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Abstract

The PESHMELBA model simulates water and pesticide transfers at the catchment scale. Its objective is to help

the process of decision making in the commonmanagement of long-term water quality. Performing the global

sensitivity analysis (GSA) of this type ofmodel is necessary to trace the output uncertainties to the input param-

eters. The goal of the present work is to perform a GSA, while considering the spatio-temporal nature and the

high dimensionality of the model. The output considered is the surface moisture simulated over a two month

period on a catchment of assorted mesh elements (plots). The GSA is performed on the dynamical outputs,

rewritten through their functional principal components. Sobol’ indices are then estimated through polyno-

mial chaos expansion on each principal component. The analysis differs between the two types of behaviour

observed in the surfacemoisture outputs. The hydrodynamic properties of the surface soil have a dominant in-

fluence on the average surface moisture. Nonetheless, the parameters describing deeper soil layers influence

the output dynamics of those plots where the surface moisture is saturated. We obtain Sobol’ indices with

high precision while using a limited number of model estimations and considering the models spatio-temporal

nature. The physical interpretation of the GSA confirms and augments our knowledge on the model.

Keywords

Global sensitivity analysis; hydrology; functional principal components; polynomial chaos expansion; distributed

model

1 Introduction

Pesticide use is a major issue in sustainable agriculture and water quality. Therefore, it is important to have

the knowledge and the tools to best estimate the risks associated with their use and propose appropriate cor-

rective actions. The PESHMELBA model (PESticides et Hydrologie, Modélisation à l’EcheLle du BAssin versant,

Pesticides and Hydrology: modeling at the catchment scale, Rouzies et al. (2019)) simulates processes involved

in water and pesticide transfers at the catchment scale, in order to compare different scenarios of landscape

management and their impact on water quality.

An important step in the journey to PESHMELBA’s operational use is to perform a thorough study on the model

uncertainties. Global sensitivity analysis is useful in this case, as it can trace the output uncertainties back

to its input parameters. It can also verify the model consistency with respect to the physical processes and

enhance the understanding of the modeled behavior. However, PESHMELBA outputs are both space and time

dependent and the application of global sensitivity analysis to spatio-temporal environmental models can be

challenging and dependent on the particular case studied.

Traditionally, sensitivity analysis methods based on Sobol’ (2001) were developed for scalar outputs (Saltelli

et al., 2008), but many extensions of sensitivity indices to multivariate (spatial or temporal) output have been

introduced. Some are variance-based (Gamboa et al. (2014), Lamboni et al. (2011), see also Xiao & Li (2016),

Xu et al. (2019), Roux et al. (2021)), while others use different dependencemeasures such as the HSIC (Da Veiga

(2015), Marrel et al. (2015)) or random forests (Antoniadis et al. (2021)).
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The extensions were used in various modeling areas. For instance, a sensitivity analysis on the spatialized

maximum water depth of a coastal flooding risk model in Perrin et al. (2021). Both a temporal and a spatial

sensitivity analysis of a model describing nitrogen transfers in Ferrer Savall et al. (2019). Comparison between

various sensitivity indices on a spatio-temporal radionuclide atmospheric dispersionmodel inDe Lozzo&Marrel

(2017).

A sensitivity analysis was also performed for spatially distributed PESHMELBA outputs in Rouzies et al. (2021)

by calculating site specific sensitivity indices, then aggregating them to blocks via the definition provided in

Gamboa et al. (2014). However, the sensitivity of the dynamics of PESHMELBA outputs was not a goal of this

study.

As the previous examples show, there is no universal methodology for performing a sensitivity analysis on

spatio-temporal models. Both the choice of the sensitivity index and its estimator can be guided by various

model properties such as the space resolution, time resolution or the nature of the input parameters (scalar or

multivariate). Other important aspects are the number of input parameters and the cost of a model run, since

the number of model runs needed for sensitivity analysis increases with the number of input parameters.

