focuses on the four main pollutants identified by the World Health Organi-
zation (WHO) and regulated in France: fine particulate matter (PM2.5), PM10, nitrogen
dioxide (NO2) and ozone (O3). The health effects of these pollutants are widely docu-
mented (Deryugina et al., 2019; Knittel, Miller, and Sanders, 2016 |Anderson, 2020; |Moretti
and Neidell, 2011)) and each of them has a recommended concentration threshold defined by
the WHO. I evaluate the exposure to these pollutants because of their different origins and
spatial dispersion patterns, some of which are more urban and others rural . In
addition, exposure to these different pollutants can accumulate and form an even more toxic
mixtureEl. For these reasons, it is necessary to assess inequalities in exposure to the different
main pollutants, taking into account their simultaneous presence when measuring exposure.

I use French daily concentration data for these pollutants as well as socio-economic data at
the municipal level over the period 2012-2018. I exploit the daily availability of our pollution
data to construct a new exposure indicator measuring the number of days in the year for
which the concentration thresholds defined by the WHO for these pollutants are exceeded.
Exposure to pollutant cocktails is measured by the share of cocktail daysﬁ in the total number
of days for which at least one pollutant is above the thresholds. I use these indicators to
examine the relationship between municipal incomeﬁ, the number of pollution days and the

share of cocktail days among these pollution days. I examine these relationships in rural and

1See |Aguilar-Gomez et al| (2022) for a literature review. See |Anderson| (2020) and [Deryugina et al.
(2019) for a causal analysis of the effect of air pollution on mortality, |Carneiro, Cole, and Strobl (2021)
and [Ebenstein, Lavy, and Roth| (2016)) for a recent analysis of the consequences of pollution on educational
outcomes, (Graff Zivin and Neidell| (2012) and |Chang et al.|(2019) for an analysis of the effects of pollution
on productivity.

2Beyond the addition of risks induced by exposure to multiple pollutants, the mixture of pollutants can
also generate synergistic effects between pollutants and further increase the health risk. This cocktail effect
on health remains very poorly documented.

3i.e. days on which at least two pollutants are above the health thresholds.

4Measured through the standard of living: household disposable income divided by the number of con-
sumption units.



urban areas separately, on the one hand because these areas concentrate different types of
pollutants and on the other hand because the literature has already shown a heterogeneity
of results between these two areas. In all our main specifications, I control for the year fixed
effect and the regional fixed effect (département level).

I find contrasting results between rural and urban areas. I show that fine particulate
matter (PM2.5) and nitrogen dioxide (NO2) account a greater number of pollution days
compared to the other pollutants (PM10 and ozone) and they are highly concentrated in
urban areas. In urban areas, our results suggest that disadvantaged municipalities accumu-
late more days of exposure to fine particulate matter (PM2.5) and nitrogen dioxide (NO2),
all else being equal. In this area, a one standard deviation increase in income is associated
with a decrease of 8.57 nitrogen dioxide (NO2) pollution days and 2.3 fine particulate matter
(PM2.5) days on average over the year. In urban areas, the pollution days are composed of
an equal proportion of cocktail days on average between the poorest and richest municipal-
ities. In rural areas, the results are different. I show that the richest rural municipalities
accumulate more fine particulate matter (PM2.5), particulates PM10 and nitrogen dioxide
(NO2) pollution days compared to the least rich rural municipalities. However, the exposure
gap between rich and poor municipalities, other things being equal, is smaller compared to
urban areas. Pollution days have on average a significantly higher proportion of cocktail
days for affluent rural municipalities compared to disadvantaged municipalities.

This paper relates to the literature that measures environmental inequalities in exposure
to air pollutiorﬂ Many studies have shown the overexposure of the poorest and minorities
to air pollution in the US, there is less evidence in France and Europe. While most studies
consider only a limited number of pollutants for which exposure is measured in most cases
through the annual average concentration of the pollutant, I estimate for the first time
the unequal simultaneous exposure to air pollutants over the whole territory. I propose a
new method for assessing exposure to air pollution cocktails that can be applied in studies
evaluating the effects of air pollution exposure on multiple outcomes.

The rest of the paper is organized as follows. The following section presents the related
literature. Section III describes the data. Section IV presents our empirical strategy. Section

V presents the results, Section VI the robustness tests and the last section concludes.

®See Banzhaf, Ma, and Timmins| (2019b) for a review of the literature on measuring these inequalities
and analyzing the mechanisms of their formation.



2 Related Literature

In the US, areas with a higher proportion of minorities and disadvantaged people are exposed
to higher concentrations of fine particulate matter (PM2.5) (Jbaily et al.,2022)) and industrial
air pollutants (Ard, 2015). Mikati et al.| (2018) also find these results using fine particulate
matter emissions dataﬁ. The results differ depending on the level of data aggregationﬂ and the
area considered. Hsiang, Oliva, and Walker| (2019) show that the relationship between income
and nitrogen dioxide (NO2) exposure is positive at the Metropolitan statistical area (MSA)
level while it takes a U-shape at the census block level, the relationship becomes negative
when estimated within the MSA. Rosofsky et al.| (2018) use socio-demographic data at the
block group unit and concentrations data for fine particulate matter (PM2.5) and nitrogen
dioxide (NO2) in Massachusetts to assess environmental inequalities in rural and urban
areas. They show descriptive evidence that the poorest and minorities are more exposed to
pollution in urban areas, while in rural areas inequalities are lower. Finally, the extent of
exposure inequalities within regions varies across the US (Zwickl, Ash, and Boyce, 2014]).
Several studies have looked specifically at inequalities in exposure between ethnic groups in
the US. |Christensen, Sarmiento-Barbieri, and Timmins (2022) show that African American
or Hispanic tenants have a lower probability of response from homeowners in areas further
away from emission sources where the concentration of pollutants is lower. |Gillingham and
Huang (2021) show that air pollution from port activityﬁ disproportionately increases the
number of hospitalizations of African Americans. This is due to an overexposure of African
Americans but also a potential greater vulnerability. More generally, African Americans are
exposed to higher concentrations of fine particulate matter (PM2.5), PM10 and nitrogen
dioxide (NO2) compared to white Americans but this gap has narrowed in recent years
(Currie, Voorheis, and Walker, [2020; |[Kravitz-Wirtz et al.| 2016).

Several studies have also highlighted inequalities in exposure to air pollution in Europe.
Germani, Morone, and Testa| (2014) show an inverted U-shaped relationship between income
and industrial pollutant emissions at the level of Italian provinces. Neier| (2021)) uses socio-
economic data from a fine grid of the Austrian territory combined with industrial pollutant
emission data. He shows that a higher proportion of foreigners in the area is associated with
a higher exposure to pollution. Moreover, in urban areas the better-off are less exposed to

pollution while in rural areas the relationship is reversed.

6These studies used geographically fine-grained data at the ZIP code tabulation area (ZCTA) and census
block level.

"Banzhaf, Ma, and Timmins| (2019b) emphasize the importance of using the least aggregated data
possible to avoid the ecological fallacy problem.

8carbon monoxide (CO), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and sulfur dioxide
(S0O2).



In France, several evidence suggest the overexposure of the poorest and minorities to
air pollution and more particularly in urban areas. Our study is most closely related to
Champalaune (2021). She uses administrative data at the neighborhood level and annual
average estimates of fine particulate matter concentrations at a fine scale over the whole
French territory. She shows through an individual fixed effect model that within urban
and peri-urban areas, the poorest neighborhoods and those with a higher proportion of
migrants are more exposed to fine particulate matter. On the other hand, in rural areas,
areas with a lower share of migrants are more exposed and the relationship between income
and exposure is not significant. These estimates are robust to spatial autocorrelation (using
a model close to the SAR model, see empirical strategy section). [Laurian and Funderburg
(2014) show that towns with a higher share of migrants are more exposed to incinerators
in France. Ouidir et al| (2017) assess the exposure of pregnant women in France to three
air pollutants: fine particulate matter (PM2.5), particles PM10 and nitrogen dioxide (NO2).
The study shows that in urban areas the most disadvantaged women are more exposed to
the three pollutants, while in rural areas it is the most affluent and disadvantaged women
who are most exposed. Padilla et al.| (2014) use socio-economic data at the neighbourhood
level in 4 large French cities and show that the strength and direction of the link between
wealth, share of migrants and NO2 exposure can vary between citiesﬂ. Fosse, Salesse, and
Viennot| (2022) show descriptive evidence of a U-shaped relationship between fine particulate
matter (PM2.5) emissions and income of municipalities in France and an inverted U-shaped
relationship between ammonia (NH3) emissions and income.

Overall, in the US and Europe, there is an overexposure of the poorest and minorities
to air pollution. However, inequalities are more pronounced in urban areas. They are also
greater in some regions/cities. Most studies consider only a limited number of pollutants and
exposure is measured in most cases by the annual average concentration of the pollutant.
I estimate for the first time the inequality in exposure to pollutant cocktails, analysing
urban and rural areas separately. I also explicitly take into account the problem of spatial

autocorrelation in a series of robustness tests.

3 Data

I build a database at the communal level including about 30 000 French municipalities
over the period 2012—201@. I use PREV’AIR (INERIS) background pollution data as well

9The estimates account for spatial autocorrelation with a model similar to |Champalaune, (2021)).

100ver the period studied, several municipalities merged with each other. We have therefore retained
in the database the municipalities after the merger and excluded the data of the formerly autonomous
municipalities. In the pre-merger period, for the new communes resulting from the mergers, we aggregate
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as localized socio-economic data from the FILOSOFI (INSEE) database and the census
(INSEE) that I describe below.

3.1 Pollution data

I use the PREV’AIR air pollution data produced by INERIS for the four main regulated
pollutants: ozone (O3), nitrogen dioxide (NO2), fine particulate matter PM2.5 and PM10.
For each day of the year, I have the average concentration in micrograms per cubic meter of
air (ug/m?) of each of these pollutants in each of the 34,000 French municipalities over the
2012-2018 period.

These data are constructed using the CHIMERE pollutant transport simulation model.
From pollutant emission inventory data, sampling data, metrological data and other types of
input data, the model is able to predict pollution concentrations over the entire territory at a
fine scale. An additional statistical treatment based on real observations of concentrations is
then applied to the predictive outputs of the CHIMERE model allowing to further increase
the reliability of the concentration estimates. PREV air data are very reliable data available
on the whole French territory with a fine resolution of about 4km2.

Based on the reliability of the pollution concentration estimates and the daily availability
of our data, I calculate for each municipality the number of days in the year for which the
threshold defined by the WHO was exceeded for each of the 4 pollutants. I use the most
recent WHO thresholds (2021).

_ Fine particulate matter (PM2,5) : 15 ug/m? 24-hour average value

_ Coarse particles (PM10) : 45 pg/m? 24-hour average value

_ Nitrogen dioxide (NO2) : 25 ug/m? 24-hour average value

Concerning ozone (O3), the threshold recommended by the WHO is 100 ug/m?, maxi-
mum daily value of 8-hour rolling averages. I do not have measurements in 8-hour rolling
averages, so I define our threshold at 100 ug/m? 24-hour average value.

I choose to use the number of days for which the concentration of the pollutant is above
the WHO threshold as an exposure indicator. To our knowledge, this indicator has never
been used before and I argue that it improves the quality of the analysis. Indeed, I argue that
the overexposure to pollution of a part of the population is a problem insofar as this popula-
tion will suffer significant negative health consequences. Indeed, environmental inequalities
measured from the annual average concentration of the pollutant are not systematically as-
sociated with a significant increase in health risk for the most exposed population. If one

population is exposed to an average of 3 ug/m? of PM2.5 particles over the year and another

the data of the municipalities forming the future merger by averaging them in order to have in the database
only the municipalities newly formed by the merger over the entire period studied.



to 1 ug/m?3 of PM2.5 particles, in this case there is indeed an environmental inequality but
the health consequences for the overexposed population remain limited since neither group
exceeds the WHO threshold of 5 pg/m? annual average.

I argue that environmental inequalities must be considered in terms of the health conse-
quences they cause, and our indicator of the number of days above the thresholds allows us

to identify exposure gaps with significant health risks.

3.2 Cocktails

I exploit the daily availability of pollution data and the very high reliability of the estimates
to define several cocktails of pollutants. The objective is to identify the unequal exposure of
the municipalities to various mixtures of pollutants. For this purpose, for each municipality,
each day in the year for which the threshold of at least one pollutant is exceeded is classified
in one of the 15 possible "pure” mixtures. This method allows us to define 11 pure mixtures
without interaction with other pollutants (the pollutants of the considered mixture are above
the WHO thresholds and the other pollutants are below the thresholds) and 4 pure mono-
pollutant mixtures (only the considered pollutant is above the thresholds). I sum for each
year for each municipality the number of days that each mixture represents. From these
data I build an exposure indicator which measures the total number of pollution days of the
municipality in the year by adding all the pollution days of the 15 possible mixtures. I also
construct an exposure indicator to pollutant cocktails by calculating for each municipality
each year the share that each mixture represents in the total number of pollution days. I
also calculate the share of the ”cocktail” mixtures in the total number of pollution days.

shows the distribution of all pollution days in each of the possible groups. 62%
of the days above the WHO thresholds, for at least one pollutant, are days where only the
PM2.5 threshold is exceeded. 19% of the pollution days are a pure mixture of PM2.5 and
nitrogen dioxide (NO2), 6% pure nitrogen dioxide (NO2), 5% NO2 PM2.5 and PM10, 4%
03, 3% PM2.5 PM10 (see [Table 1| descriptive statistics).

3.3 Socio-economic data

I match pollution data with several types of socio-economic data. First, I use the FILOSOFI
database produced by INSEE, which contains a wide variety of indicators on available in-
come at the municipal level. The data are available for the years 2012 to 2018. Our main
indicator for measuring the wealth of a municipality is the median standard of living of
the municipality (the standard of living is the disposable household income divided by the

number of consumption units). Data on this indicator are available for almost all the mu-



nicipalities. I also mobilize other variables such as the poverty rate, the first decile and the
ninth decile of standard of living. However, data for these indicators are only available for
municipalities with more than 1000 households or more than 2000 inhabitants. I also use
many socio-economic indicators from INSEE census data such as the share of each socio-
professional category in the municipality or the share of women and men in the municipality,
the composition by age and type of household in the municipality (see descriptive

statistics).

3.4 Descriptive statistics

The richness of this study lies in the consideration of various forms of air pollution that
have different origins. The correlations show that the different pollutants are not
perfectly correlated with each other, so it is relevant to study these different forms of pollution
separately. The origin of the emissions of these four pollutants partly explains the imperfect
correlation between them. About half of the fine particulate matter come from residential
heating (wood heating is largely responsible for these emissions) and about a quarter from
road transport. The concentration of nitrogen dioxide in the air comes mainly from the road
sector and, to a lesser extent, from industry. PM10 emissions come from residential heating,
industry but also from construction sites which produce large particles. Ozone is not emitted
directly by human activities, it is formed by a chemical reaction between nitrogen oxides and
other components in interaction with solar radiation[]

The maps show the dispersion of the 4 pollutants over the whole French territory
in 2012 and 2018 (the same scale was used from one year to another). First, on average over
the period, pollution levels decreased for PM10, PM2.5 and nitrogen dioxide (NO2) but not
for ozone (see |[Figure 3 and |[Figure A.3|). Secondly, the geographical distribution of the four

pollutants at the national level and in rural and urban areas is not similar (which confirms
the relevance of studying exposure to these different pollutants without being limited to fine

particulate matter).