Metamodels, in particular polynomial chaos expansion (PCE), can be used for sensitivity index calculation at

a reasonable cost and high efficiency. They are especially useful when the model studied is computationally

expensive or has a large input space. Indeed, building a PCE via Least Angle Regression (Blatman&Sudret, 2011)

needs a significantly lower number ofmodel simulations than otherMonte Carlo basedmethods. Furthermore,

once the metamodel is built, the sensitivity index calculation is analytical (Sudret, 2008). Applications of PCE

for Sobol index calculation can be found in (Fajraoui et al., 2011) or in (Rouzies et al., 2021).

The present work is an application of a combination of existing global sensitivity analysis methods, with the

goal of obtaining sensitivity indices while considering the spatio-temporal nature of the highly dimensional

water and pesticide transfer model PESHMELBA. The outputs considered are the surface moisture outputs

simulated over a two month period on a catchment of assorted mesh elements (plots). In this study, the plots

are observed one at a time. The sensitivity analysis is performed on their temporal outputs, which are rewritten

through their principal components. Then, Sobol’ indices are estimated through polynomial chaos expansion

on each principal component.

The article is organized as follows. Wepresent in Section 2 themethodology, a brief description of Sobol’ indices

and their estimation via polynomial chaos expansion, then the functional principal component decomposition

and two generalizations of sensitivity indices when the outputs are multidimensional. Section 3 presents the

case study. The model PESHMELBA is introduced and the meaning of its input parameters explained. The

results are presented in Section 4 in the following order. First, the resulting functional principal components are

interpreted for each plot, then each PCE is validated, the Sobol’ indices obtained are reported and commented

by making a connection with the physics of the model. Finally the Sobol’ indices are aggregated temporally an

spatially to the catchment scale.

2 Methodology

LetM : RK −→ R be a model withK mutually independent scalar inputsX1, ..., XK and a scalar output Y .

Y = M(X1, ..., XK) = M(X)

2.1 Sobol’ Indices

The Sobol’ indices are a widely accepted way of quantifying the sensitivity of the model output on the input

parameters. The Sobol’ approach is variational; it studies the impacts of input parameters on the output vari-

ance.

LetD be the variance of the model output Y :

D = Var(Y ).
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LetDi be the variance of the expectation of the output conditioned on input parameterXi:

Di = Var(E[Y |Xi]).

Then, the first order Sobol’ indices of the input parameterXi are defined as the ratio between the conditional

variance and the total variance of the output (Sobol’, 2001):

Si = Di/D.

Let Di1,...is be the variance of the expectation of the output conditioned on the set of input parameters

{Xi1 , . . . Xis} minus the variance of the expectation of the output conditioned on all other subsets of the
given set:

Di1,...is = Var(E[Y |Xi1 , . . . Xis ])−
∑
Is

Di1,...ik ,

Is = {{i1, . . . ik} : {i1, . . . ik} $ {i1, . . . is}}.

Similarly, the Sobol index of the set of input parametersXi1 , . . . Xis is defined as the ratio between the condi-

tional variance of the output to those parameters minus the variances of the output conditioned to any other

subset of the concerned input parameters, and the total variance of the output:

Si1,...is = Di1,...is/D.

The total Sobol’ index of input parameter Xi is defined as the sum of all Sobol’ indices of those sets which

contain it.

STi
=

∑
Ii

Di1,...,is/D,

Ii = {{i1, . . . , is} : ∃k, 1 ≤ k ≤ s, ik = i}.

As all Sobol indices of first order and Sobol indices of higher orders sum up to 1, an alternative definition for

the total Sobol index is:

STi
= 1− S∼i,

where S∼i is the sum of all Sobol indices Si1,...is that do not include index i.

Sobol’ indices have some nice properties such as explaining explicitly the influence of a parameter on its own

(first order Sobol’ indices) or in interaction with other parameters (total Sobol’ indices). However, estimating

them is not always an easy task, especially when it comes to large models with many input parameters and

computationally expensive simulations.

2.2 Polynomial chaos expansion and the link with Sobol’ indices

Except for simple analytical models, Sobol’ indices are typically calculated via stochastic methods (Saltelli et al.,

2008). Obtaining precise Sobol’ indices via these methods requires an efficient exploration of the input param-

eters’ space. One of the main challenges is dealing with large input spaces. Many points are needed to explore

a highly dimensional space (curse of dimensionality). As each point is evaluated via the original model, this

task becomes difficult when the original model is computationally expensive. In this work, polynomial chaos

expansions (PCE) are used to reduce the cardinality of the experimental design (Sudret, 2008).