3.5 Aggregation level & ecological fallacy

The problem of the ecological fallacy is to erroneously infer a correlation at the individual or
higher level from a correlation obtained from more aggregated data. The way to avoid this
problem is to use the least aggregated data possible, but also to infer conclusions only at
the level of data aggregation. The PREV’AIR pollution data are background pollution data,
which means that although the resolution of the data is very fine, areas of high pollution that

1See www.airparif.asso.fr, fine particles, origin and sources of pollution, Fine particles — Airparif.



are very localized, such as areas with heavy road traffic, have very smoothed concentration
levels.

I argue that the level of aggregation of our data at the municipality level is the most
relevant for our study, whose objective is to investigate unequal exposure to national back-
ground pollution at the municipality level. The municipality level of our data allows to take
into account part of the exposure to pollution when individuals move close to their home
(to work for example). The municipal level is suitable for background pollution data, as the
concentration of background pollutants is homogeneous over most municipalities. There is
a finer level of administrative division (IRIS) adapted to very localized pollution data but
which is not however adapted to our study devoted to background pollution. The French
municipalities are very numerous (more than 30 000) and form a fine grid of the French

territory allowing to avoid the problem of ecological fallacyEl

4 Empirical strategy

4.1 Specification

I estimate the following fixed-effects linear regression model for municipality c, in département

(region) d in year t, in each of the sub-samples of urban and rural municipalities.

Yeat = BTear + OZear + Ad + o + €car (1)

Yeqr 18 the number of days in year t in municipality ¢ of department d for which the
concentration levels of the pollution considered exceeded the WHO health threshold. .4 is
the median standard of living in the municipality. The vector z.4 includes a set of control
variables such as the share of the population belonging to each socio-professional category,
the share of women and men, the share of each age group, the share of each type of household.
The regressions include département oy and year \; fixed effects. I cluster standard errors
at the département leveﬂ I estimate this model in each of the 6 types of rural or urban
communes defined by INSEE on the basis of the density of the municipality and its attraction

to a pole. I also estimate this model at the national level in the appendix.

12Many studies on environmental inequality in the United States have used more aggregated data at the
county level, which is equivalent to the French département.

13The traditional justification for clustering standard errors is to account for the correlation of residuals
within département. [Abadie et al.| (2022)) propose a new framework in which clustering is justified by two
parameters: sampling and treatment design. In our case, only the treatment design is important since
we have the full set of available data. Since income is partially correlated within departments, the robust
standard errors (Eicker-Huber-White) are too small and the clustered standard errors at the department
level too large (conservative). We prefer clustering to minimize the risk of bias.



I estimate this fixed-effect model to identify the correlation between the wealth of munic-
ipalities and their level of exposure to pollution, holding socio-demographic characteristics,
department and year constant. This specification deliberately does not resolve the potential
reverse causality of the income-pollution relationship. Indeed, environmental inequalities
can be formed either by a variation in the wealth of the municipalities inducing a variation
in pollution levels, or by the opposite phenomenon. The objective of this study is to iden-
tify environmental inequalities as they currently exist and not to identify the mechanism of
formation. Identifying the causal effect of wealth on pollution is therefore not the objective
of this paper.

To estimate the relationship between income and pollution, I exploit the variation within
different geographical areas at different time periods in pollution levels and income of the
municipalities while controlling for their socio-economic characteristics. I do not include mu-
nicipality fixed effects because the objective is not to study the mechanism by which income

variations influence pollution or vice versa or both at the same time within municipalities.

4.2 Spatial autocorrelation

I argue in this section that our fixed-effects model must account for the spatial dependence
of our observations. Air pollution propagates continuously through space in a non-random
manner . As a result of this spatial dependence or spatial autocorrelation, OLS
estimation can be either inefficient or biased. To gauge the importance of this problem, I
perform a series of tests on our OLS estimates.

There are 3 main specifications to account for different types of spatial interactions with
panel data, the Spatial Error Model (SEM), the spatial autoregressive model (SAR) and the
Durbin model which is a combination (Bouayad Agha, Le Gallo, and Vedrine} 2018)).

To determine which of these models to use, I perform a Lagrange multiplier test on the
residuals of the OLS model for error dependence (LM-error) and for the presence of the spa-
tially lagged dependent variable in the model (LM-lag)(Anselin et al., [1996)). I also perform
the robust version of these tests to the presence of the other type of spatial relationship.

Depending on the results of the tests I estimate the SEM or SAR models (see appendix
details). The SAR model reduces the bias of the OLS estimates while the SEM model has
an impact on the efficiency of the model. These models are estimated by the maximum

likelihood (ML) method with fixed effectd™]

14Splm package on R.



5 Results

5.1 Income and number of days of exposure to pollutants

I estimate the relationship between income and the number of days of exposure to the pol-
lutants in the rural and urban areas in [lable 3 The poorest dense urban municipalities
accumulate on average significantly more days of fine particulate matter (PM2.5) and nitro-
gen dioxide (NO2) pollution compared to the better-off municipalities, all else being equal.
The increase of one standard deviation[”|in income is associated with a decrease of 8.57 days
of pollution for nitrogen dioxide (NO2) and 2.3 days for fine particulates (PM2.5) over the
year. It seems that income is not significantly related to the level of PM10 and ozone (O3)
pollution in this area. In urban municipalities with intermediate densities, no coefficient of
income is significant for the 4 pollutants. In rural areas, income is significantly positively
related to nitrogen dioxide (NO2), fine particulates (PM2.5) and PM10 pollution. Ozone
level seems to be unrelated to income.

One additional standard deviation of income in rural areas under weak influence of a pole
is associated with an increase of 3.68 days of nitrogen dioxide (NO2) pollution and 0.89 days
of PM2.5 pollution and 0.32 days for PM10 on average. In sparsely populated rural areas,
the number of additional days for nitrogen dioxide (NO2), fine particulate matter (PM2.5),
and PM10 per standard deviation of income is on the order of 2.29 , 0.97 , and 0.29 days on
average.

Finally, I also evaluate the link between the wealth of the municipalities and the number
of days for which the threshold for at least one of the four pollutants is exceeded (ALL
column). The results are similar to the previous results. One additional standard deviation
of income is associated with a decrease of on average 8.25 days with at least one pollutant
above the thresholds in dense urban areas and an increase of 1.57 days in sparsely populated
rural areas.

shows that fine particulate matter (PM2.5) and nitrogen dioxide (NO2) are
the pollutants for which the number of days above the thresholds is the highest and these
pollutants are concentrated in urban areas (very largely for NO2). I also note that among
rural municipalities, the most afluent municipalities are more exposed to PM2.5, PM10 and
nitrogen dioxide (NO2). The concentration of these 3 pollutants in rural areas is on average
lower compared to urban areas .

It should also be noted that the magnitude of exposure inequalities in terms of additional

days of pollution per standard deviation of income is higher in urban municipalities. Not

15Calculated on the sub-sample.
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only is pollution much higher in terms of level in urban municipalities, but the exposure gap
is also larger in urban areas.

The literature developed mainly in the United States has identified mechanisms that can
explain the inequalities in exposure to nitrogen dioxides (NO2) and fine particulate matter
(PM2.5) that are observed in urban areas. Environmental inequalities can be explained
both by the location choice of inhabitants, the location choice of polluting firms and a
combination of both (Banzhaf, Ma, and Timmins| |2019a)). Wealthier people are more willing
to pay the price of not living in polluted municipalities (Banzhaf and Walsh| 2008). Highly
imperfect household information on pollution also promotes exposure inequalities (Hausman
and Stolper, 2021). Polluting firms may also choose to locate disproportionately in or near
less affluent municipalities (Banzhaf, Ma, and Timmins| 2019b)).

The relatively small difference in pollution levels that I find between the better-off and
poorer municipalities in rural areas can theoretically be explained by both the level of eco-
nomic activity and the specialization of the municipalities. The rural population is divided
into two types of municipalities, the densely populated municipalities that concentrate the
most economic activity and the less densely populated municipalities that concentrate less
economic activity. Dense municipalities have higher incomes than less dense municipalities,
but also higher levels of pollution, both of which are partly explained by the higher economic
activity (see annex for correlations between municipality density, income, economic activity
and pollution,

Like rural municipalities, the densest urban municipalities have the highest economic
activity and the highest pollution levels. However, the densest urban municipalities have
lower incomes than the less dense urban municipalities (see figure . In urban
municipalities, the better-off are located in the less dense and less polluted municipalities,
while in rural municipalities they are located in the dense municipalities where economic
activity and pollution are higher.

The origin of the pollutants may partly explain the non-significant results for ozone.
Indeed, ozone, unlike other pollutants, is a so-called "secondary” pollutant, i.e. it is not
directly emitted into the atmosphere but results from chemical transformations influenced
in particular by solar radiation. This may explain the absence of a significant relationship
with income, as ozone is determined more by meteorological than socio-economic variables
(the relationship has the lowest R? compared to other pollutants).

In this section I have highlighted several results. Firstly, the 4 pollutants studied do
not represent the same amount of days above their respective thresholds. Fine particulate
matter (PM2.5) and nitrogen dioxide (NO2) have very high average levels in urban areas

of around 100 and 117 days respectively over the period. PM10 and ozone (O3) have a
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maximum average of 13 and 5 days in the areas with the highest values. I have highlighted
the significant negative relationship between income and exposure to PM2.5 and nitrogen
dioxide (NO2) in urban areas (these areas being the most polluted for these pollutants).
Conversely, I find a significant positive relationship between income and PM2.5, PM10 and
nitrogen dioxide (NO2) pollution in rural areas. However, the average difference in exposure
days according to income is greater in urban areas than in rural areas. The high level of
pollution and the large exposure gap to the detriment of the less well-off in urban areas

should lead to the implementation of policies to reduce pollutant emissions in these areas.

5.2 Unequal exposure to pollutant cocktails

The toxic effect of a pollutant can be multiplied in the presence of other pollutants, which may
explain the differences in toxicity between different mixtures. Nevertheless, the interaction
effects of pollutants on health are still poorly understood. To our knowledge, no study has
assessed the toxicity associated with each mixture of air pollutants.

In this section, I define for the first time the share of multi-pollutant days compared to
single-pollutant days. The impact of air pollution on health depends both on the number of
days of exposure to pollutants and on the composition of these pollution days. Some mixtures
of pollutants are more harmful than others, what share does each mixture of pollutants
represent in the pollution days? In the first part of the analysis, I assessed the link between
income and the number of exposure days. In this part, I will assess the link between income
and the composition of pollution days.

As described in the data section, each pollution day is associated with one of 15 possible
mixtures. The variables I used previously to estimate the pollution-income relationship are
a simple measure of the number of days above the threshold for the pollutant of interest,
across all mixtures. However, cocktails represent a significant number of days .

shows the average share of each mixture in the total number of days with
at least one pollutant above the threshold at the national level and in urban and rural
areas. According to these estimates, at the national level, on average 25% of the days
with one pollutant above the threshold, the threshold of at least one other pollutant is also
exceeded in the municipalities . The cocktail that represents the largest share is the
mixture of PM2.5 and NO2. It represents on average 17% of the total pollution days. The
composition of the pollution days varies between rural and urban areas. In dense urban areas
43% of pollution days are cocktail days compared to 34.6% in intermediate density urban
municipalities and 23.5% in rural areas on average. Nitrogen dioxide, a very urban pollutant

has a higher share in pure and mixed form in the pollution days of urban municipalities. The
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fine particulate matter PM2.5 are also a very present pollutant in the urban municipalities
which favor the mixture with nitrogen dioxide. Fine particulate matter are also present in
rural municipalities but not nitrogen dioxide which is much less present.

I have just shown that our measure of exposure to a pollutant in terms of the number
of days above the threshold is composed of a significant proportion of ”cocktail days”. The
shares of each mixture in the total number of pollution days that I have estimated in Figure
4 are averages. Some municipalities may therefore have a higher or lower share of cocktail
days than the average.

presents the results in each of the ruralﬂ and urban areas. I use Z-score on
the income variable to facilitate interpretation of the coefﬁcientsEl. The composition of
pollution days can be influenced by the number of pollution days in the municipality. Since
income is related to the number of pollution days, I add it as a control variable to avoid
an omitted variable bias. I also include all control variables and fixed effects from previous
regressions. In dense and intermediate density urban areas, the share of cocktail days is
on average similar between poor and more affluent municipalities. In contrast, among rural
municipalities, wealthier municipalities have a significantly higher share of cocktail days on
average. One additional standard deviation of income is associated with a 1.75 percentage
point increase in the cocktail share.

To investigate these results further, I now evaluate the relationship between income and
the share of each of the major mixtures (those with a significant share, see rep-
resents. I calculate the share that each mixture represents in the total number of pollution
days. [lable 5| shows a non-significant relationship between the richness and the share of
each mixture in urban areas. This result is consistent with our previous results. The pollu-
tion composition between rich and poor municipalities is on average similar in urban areas.
Table 5| shows which mixes are related to income in rural areas. On average in this area,
the pollution days in the richer municipalities are composed of a significantly lower share
of pure fine particulate matter (PM2.5) and a higher share of a mixture of nitrogen dioxide
(NO2) and fine particulate matter (PM2.5) , nitrogen dioxide (NO2), fine particulate matter
(PM2.5) and PM10 but also pure nitrogen dioxide (NO2). One additional standard devia-
tion of income is associated with an average decrease of 2.8 percentage points in the share
of pure fine particulate matter and an increase of 1.5 points in the share of NO2 PM2.5, 0.2
points in NO2 PM2.5 PM10 and 1 point in pure NO2.

In the wealthy rural areas the nitrogen dioxide (NO2) takes a more important place in

16The results are similar in the different types of rural areas (as in the first part), so we consider the rural
municipalities as a whole.

I"The variable is standardized at the national level, which implies that the standard deviation of the
variable in the subsamples is not equal to one.
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pure and mixed form compared to the poor areas. As I have shown, in this area the better-
off accumulate more nitrogen dioxide (NO2) pollution days and the coefficient is the most
important compared to the other pollutants (Table 3)). This surplus of NO2 is associated
with a change in the composition of pollution days.

As NO2 is a pollutant from urban emissions, this result is consistent with our theoretical
explanation of the overexposure of the better-off in rural areas. Affluent rural municipalities
are denser and more urban, concentrating more economic activity favoring the formation of
NO2, in a proportion nevertheless much lower than urban areas (see appendix the correlations
between density of the municipalities, income, economic activity and composition of the
pollution |[Figure A.5)).

Overall, among urban municipalities, pollution days have on average the same compo-
sition in the poorest and most affluent municipalities. On the other hand, in rural areas,

pollution days are composed of a larger share of cocktail days in the better-off municipalities.

6 Robustness

6.1 Measures of wealth

Income is more heterogeneous in urban municipalities compared to rural municipalities. The
median standard of living is a good socio-economic indicator, but information about the top
and bottom of the standard of living distribution is lost, particularly in urban municipalities.
I use a set of data on the poverty rate, the first and ninth decile of the standard of living,
the share of social benefits in income and the share of income from assets in the total
income of the municipality. These data from the FILOSOFI database are only available
for municipalities with more than 1,000 households or more than 2,000 people, a condition
met by almost 100% of dense urban municipalities and 66% of intermediate density urban
municipalities.

reports the results for the subsample of dense urban municipalities. Each coef-
ficient is associated with a regression. The coefficients for the poverty rate, the first decile
and the share of assets in income are highly significant for nitrogen dioxide (NO2), partic-
ulate matter (PM2.5) and for the measurement of days with at least one pollutant above
the threshold. The direction and significance of these coefficients point to an inequality of
exposure to the disadvantage of the poorest for nitrogen dioxide (NO2) and PM2.5 particles,
which confirms our previous results. PM10 and ozone (O3) have non-significant coefficients
which further affirms our previous results.