The model output can be rewritten via its polynomial chaos expansion decomposition as:

Y =
∑

α∈NK

yαΨα(X) = M(X) (1)

whereK is the number of input parameters, {Ψα}α∈NK is a basis of multivariate orthonormal polynomials,

constructed according to the marginal probability density functions fXi of the input parameters,α ∈ NK are

multi-indices, i.e. α = (α1, α2, ..., αK) where each αi corresponds to the partial degree with which the ith
entry parameterXi is represented in the basis componentΨα and yα coefficients (yα are the coordinates of
the output Y in the new vectorial space defined by the basis {Ψα}α∈NK ).
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Once the modelM is rewritten via its polynomial chaos expansion, the Sobol’ indices are obtained analytically

from the coefficients yα, (Sudret, 2008).

Indeed, by additioning the squares of all coefficients yα whose multi-index’s α only non-null index is the ith
index αi 6= 0, and dividing it by the total variance of the PCE metamodelD, we obtain the Sobol’ index of first
order of the input parameterXi:

Si =
∑
α∈Ii

y2α/D,

Ii =
{
α ∈ NK : αi > 0, αj 6=i = 0

}
,

D = Var[
∑
α∈I

yαΨα(X)] =
∑
α∈I
α 6=0

y2α.

Similarly, by additioning the squares of coefficients yα whose multi-index α satisfies certain properties, the

Sobol’ indices of a set of input parameters and the total Sobol’ indices are also obtained analytically:

Si1,...,is =
∑

α∈Ii1,...,is

y2α/D,

Ii1,...,is =
{
α ∈ NK : k ∈ {i1, . . . , is} ⇔ αj 6= 0

}
,

ST
i =

∑
α∈IT

i

y2α/D,

IT
i =

{
α ∈ NK : αi > 0

}
.

Thus, the difficulty and the computational cost of calculating the Sobol’ indices for the original modelM can

be replaced with the difficulty and the computational cost of finding a polynomial chaos expansion MPCE

which approximates the behavior of the original model ”well enough”.

Section 2.3 explains how to estimateMPCE , how to limit the cardinality of the experimental design and lastly,

how to evaluate ifMPCE its true to the original model.

2.3 Estimation of a polynomial chaos expansion

Let the model M : RK −→ R from the beginning of Section 2 be the original model for which we want to

build a PCE. Let fXi be the marginal probability density function of input parameterXi. The goal is to estimate

aMPCE polynomial chaos expansion of the original model by using a limited number Ntraining of original

model evaluations:

M(X) = Y ≈
∑

α∈AK
p,q

yαΨα(X) = MPCE(X).

The first step in PCE approximation is to choose the truncation scheme for α, denoted byAK
p,q. Popular trun-

cation schemes limit the maximum degree with which the input parameters Xi are represented in the basis.

This is done by setting an upper limit p such that αi < p for every i. The heuristics behind this truncation being
that most of the influence of the input parameters is captured in low orders of the multivariate polynomials

(Le Gratiet et al., 2015). For a PCE metamodel with K input parameters and p the maximum degree of the

basis polynomial, the cardinality of the basis card(AK
p ) =

(
K+p
p

)
increases exponentially with respect to the

number of input parametersK.

To further reduce the basis cardinality, the degree of interaction between the input parameters can be lim-

ited. This is done by introducing q ∈ (0, 1) and imposing the q-norm of α to be limited by p, i.e. ||α||q =

(
∑K

i=1 α
q
i )

1/q < p. Limiting the interactions between input parameters is justified with the sparsity of effects
(Le Gratiet et al., 2015). This type of truncation shows a drastic decrease in cardinality ofAK

p,q for a fixed p.

Once the truncation scheme is chosen, the creation of the basis {Ψα}α∈AK
p,q
is straightforward, as it is charac-

terized by the marginal probability density functions fXi . The estimation of the PCE reduces to the estimation
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of the coefficients yα. To estimate the PCE coefficients yα comes down to a linear regression on a training

sample of pairs of inputs and model outputs {(x1,M(x1)), (x2,M(x2)), . . . , (xNtraining ,M(xNtraining ))}.