Table 7| presents the results for the subsample of intermediate density urban municipali-
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ties. The vast majority of the coefficients are insignificant in accordance with our previous
estimates, with the exception of ozone (O3). Ozone (O3) appears to be more concentrated
in the more affluent intermediate density urban municipalities. Estimation by new wealth
indicators generally supports our results with the exception of ozone (03).

Table 8 shows the results for the cocktail share in urban municipalities. No coefficients

are significant for all wealth measures which confirms our results.

6.2 Spatial autocorrelation

In this section I explicitly take into account spatial autocorrelation in our estimates. First,
as described in the empirical strategy section, I perform a series of tests on the residuals
of our OLS estimates. For each regression performed on each subsample the results are

able 9 For computational reasons I perform the tests on the error term of the national
regression taking data only for the year 2018, (the number of municipalities at the national
level is very large which requires many computational resources). The test results for each
year are similar to the year 2018 (results not shown). For the same reason of computational
limitation, I do not perform the tests on the errors of the subsample of sparsely populated
rural municipalities (which has the most municipalities among the subsamples).

I begin by performing a Moran test on the error terms of the national estimates (these
regressions are weighted by the population of each municipality, see appendix). For all
specifications I reject the hypothesis of no spatial autocorrelation of the error terms. The
Moran test allows us to formally confirm the presence of spatial autocorrelation, the following
tests allow us to identify the spatial model best suited to our specifications. The results of the
LM-error and LM-lag tests on the different fixed effects models do not allow us to decide in
favor of a particular model, I reject the null hypothesis of both tests. On the other hand, the
robust version of these tests leads us to favor the implementation of a spatially autocorrelated
error model (SEM). This model consists in estimating a spatial autocorrelation parameter in
the error term (see appendix E). I can already conclude from the results of these tests that the
majority of our specifications estimated by OLS are not biased because of autocorrelation,
but they are less efficient.

By specifying the SEM model I model the spatial correlation of errors as being caused by
the spatial correlation of variables affecting pollution levels but which are not correlated with
the independent variables in our model. Meteorological variables are a plausible explanation
for these spatial relationships in our error term. The results of the SEM model estimates
are presented in The spatial autocorrelation coefficients p are positive and highly

significant. The SEM model estimates support our previous results.
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7 Conclusion

The health risk associated with exposure to air pollution depends on the time of exposure
but also on the toxicity of the pollutants. In this study, I evaluate the relationship between
income, the number of days of exposure to air pollutants and the relationship between income
and the composition of these pollution days.

First, I showed that urban areas concentrate the most days of fine particulate matter
(PM2.5) and nitrogen dioxide (NO2) pollution. Among the dense urban municipalities, the
poorest are significantly overexposed to these two pollutants in terms of number of days,
all other things being equal. In urban area, income is not related to the number of PM10
and ozone (O3) pollution days. The share of cocktail days is on average similar between the
poorest and the most affluent municipalities in the urban area.

In rural areas, the most affluent municipalities accumulate more PM2.5, PM10 and nitro-
gen dioxide (NO2) pollution days, all else being equal. However, rural areas are less polluted
and the exposure gap between affluent and disadvantaged municipalities is smaller compared
to urban areas. Among rural municipalities, the most affluent municipalities have on average
a significantly higher share of cocktail days.

I showed in this paper the high concentration of pollutants in urban areas and the im-
portant overexposure of the poorest within these areas. Several studies have shown the
vulnerability of the poorest to air pollution (Deguen et al., 2015 [Morelli et al., 2016; Hsiang,
Oliva, and Walker|, 2019; |Deryugina et al |2021)) which reinforces the need to prioritize the
implementation of public policies to reduce pollution in urban areas and particularly in the
poorest urban areas. It is also necessary to take environmental justice into account in public
policies aimed at reducing pollution so as not to further reinforce inequalities in exposure.
For example, recently in Paris, the closure of roads has created a phenomenon of displace-
ment of road traffic on roads close to the homes of the poorest and therefore increased the
pollution exposure of this population (Bou Sleiman, 2022)). Thus, although pollution levels
have tended to decrease in France in recent years, public policies aimed at reducing pollution

must also take into account the distributional aspect.
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Tables

Table 1: Descriptive statistics

Statistic N Mean St. Dev. Min Max
Pollutions

03 217,889  4.375 5.324 0 53

NO2 217,889  26.554 29.645 0 325
PM25 217,889  77.409 31.645 0 279
PM10 217,889  6.854 7.019 0 61

ALL 217,889  85.941 35.314 5 331
Cocktails

Pure PM2.5 217,889  52.623 20.848 0 194
Pure NO2 217,889  5.357 12.308 0 210
Pure O3 217,889  3.162 4.746 0 50

NO2 PM2.5 217,889  16.736 16.528 0 167
NO2 PM2.5 PM10 217,889  4.436 5.472 0 55

PM2.5 PM10 217,889  2.407 2.959 0 20

PM2.5 O3 217,889  1.184 1.923 0 23

Social variables

Median standard of living 217,681 20,770  3,016.255 9,958 53,500
poverty rate (60 % threshold) 30,667  13.219 6.417 1.000 54.000
share of social benefits 36,145 5.137 2.567 0.400 27.800
first decile 36,145 12,235 1,975 6,153 21,800
ninth decile 36,145 36,497 8,370 21,863 145,730
share of income from assets 36,145 10.235 4.685 2.100 74

Control variables

other household without family percentage 217,840  0.018 0.024 0.000 0.273
household 1 person percentage 217,840  0.275 0.078 0.000 0.667
household with family with child percentage 217,840  0.311 0.089 0.000 0.700
household with single-parent family percentage 217,840  0.071 0.045 0.000 0.455
household with family without children percentage 217,840  0.324 0.067 0.000 0.727
pop 0 14 percentage 217,840  0.184 0.041 0.000 0.364
pop 15 29 percentage 217,840  0.137 0.032 0.000 0.525
pop 30 44 percentage 217,840  0.188 0.037 0.023 0.382
pop 45 59 percentage 217,840  0.178 0.049 0.010 0.545
pop 60 74 percentage 217,840  0.178 0.049 0.010 0.545
pop 75 89 percentage 217,840  0.086 0.037 0.000 0.441
pop 90 plus percentage 217,840  0.010 0.010 0.000 0.179
pop femme percentage 217,840  0.501 0.022 0.242 0.711
inactive percentage 217,840  0.244 0.050 0.030 0.743
unemployed percentage 217,840  0.079 0.031 0.000 0.465
intermediate profession percentage 217,837  0.163 0.067 0.000 0.625
employee percentage 217,837  0.181 0.058 0.000 0.683
management and intellectual profession percentage 217,837  0.071 0.055 0.000 0.538
artisans business owners percentage 217,837  0.053 0.039 0.000 0.480
farmers percentage 217,837  0.038 0.055 0.000 0.609
worker percentage 217,837  0.171 0.074 0.000 0.697
sparsely populated autonomous rural area 217,868  0.251 0.434 0 1
very sparsely populated autonomous rural area 217,868  0.180 0.384 0 1
rural under weak influence of a pole 217,868  0.217 0.412 0 1
rural under strong influence of a pole 217,868  0.219 0.414 0 1
dense urban 217,868 0.025 0.155 0 1
urban intermediate density 217,868  0.108 0.310 0 1
weighting

population scale 217,840  0.128 0.992 0.004  139.530

20



Table 2: correlations between pollutants

NO2 PM25 PMI10 O3
NO2 1
PM2.5  0.569 1
PM10  0.570 0.696 1
03 -0.094  -0.124  -0.220 1

Note: Data from the period 2012-2018 are
used. Variables are number of days of pol-
lution in the year in each municipality.

Table 3: Income and number of pollution days in rural and urban areas

ALL NO2 PM25 PM10 03
1) 2) (3) (4) (5)
DENSE URBAN
Income —0.002**  —0.002**  —0.0005***  —0.00003  —0.00000
(0.001) (0.001) (0.0002) (0.0001) (0.00004)
Observations 5,362 5,362 5,362 5,362 5,362
R? 0.792 0.794 0.815 0.822 0.651
URBAN INTERMEDIATE DENSITY
Income 0.0002 0.001 —0.0002 —0.00003 0.00003
(0.0005) (0.001) (0.0002) (0.0001) (0.0001)
Observations 23,471 23,471 23,471 23,471 23,471
R? 0.790 0.683 0.809 0.707 0.614
RURAL UNDER STRONG INFLUENCE OF A POLE
Income 0.001** 0.002** 0.001** 0.0001**  —0.00001
(0.0001) (0.0002) (0.0001) (0.00002)  (0.00002)
Observations 47,721 47,721 47,721 47,721 47,721
R? 0.828 0.728 0.847 0.734 0.597
RURAL UNDER WEAK INFLUENCE OF A POLE
Income 0.001*** 0.001** 0.0003** 0.0001*** —0.0001
(0.0002) (0.0003) (0.0001) (0.00003) (0.0001)
Observations 47,094 47,094 47,094 47,094 47,094
R? 0.842 0.727 0.842 0.717 0.612
SPARSELY POPULATED AUTONOMOUS RURAL AREA
Income 0.001*** 0.001** 0.0005** 0.0001** 0.00002
(0.0002) (0.0003) (0.0002) (0.00003) (0.0001)
Observations 54,681 54,681 54,681 54,681 54,681
R? 0.832 0.710 0.828 0.712 0.588
VERY SPARSELY POPULATED AUTONOMOUS RURAL AREA
Income 0.0004**  0.0004*** 0.0003** 0.0001*** 0.00002
(0.0001) (0.0001) (0.0001) (0.00003)  (0.00005)
Observations 38,988 38,988 38,988 38,988 38,988
R? 0.870 0.746 0.875 0.685 0.601
Département dummies Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
controls Yes Yes Yes Yes Yes

Note: Table reports OLS estimates of equation (1) in each of the sub-samples of urban and rural municipalities. The dependent variable is
the number of days in the year for which the health threshold concentration (WHO) of the considered pollutant is exceeded. The dependent
variable ALL is the number of days in the year when at least one of the pollutants exceeds its respective threshold. Robust standard errors

are clustered at the local département level. *p<0.1; **p<0.05; ***p<0.01
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Table 4: Income and share of cocktail days in rural and urban areas

Share of cocktail days
DENSE URBAN URBAN INTERMEDIATE DENSITY RURAL

(1) 2) 3)

Income 0.002 0.005 0.019**

(0.002) (0.005) (0.003)
Number of pollution days 0.0001 0.001*** 0.001**

(0.0002) (0.0002) (0.0002)
Département dummies Yes Yes Yes
year dummies Yes Yes Yes
controls Yes Yes Yes
Observations 5,362 23,471 188,484
R? 0.742 0.744 0.752

Note: Table reports OLS estimates in each of the sub-samples of urban and rural municipalities. The
dependent variable is the the share of cocktail days (days with at least two pollutants above the health
thresholds) among pollution days (at least one pollutant above its health threshold). I use Z-score on the
income variable to facilitate the interpretation of the coefficients. Robust standard errors are clustered
at the local departement level. *p<0.1; **p<0.05; ***p<0.01

Table 5: Income and share of mixture in total pollution days

Share of mizture in total pollution days

PM2.5 NO2 PM2.5 PM2.5 PM10 PM2.503 NO2 PM2.5 PM10 NO2 03
(1) 2) () (4) () (6) (7)
DENSE URBAN
Income —0.005 0.004 —0.0005* —0.001 —0.001 0.003 —0.00005
(0.004) (0.003) (0.0003) (0.0005) (0.001) (0.004) (0.001)
Observations 5,362 5,362 5,362 5,362 5,362 5,362 5,362
R? 0.809 0.637 0.524 0.346 0.760 0.850 0.651
URBAN INTERMEDIATE
Income —0.011 0.005 0.0003 0.0001 —0.001 0.006 0.001
(0.007) (0.005) (0.0002) (0.001) (0.001) (0.005) (0.002)
Observations 23,471 23,471 23,471 23,471 23,471 23,471 23,471
R? 0.687 0.701 0.539 0.380 0.650 0.601 0.648
RURAL
Income —0.031*** 0.017** 0.0002 —0.0001 0.002** 0.011** 0.0002
(0.003) (0.002) (0.0003) (0.0002) (0.001) (0.002) (0.002)
Observations 188,484 188,484 188,484 188,484 188,484 188,484 188,484
R? 0.664 0.706 0.573 0.371 0.658 0.505 0.635
Département dummies Yes Yes Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes Yes Yes
controls Yes Yes Yes Yes Yes Yes Yes
Number of pollution days Yes Yes Yes Yes Yes Yes Yes

Note: Table reports OLS estimates in each of the sub-samples of urban and rural municipalities. The dependent variable is the the share
of the mixture (days when the pollutant(s) in the mixture are above the thresholds but no other pollutant exceeds its threshold) among
pollution days (at least one pollutant above its health threshold). I use Z-score on the income variable to facilitate the interpretation of the
coefficients. Robust standard errors are clustered at the local departement level. *p<0.1; **p<0.05; ***p<0.01
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Table 6: Robustness checks : economic indicators in dense urban area (number of pollution
days)

DENSE URBAN

NO2 PM25 PM10 03 ALL
(1) (2) (3) (4) (5)
poverty rate 1.375%* 0.231* 0.049 —0.020 1.227%*
(0.453) (0.135) (0.039) (0.016) (0.357)
Observations 5,129 5,129 5,129 5,129 5,129
R? 0.799 0.813 0.821 0.648 0.797
first decile —0.006***  —0.001*** —0.0001 0.00004 —0.005**
(0.002) (0.0003) (0.0001) (0.00005) (0.002)
Observations 5,267 5,267 5,267 5,267 5,267
R? 0.798 0.814 0.821 0.649 0.797
ninth decile —0.0003 —0.0001 —0.00002  —0.00000 —0.0003
(0.0002) (0.0001) (0.00002)  (0.00002) (0.0002)
Observations 5,267 5,267 5,267 5,267 5,267
R? 0.794 0.814 0.821 0.649 0.793
share of social benefits —1.117 0.172 0.077 0.007 —0.566
(0.897) (0.331) (0.105) (0.049) (0.620)
Observations 5,267 5,267 5,267 5,267 5,267
R? 0.794 0.813 0.821 0.649 0.792
share of income from assets  —0.751** —0.368"* 0.036 0.022 —0.679"*
(0.348) (0.163) (0.107) (0.021) (0.191)
Observations 5,267 5,267 5,267 5,267 5,267
R? 0.795 0.814 0.821 0.649 0.793
Département dummies Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
controls Yes Yes Yes Yes Yes

Note: Table reports OLS estimates of equation (1) in the dense urban sub-sample. The dependent
variable is the number of days in the year for which the health threshold concentration (WHO) of
the considered pollutant is exceeded. The dependent variable ALL is the number of days in the
year when at least one of the pollutants exceeds its respective threshold. Robust standard errors
are clustered at the local departement level. *p<0.1; **p<0.05; *p<0.01
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Table 7: Robustness checks : economic indicators in urban intermediate density area (number
of pollution days)

URBAN INTERMEDIATE DENSITY

NO2 PM25 PM10 03 ALL
1) (2) (3) (4) (5)

poverty rate 0.055 —0.103 0.016 —0.061** —0.072

(0.212) (0.145) (0.036) (0.029) (0.174)

Observations 13,175 13,175 13,175 13,175 13,175
R? 0.711 0.813 0.715 0.599 0.808

first decile —0.0001 0.0001 —0.0001 0.0001 0.00003

(0.001) (0.0004) (0.0001) (0.0001) (0.001)

Observations 15,490 15,490 15,490 15,490 15,490
R2 0.712 0.812 0.715 0.600 0.803

ninth decile 0.0001 —0.0002**  —0.0001*** 0.00003 0.00001

(0.0003) (0.0001) (0.00002) (0.00003)  (0.0002)