The number of coefficients yα to estimate is equal to card( AK
p,q) . In order for the linear regression to be

successful,Ntraining should be at least as big as the number of coefficients to estimate. However, the lack of

the hypothesis Ntraining � card( AK
p,q) ) can further be tackled via least angle regression (LARS, Blatman &

Sudret (2011)).

Whether the approximated metamodelMPCE is a good replacement of the original modelM is evaluated

via the coefficient of determination R2 on a test set {(x1,M(x1)), (x2,M(x2)), . . . , (xNtest
,M(xNtest

))} .
These estimations are not used for the calculation of the PCE metamodel coefficients yα. The coefficient of
determinationR2 measures the quality of the prediction of a linear regression:

R2 = 1−
∑Ntest

n=1 (M(xn)−MPCE(xn))
2∑Ntest

n=1 (M(xn)− M̄)
2 , (2)

whereM(xn) is the evaluation of the original model for input parameters set to values xn,MPCE(xn) is the
evaluation of the PCEmetamodel for input parameters set to values xn, andM̄ is themean of all original model

evaluations, M̄ =
∑Ntest

n=1 M(xn). The closer theR
2 is to 1, the better isMPCE in approximatingM.

The estimated Sobol indices are calculated analytically from the coefficients ofMPCE :

Ŝi =
∑
α∈I∗

i

y2α/D, (3)

I∗
i =

{
α ∈ AK

p,q : αi > 0,αj 6=i = 0
}
.

Theprecision of the estimated Sobol’ indices can bequantifiedby creatingmultiple resampleswith replacement

of the original experimental design and calculating the Sobol’indices from each resample. The confidence

intervals obtained on the Sobol’ indices are called bootstrap confidence intervals (Dubreuil et al., 2014).

2.4 Sensitivity analysis when model outputs are multidimensional

In previous sections we have seen the definitions of Sobol’ indices and their estimation for a model with K
independent scalar inputs and a scalar output. However, it often happens that the model whose sensitivity we

wish to study produces outputs over a given time period.

LetM be a model withK independent scalar inputs and a dynamic output over a time interval T :

Y (t) = M(X, t), t ∈ T . (4)

Set µ(t) = E[Y (t)] and assume the output random function to be square integrable:
∫ T
0

E
(
Y 2(t)

)
dt < ∞.

We can rewrite the output random function via its principal component (PC) expansion:

Y (t) = µ(t) +
∑
j

Hjvj(t), (5)

where vj(t) is the jth functional principal component (also called harmonic or mode), andHj ∈ R is the jth
functional principal component score (Ramsay & Silverman, 2005).

By decomposing the random variable Y (t) into its principal components (Eq. 5), the variability of Y (t) is
rewritten in terms of the variabilities of the principal componentsHj . The variability of the jth PC scoreHj is

denoted with λj . The λj are decreasing with respect to j by construction.

By truncating the series to the first J PCs we obtain an approximation of the output:

Y (t) ≈ µ(t) +
J∑

j=1

Hjvj(t), (6)
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which accounts for
∑J

j=1 λj/
∑

j λj of the total variance in the output Y (t). Oftentimes, J is chosen by first
setting the percentage of total inertia observed in the output that we wish to account for. Then, the number of

PCsJ that should be kept is deduced. Another choice is to directly set the number of PCs thatwill be studied. As
the scoresHj are scalar quantities, all theory developed in previous sections formodels with scalar outputs can

be applied. Thus, Sobol’ indices can be obtained for one PC at a time. Furthermore, in order to have a synthetic

sensitivity index for dynamic outputs, rather than sensitivity indices on each PC, the following definition of a

generalized sensitivity index is proposed in Lamboni et al. (2011):

GSIw =

∑
j λjSIw,j∑

j λj
, (7)

where w is the group of the input parameters, SIw,j is the sensitivity index of inputs w on the jth PC.

Gamboa et al. (2014) propose another way of aggregating sensitivity indices calculated on individual outputs

of a model with multidimensional outputs :

ASIw =

∑M
m=1 Var(Y (m))SIw,m∑M

m=1 Var(Y (m))
, (8)

where Y (m) is themth component of theM -dimensional output and SIw,m is the sensitivity index of the set

of input parameters w on themth component of the output.

The two definitions coincide when the total variability of the output can be described with a finite number of

principal components (De Lozzo & Marrel, 2017).

3 Case study

The PESHMELBA model simulates water and pesticide transfers at the catchment scale of the Morcille river in

the Beaujolais wine region. The heterogeneity of the catchment’s soil and vegetation types is represented by

dividing the catchment in different plots. In the studied case, the virtual catchment is divided inM = 14 plots,
each belonging to one of three soil units (SU): SU1 (sandy soil), SU2 (sandy soil on clay) or SU3 (heterogeneous

sandy soils), illustrated in Figure 1. The virtual catchment is presentedwithmore details in Rouzies et al. (2021).

Figure 1: The decomposition of the virtual catchment in 14 plots numbered with m ∈ {1, . . . , 14}. Each
plot belongs to one of the three possible soil units, depicted by different fillings and has one of two possible

vegetation types, depicted by the plot’s borders (vegetative filter strips have a bold green border, whereas

vineyard plots have fine black borders). The separation of the soil column under each plot into three soil

horizons (surface, intermediary and deep) is illustrated in the upper right corner. The depths of the soil horizons

varies from one SU to another (Image from Rouzies et al. (2021)).

PESHMELBA is a three-dimensional model, where the heterogeneity of the soil layers along the vertical axis is

also taken into account. Indeed, the soil column under each plot is decomposed in three layers (soil horizons),
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as in Figure 1. The depth of the soil horizons and their soil properties vary from one SU to another. The soil

horizons are considered internally homogeneous when it comes to soil hydrodynamical properties.

PESHMELBA has a modular structure, simulating the physical processes of each soil compartment, then cou-

pling them via the OpenPALM coupler (Buis et al., 2006). The coupling allows for water and pesticide transfers

to occur via three types of transfer pathways: infiltration (Richards’ equation solved by Ross (2003)), surface

runoff (kinematic wave equation) and lateral exchanges (Darcy law). Surface runoff occurs on the surface of

the catchment, whereas lateral exchanges refer to subsurface transfers occurring in saturated zones. One may

refer to Rouzies et al. (2019) for more details.
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R
a
in
fall

[m
m
/
h
]

S
u
rface

m
o
istu

re
[cm

3/
cm

3]

0 500 1000 1500 2000 0 500 1000 1500 2000

15

10

5

0

0.2

0.3

Time [h]

Figure 2: Top row: rainfall time series. The same rainfall time series was applied across all simulations and all

plots. Bottom row: surface moisture outputs of 20 PESHMELBA model simulations with different input param-
eter values. Different simulations are represented with various shades between orange and purple following

no particular order. Outputs are reported for two plots,m = 13 on the left andm = 4 on the right.

Representing the physical properties of each soil horizon of the catchment results in a large number of input

parameters. Indeed, in the case studied the PESHMELBA model has 145 input parameters. The number of
inputs of interest for the sensitivity analysis was reduced to 52 via a previous screening step performed with
the elementary effects method (Morris, 1991) not shown here. The marginal probability distributions of the

remainingK = 52 input parameters are listed in Table 3.

A soil unit is always made out of the same soil horizons; plots {1, 2, 3, 11} ∈ SU1 are all made of the same
soil horizons, and the same goes for {4, 10, 14} ∈ SU2 and {7, 9, 12} ∈ SU3. The previously listed plots
correspond to vineyard plots, while the remaining plots {5, 6, 8, 13} correspond to vegetative filter strips. A
vineyard plot and a vegetative filter strip belonging to the same soil type differ in their surface soil horizon.

Indeed, the surface horizon of the vegetative filter strip has a higher infiltration capacity and adapted hydro-

dynamical properties, while the intermediary and deep horizon maintain the same properties as the vineyard

plot.