Observations 15,490 15,490 15,490 15,490 15,490
R2 0.712 0.813 0.716 0.600 0.803
share of social benefits —0.124 0.777* 0.160 —0.189** 0.115

(0.596) (0.400) (0.119) (0.090) (0.512)

Observations 15,490 15,490 15,490 15,490 15,490
R? 0.712 0.813 0.716 0.600 0.803
share of income from assets 0.151 —0.109 0.002 —0.023** 0.035

(0.096) (0.072) (0.031) (0.012) (0.077)

Observations 15,490 15,490 15,490 15,490 15,490
R? 0.712 0.812 0.715 0.600 0.804
Département dummies Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
controls Yes Yes Yes Yes Yes

Note: Table reports OLS estimates of equation (1) in the urban intermediate density sub-sample.
The dependent variable is the number of days in the year for which the health threshold con-
centration (WHO) of the considered pollutant is exceeded. The dependent variable ALL is the
number of days in the year when at least one of the pollutants exceeds its respective thresh-
old. Robust standard errors are clustered at the local departement level. *p<0.1; **p<0.05;
**p<0.01
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Table 8: Robustness checks : economic indicators in urban intermediate density area (share
of cocktail days)

Share of cocktail days
DENSE URBAN URBAN INTERMEDIATE DENSITY

(1) (2)
poverty rate —0.0004 —0.0001
(0.001) (0.001)
Observations 5,129 13,175
R? 0.741 0.754
first decile 0.00000 0.00000
(0.00000) (0.00000)
Observations 5,267 15,490
R? 0.741 0.761
ninth decile 0.00000 0.00000
(0.00000) (0.00000)
Observations 5,267 15,490
R? 0.741 0.761
share of social benefits 0.001 0.0003
(0.001) (0.002)
Observations 5,267 15,490
R? 0.741 0.761
share of income from assets —0.0002 0.0001
(0.001) (0.001)
Observations 5,267 15,490
R? 0.741 0.761
Département dummies Yes Yes
year dummies Yes Yes
controls Yes Yes
Number of pollution days Yes Yes

Note: Table reports OLS estimates in each of the sub-samples of dense urban and urban
intermediate density municipalities. The dependent variable is the the share of cocktail days
(days with at least two pollutants above the health thresholds) among pollution days (at least
one pollutant above its health threshold). Robust standard errors are clustered at the local

departement level. *p<0.1; **p<0.05; **p<0.01
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Table 9: Tests of spatial auto-correlation (p-value)

Test Moran

Test LM-Error

Test LM-Lag

Test Robust LM-Error

Test Robust LM-Lag

NO2

National (2018) 0.000 0.000 1 0.000 1
Very sparsely populated autonomous rural area 0.000 0.000 0.000 0.003
Rural under weak influence of a pole 0.000 0.000 0.000 0.1279
Rural under strong influence of a pole 0.000 0.000 0.000 0.663
Dense urban 0.000 0.002 0.000 0.7633
Urban intermediate density 0.000 0.000 0.000 0.2936
PM25

National (2018) 0.000 0.000 1 0.000 1
Very sparsely populated autonomous rural arca 0.000 0.000 0.000 0.160
Rural under weak influence of a pole 0.000 0.000 0.000 0.9745
Rural under strong influence of a pole 0.000 0.000 0.000 0.572
Dense urban 0.000 0.000 0.000 0.7394
Urban intermediate density 0.000 0.000 0.000 0.0349
PM10

National (2018) 0.000 0.000 1 0.000 1
Very sparsely populated autonomous rural area 0.000 0.000 0.000 0.546
Rural under weak influence of a pole 0.000 0.000 0.000 0.4273
Rural under strong influence of a pole 0.000 0.000 0.000 0.8724
Dense urban 0.000 0.000 0.000 0.3276
Urban intermediate density 0.000 0.000 0.000 0.3208
03

National (2018) 0.000 0.000 1 0.000 1
Very sparsely populated autonomous rural area 0.000 0.000 0.000 0.011
Rural under weak influence of a pole 0.000 0.000 0.000 0.002
Rural under strong influence of a pole 0.000 0.000 0.000 0.004
Dense urban 0.000 0.000 0.000 0.07969
Urban intermediate density 0.000 0.000 0.000 0.4042
Share of cocktail

National (2018) 0.000 0.000 1 0.000 1
Very sparsely populated autonomous rural area 0.000 0.000 0.000 0.3973
Rural under weak influence of a pole 0.000 0.000 0.000 0.000
Rural under strong influence of a pole 0.000 0.000 0.000 0.0005
Dense urban 0.000 0.000 0.000 0.5108
Urban intermediate density 0.000 0.000 0.000 0.0003

Note: Each coefficient corresponds to the p-value of the associated test performed on OLS error terms. To perform these tests we use the spatial weighting
matrix of the k nearest neighbors, using k=>5. Regressions at the national level are weighted by the population of the municipalities.
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Table 10: Robustness checks : spatial regression models (SEM)

NO2 PM2.5 PM10 03 Share of cocktail
(1) 2) 3) 4) ()
DENSE URBAN
Income —0.002*  —0.0005*** —0.0001 —0.00000 0.002
(0.0003) (0.0001) (0.00004) (0.00003) (0.0019)
p 0.126*** 0.422%* 0.504*** 0.437**+ 0.364***
(0.021) (0.016) (0.015) (0.016) (0.017)
Observations 5,362 5,362 5,362 5,362 5,362
URBAN INTERMEDIATE DENSITY
Income 0.001*** —0.0001**  —0.00003** 0.00002 0.005**
(0.0001) (0.0001) (0.00002) (0.00001) (0.0009)
p 0.127* 0.405** 0.490** 0.406*** 0.301**
(0.0102) (0.0079) (0.007) (0.008) (0.009)
Observations 23,471 23,471 23,471 23,471 23,471
RURAL UNDER STRONG INFLUENCE OF A POLE
Income 0.002*** 0.001** 0.0001*** —0.00001 0.020%**
(0.00004) (0.00003) (0.00001) (0.00001) (0.0006)
p 0.283*** 0.536*** 0.581*** 0.506*** 0.436***
(0.006) (0.005) (0.005) (0.005) (0.006)
Observations 47,509 47,509 47,509 47,509 47,509
RURAL UNDER WEAK INFLUENCE OF A POLE
Income 0.001** 0.0003*** 0.0001*** —0.0001*** 0.018**
(0.00003) (0.00003) (0.00001) (0.00001) (0.00057)
p 0.270** 0.487** 0.535*** 0.476*** 0.394**
(0.006) (0.005) (0.005) (0.005) (0.006)
Observations 46,879 46,879 46,879 46,879 46,879
VERY SPARSELY POPULATED RURAL AREA
Income 0.0004*** 0.0003*** 0.0001*** 0.00002* 0.010***
(0.00002) (0.00003) (0.00001) (0.00001) (0.00057)
p 0.399** 0.461** 0.471%* 0.401*** 0.411**
(0.006) (0.006) (0.006) (0.006) (0.006)
Observations 38,318 38,318 38,318 38,318 38,318
Département dummies Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
controls Yes Yes Yes Yes Yes
Number of pollution days No No No No Yes

Note: Table reports maximum likelihood estimates of the Spatial Error Model (SEM) described in the empirical strategy section and in
the appendix section, in urban and rural sub-samples. The dependent variables are the number of days in the year for which the health
threshold concentration (WHO) of the considered pollutant is exceeded (columns 1 to 4) and the share of cocktail days (days with at
least two pollutants above the health thresholds) among pollution days (at least one pollutant above its health threshold). p is the spatial
autocorrelation parameter in the error term as described in the spatial aurocorrelation section in the appendix. I use the k nearest neighbors
spatial weight matrix, using k=5. We use the Z-score on the income variable for the cocktail share regressions for ease of interpretation of
the coefficients. *p<0.1; **p<0.05; **p<0.01
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Figures

Figure 1: Average number of days in the year above health thresholds in each area (2012-
2018 period)
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Figure 2: Share of each mixture in the total number of pollution days (all pollutants com-
bined)
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Figure 3: Number of pollution days in 2012 and 2018
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Figure 4: Average share of each pollutant
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Appendix