As an example, the plot 8 and the plot 9 are both of soil type SU2, but 8 is a vegetative filter strip, whereas 9

is a vineyard plot. The physical properties of the deep and intermediary horizons of both plots are described

by the input parameters with the suffix interm_soil2 and deep_soil2, respectively. The physical properties
of the surface soil horizon of plot 9 are described with the input parameters having the suffix surf_soil2;
whereas the input parameters describing the properties of surface soil horizon of plot 8 are named with the

suffix surf_soil2(V FZ).
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The output studied in this work is the surface moisture series simulated at 2712 consecutive time steps, cor-
responding to roughly 2500 hours or three months. The output consists inM = 14 time series, one for each
plot. An illustration of these outputs is provided in Figure 2 for two plots,m = 13 andm = 4. It can be seen
that the dynamics of the outputs is closely driven by rainfall events. Indeed, the peaks in surface moisture are

reached right after the rain events.

Furthermore, we observe that most outputs of plot m = 13 result in the saturation of the surface moisture
starting from around time t = 1500h. On the other hand, the surface moisture of plotm = 4 does not reach
its full saturation during the simulation time. Two types of behaviors are observed in the surface moisture time

series. Plots {2, 3, 7, 9, 13} = Gsat show a saturation in water retention after t = 1500h of the simulated
period for most of the simulated outputs, on Figure 2 form = 13. On the other hand, the surface moisture of
plots {1, 4, 5, 6, 8, 10, 11, 12, 14} /∈ Gsat do not saturate during the simulated period, on Figure 2 form = 4.

The rainfall time series is considered to be the same across all simulations and plots; its value is fixed to a time

seriesmeasured in a typical winter scenario dimensioned on the catchment. Thus, the sensitivity of the outputs

with respect to the rain is not tackled in this study. Here, all input parameters are scalar and independent.

Furthermore, as the time steps are close, we consider the time to be continuous. The model can be written as:
Y (1)(t)
Y (2)(t)

...

Y (M)(t)

 = M(X, t), t ∈ T , (9)

withM = 14 the number of plots,X ∈ RK theK = 52 input parameters and T the time period in consider-

ation.

4 Results and discussion

A space-filling experimental design ofNtraining = 3000 points is created over theK = 52 dimensional input
space. The space-filling design used is a latin hypercube, optimized with the maximin criteria. The PESHMELBA

model is evaluated in these points and this sample is used to calculate the first two principal components

for each plot. Section 4.1 shows the principal component analysis and interprets the principal components.

The same sample is used to build a metamodel for the first two principal components of each plot. A second

latin hypercube sample of Ntest = 1000 points is generated on the K = 52 dimensional input space for the
evaluation of the metamodels. Section 4.2 studies the quality of the metamodels built. The Sobol’ indices

for the principal components of the dynamic outputs are found analytically from the metamodel coefficients

following Section 2.2 and Section 2.3. In Section 4.3 the Sobol’ indices are reported and their physical meaning

is commented.

4.1 Functional principal components

One plotm ∈ {1, . . . , 14} is fixed and itsNtraining = 3000 temporal outputs Y (m) are observed. The outputs

represent the surface moisture time series of the plotm over the period T . The outputs are supposed contin-
uous. For a fixed plot m, the model can thus be written as in Eq. 4. Then, a functional principal component
basis is found for the plotm. The basis is truncated to the first two components:

Y (m)(t) ≈ µ(m)(t) +H
(m)
1 v

(m)
1 (t) +H

(m)
2 v

(m)
2 (t).

The part of the total variance explained with the first two principal components PC1 and PC2 is listed in Table

1 per plot. Two groups of plots with similar behavior are identified. A first group, with more than 90% of the
total output variability explainedwith PC1 and less than 2%with PC2, and a second group, where the variability
explained by PC1 is a bit lower, but still superior to 80%, whereas PC2 accounts for more than 7%.

Interestingly, the two groups coincide with {2, 3, 7, 9, 13} ∈ Gsat and {1, 4, 5, 6, 8, 10, 11, 12, 14} /∈ Gsat, the

groups identified in Section 3 by a study of their outputs; the plots in Gsat showing a saturation of the water

content in their surface.
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Table 1: Percentage of the total variability observed in the output of plotm captured for with the jth PC, i.e.

λ
(m)
j /

∑
j λ

(m)
j .