A Composition of each pollutant

shows for each pollutant the average share of each mixture in the total number
of days above the threshold for that pollutant. According to these estimates, on 29% of the
days on which the PM2.5 threshold is exceeded, the threshold for at least one other pollutant
is also exceeded . Thus, studies assessing the effect of PM2.5 concentration on
health actually capture the effect of pollutant cocktails and not the pure effect of PM2.5.
Similarly, studies assessing exposure inequalities do not differentiate between exposure to
pure PM2.5 particles and cocktails. In the case of PM10 particles, in 100% of the cases,
the days above the threshold for PM10 particles are mixed with other pollutants (the PM10
PM2.5 and NO2 mixture represents 57% of PM10 pollution days on average, the PM10
PM2.5 mixture represents 43% of days on average). The PM2.5 NO2 mixture represents
67% of the nitrogen dioxide (NO2) pollution days on average, while the pollution days for
this mixture represent only 19% of the PM2.5 pollution days (Figure A.1)). Ozone (O3) is
pure in 64% of cases on average. shows the composition of pollution days in three
types of areas. Overall, the composition of pollution days changes between urban and rural
areas. In the case of fine particles and ozone, the share of cocktail days is higher in urban

than in rural areas.
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Figure A.1: Average share of each pollutant mixture in the number of pollution days for the
considered pollutant (national level, period 2012-2018)
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B Figures

Figure A.3: Evolution of the average number of pollution days
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C Estimation at the national level

We estimate a linear regression model with fixed effects at the national level. France has
a large number of small municipalities with very small populations, which gives them more
weight in the analysis. We weight the regressions at the national level according to the
population in each municipality at each period. This weighting allows us to identify a link
that is more representative of the situation of the largest number of inhabitants. We cluster
the standard errors at the department level.

The results are presented in The estimates suggest a significant negative
relationship between municipality income and the exposure to PM2.5 and NO2 pollution.
Ozone (03), on the other hand, is concentrated in affluent and rural communes although
the effect is not significant. Income is negatively associated with the level of PM10 pollution
although the coefficient is not significant.

A one standard deviation increase in income in the municipality is associated with a
reduction of 3 days above the thresholds in the year for nitrogen dioxide (NO2) and of 1.2
days for PM2.5 particles on average. The coefficients for PM10 and ozone (O3) are lower.
We slightly underestimate the number of days above the threshold for ozone because the
daily average ozone concentration is not measured as a rolling 8-hour average as measured
by the WHO but as a 24-hour average, which may slightly influence the estimated coefficient
for ozone (03). For ozone (O3), a one standard deviation increase in income is associated
with a 0.3 increase in the number of days above the threshold, and a 0.04 decrease in the
number of days for PM10.

The coefficients of the dummy years indicate for nitrogen dioxide (NO2), PM2.5 and
PM10 a continuous and significant decrease in pollution levels between 2012 and 2018. For
ozone (O3) on the other hand, the overall levels of ozone (O3) pollution above the threshold
seem to evolve randomly over the period.

Our national results reflect relationships in urban areas. Indeed, since a large proportion
of the population lives in urban municipalities, the population weighting of municipalities in

the national regressions gives more weight to this type of municipality.
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Table Al: Income and number of pollution days at national level

NO2 PM25 PM10 03 ALL
(1) (2) () (4) (5)
Income —0.001** —0.0004** —0.00001 0.0001 —0.001***
(0.0005) (0.0001) (0.00004) (0.00005) (0.0004)
2012 REF REF REF REF REF
2013 —4.345 —8.380** —2.440** 1.814** —4.961*
(1.903) (3.318) (0.979) (0.338) (2.874)
2014 —17.101*  —46.864"*  —13.339**  —0.657**  —35.897**
(2.273) (3.542) (1.313) (0.242) (3.419)
2015 —17.788**  —38.229"*  —13.259*** 2.794*** —31.055***
(1.912) (2.030) (1.421) (0.570) (1.545)
2016 —17.754**  —=51.161"*  —13.790*** —0.495* —43.960**
(1.883) (3.332) (1.207) (0.294) (2.783)
2017 —19.347*  —58.698**  —13.793*** 0.189 —51.386***
(1.882) (2.617) (1.469) (0.291) (2.306)
2018 —34.000*  —65.145"*  —18.219*** 7.341%** —50.663***
(2.217) (4.810) (1.410) (0.656) (4.144)
sparsely populated autonomous rural REF REF REF REF REF
very sparsely populated autonomous rural 0.221 —0.398 -0.018 —0.022 —0.480
(1.443) (0.509) (0.145) (0.121) (1.170)
rural under weak influence of a pole —-1.012 0.590 0.174* —0.025 —0.319
(1.035) (0.468) (0.097) (0.103) (0.871)
rural under strong influence of a pole 1.687 1.900*** 0.529*** —0.239** 1.471
(1.436) (0.608) (0.138) (0.121) (1.136)
dense urban 39.723*** 10.535%** 2.564*** —1.100*** 26.686***
(3.929) (1.238) (0.360) (0.350) (3.056)
urban intermediate density 7.459%** 3.807%* 0.871** —0.249* 5.162**
(1.469) (0.576) (0.156) (0.142) (1.030)
Departement dummies Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes
Observations 217,317 217,317 217,317 217,317 217,317
R? 0.907 0.825 0.741 0.588 0.900

Note: Robust standard errors are clustered at the local departement level.
population of the municipalities. *p<0.1; **p<0.05; **p<0.01

All regressions are weighted by the
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D Density, income, economic activity and pollution

Figure A.4: correlations between municipal density, income and pollution (ALL) in urban
area (2018)
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territoires” from the INSEE RP 2018 data. The data on the number of companies comes
from the INSEE’s ”Démographie des entreprises et des établissements” database. We use
the variable that counts the number of establishments in the municipality in 2020.
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Figure A.5: correlations between municipal density, income and pollution (ALL) in rural

area (2018)
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territoires” from the INSEE RP 2018 data. The data on the number of companies comes
from the INSEE’s "Démographie des entreprises et des établissements” database. We use
the variable that counts the number of establishments in the municipality in 2020.
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E Spatial autocorrelation

In order to test the robustness of our results, we estimate a spatial error model to explicitly
take into account the spatial autocorrelation problem. Following Bouayad Agha, Le Gallo,
and Vedrine (2018)) the fixed effects SEM with two dimensional data can be written as :

Yt = BTer + M+ €t (2)
N

Ect = PZ Wei€jt + Pet (3)
y

With y., the number of pollution days in the year of municipality i in year t, with ¢ =
1,2,...Nand t = 1,2,.... T, A\, an time fixed effect and €., the error term. p is the spatial error
autocorrelation parameter and Zjvzl we;€; represents the spatially displaced error term. w;
is a spatial weighting matrix of dimension (N,N) that describes the spatial relationship be-
tween the municipalities, with ¢ and j two different municipalities. The spatial relationships
described by the spatial weighting matrix W can take several forms. We retain the k nearest
neighbors matrix by retaining k=5. For each municipality, the 5 closest municipalities are
identified geographically. The 5 closest municipalities have a value (weight) of 0.2 with the
commune considered in the weighting matrix W.

Following Bouayad Agha, Le Gallo, and Vedrine| (2018), we extend this model to data in

three dimensions:

Yedt = BTeat + ta + N + Ecar (4)
M Ng

Eedt = P Z Z Wed,hg€ hgt + Ledt (5)
g=1 h=1

With 9.4, the number of pollution days in the year of municipality ¢ of département d in
year t, with ¢ = 1,2,....N, d = 1,2,... M and t = 1,2,....,T. p is the spatial parameter to be es-
timated and Z]ngl ZhNil Wea,hg€ngt the spatially displaced error term. weg g are the elements
of the spatial weighting matrix of dimension (N,N), with cd representing municipality ¢ in

département d and hg a municipality h in département g.
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