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PC1 0.99 0.82 0.89 0.96 0.99 0.95 0.85 0.99 0.81 0.96 0.99 0.94 0.83 0.97

PC2 <0.01 0.16 0.08 0.02 <0.01 0.02 0.07 <0.01 0.10 0.02 <0.01 0.03 0.13 0.02

PC1 + PC2 0.99 0.98 0.97 0.98 0.99 0.97 0.92 0.99 0.91 0.98 0.99 0.97 0.96 0.99
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Figure 3: Perturbations on the first two PCs of plots m = 4 /∈ Gsat on the left column and m = 13 ∈ Gsat

on the right column. The top row shows the perturbations in the direction of PC1, the bottom row shows the

perturbations on PC2. The mean of the sample outputs is presented with a solid black line. The red dotted line

and the blue dashed line represent the output that is three standard deviations away from the mean in the

direction of the corresponding PC.

The presence of the two groups is not only limited to the percentages of variances explained by the first two

PCs. The plots belonging to the same group also yield the same interpretation for their PCs. The perturbations

on the first two PCs of the plotsm = 13 ∈ Gsat andm = 4 /∈ Gsat can be seen in Figure 3. Only one plot is

chosen from each group as the interpretations of the PCs are the same for all plots inside the same group.

From the top row in Figure 3, we can interpret the first principal component (PC1) as the vertical shift of the

output time series. Thus, the outputs having a low score on the PC1 have a low average surface moisture on

the whole simulation period, similar to the blue dashed line; on the other hand the outputs scoring highly on

the PC1 have a high surface moisture, similar to the red dotted line. The interpretation of the PC1 is the same

for bothm = 13 ∈ Gsat andm = 4 /∈ Gsat.

On the contrary, the second principal component (PC2) explains different behaviors in the two groups. Indeed,

the PC2 of plot m = 4 /∈ Gsat is interpreted as the amplitude of the outputs (infiltration rate), whereas the

PC2 of plot m = 13 ∈ Gsat is interpreted as the contrast between the surface moisture during the plateau

and outside the plateau: outputs scoring highly on PC2 do not display significant change in moisture during the

plateau and outside the plateau, whereas the outputs with low scores on PC2 have a surface moisture much

higher during the plateau than outside of the plateau.
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4.2 Polynomial chaos expansion

For each plotm ∈ {1, . . . , 14}, a PCE is built independently for the first principal component (PC1). A PCE is
also built for the second principal components (PC2) of plotsm ∈ {1, . . . , 14} \ {1, 8, 9, 11}. Indeed, the plots
{1, 8, 9, 11} are excluded as their PC1 alone already accounts for more than 99% of the total variability in the
training sample, thus their PC2 accounts for less than 1% of the total output variance (Table 1).

To sum up, the following input-output relations are estimated through polynomial chaos expansion :

H
(m)
1 = M(m)

1 (X) ∀m ∈ {1, . . . , 14}

H
(m)
2 = M(m)

2 (X) ∀m ∈ {1, . . . , 14} \ {1, 8, 9, 11}

Where H
(m)
1 (resp. H

(m)
2 ) are the scores obtained on PC1 (resp. PC2) of plot m and X is the vector of the

K = 52 independent input parameters with marginal distributions reported in Table 3.

For the fitting of the metamodel, the truncation scheme AK
p,q is set with q = 0.5 and p = 10 LARS is used.

All metamodels are fitted and evaluated via UQLab (Marelli & Sudret, 2014), (Marelli et al., 2022). Once

all metamodelsM(m)
j,PCE are obtained, their coefficients of determination R2 are calculated on a test set of

Ntest = 1000 samples.

Table 2: Coefficients of determination R2 of the metamodelsM(m)
j built on the jth principal component of

plotm for j ∈ {1, 2}.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R2 onM(m)
1,PCE 1.00 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 1.00 0.99 0.98 0.99

R2 onM(m)
2,PCE NA 0.80 0.77 0.99 NA 0.97 0.82 NA 0.80 0.98 NA 0.95 0.78 0.99

The coefficientsR2 calculated on the test set are reported in Table 2. The values ofR2 are superior to 0.99 for

all plots on the PC1. When it comes to the coefficientsR2 of the metamodels built on the PC2,M(m)
2,PCE , they

are slightly lower for some plots. More in particular, the parcels {4, 6, 10, 12, 14} /∈ Gsat have an R
2 > 0.95,

whereas the parcels from Gsat = {2, 3, 7, 9, 13} have lowerR2 values, ranging from 0.77 for plotm = 3 up to
0.82 for plotm = 7.

These lower values on M(m)
2,PCE can be explained by the choice of our methodology and the nature of the

PC2. Indeed, plots belonging to group Gsat present mostly outputs that reach a saturation point, resulting

in a plateau, at some point of the simulation period. However, not all simulations of the sample have this

behavior, some simulations do not reach a saturation point, as it can be seen on Figure 2 for plot m = 13
(about 200 on the 3000 simulations). Calculating the principal components on such outputs, while using the

L2 norm as the distance measure, results in a separation on the PC2 for the two types of behavior. Two distinct

clusters are thus observed, one cluster contains the simulations reaching a plateau (lower scores on the PC2),

while the other cluster contains simulations with no plateaus (scoring higher on the PC2). However, the cluster

of simulations with lower scores on the PC2 has a larger cardinality (2800) than the cluster with the higher

scores (200). Thus, when the PCE is evaluated on these scores, it replicates essentially the behavior of the

simulations reaching saturation. Figure 4 shows the comparison between the metamodel and the PESHMELBA

model outputs. TheMPCE estimates well the behavior of lower scores, but it fails in replicating the behavior

producing the simulations that do not reach saturation.

A slight increase of R2 is achieved when the values of p and q are augmented. In spite of the improvement in
theR2, the Sobol’ indices calculated in both cases remain qualitatively the same. In addition, no improvement

is observed in the precision of their estimates. The results for the Sobol’ indices presented in Section 4.3 are

listed for the metamodels built for p = 10, q = 0.5 which is a good compromise for the numerical cost.
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Figure 4: Comparison of the outputs generated by the original modelM(13)
2 versus the outputs generated by

the polynomial chaos metamodelM(13)
2,PCE for the PC2 of plotm = 13. The test set is made out of Ntest =

1000 points

4.3 Sobol’ indices

Once the metamodels are built as presented in Section 4.2, the Sobol’ indices are calculated analytically via Eq.

(3), for the PC1 of plotsm ∈ {1, . . . , 14} in Section 4.3.1 and for the PC2 of plotsm ∈ {1, . . . , 14}\{1, 5, 8, 11}
in Section 4.3.2.

4.3.1 Sobol’ indices on the first principal component PC1

The Sobol’ indices of total order for the PC1 of each plot of the catchment are reported in Figure 5. First order

Sobol’ indices are nearly identical to the total order indices, meaning that the direct influence of the input

parameters on the PC1 surpasses the influence through interaction with other parameters.

• Soil type SU1 (sandy), PC1. The top row of Figure 5 represents the total Sobol’ indices of the plots of soil

type SU1 (m ∈ {1, 2, 3, 5, 11}). The largest Sobol indices correspond to parameters describing the surface
soil horizon properties of the soil type SU1. More in particular, the input parameter thetas_surf_soil1 (resp.
thetas_surf_soil1(V FZ)) accounts formore than 90%of the total output variance of the surfacemoisture of
vineyard plots (resp. vegetative filter strips). This parameter describes thewater content at saturation in a given

soil, in this case the surface soil horizon of vineyard plots of soil type SU1 (resp. vegetative filter strips of soil type

SU1). The second most influential input parameter, mn_surf_soil1 (resp. mn_surf_soil1(V FZ)) is a pa-
rameter governing the relation in Van Genuchten soil hydraulic property description of the surface soil horizon

of the vineyard plots belonging to soil type SU1 (resp. vegetative filter strips of soil type SU1), (Van Genuchten,

1980).

• Soil types SU2 (sandy soil on clay) and SU3 (heterogeneous sandy soil), PC1. Total Sobol’ indices of plots of

soil type SU2 (resp SU3) are reported in the middle row (resp. bottom row) of Figure 5. The physical inter-

pretation of the results is the same as for the soil type SU1. Once again, the output variability is mostly due

to the variability of parameters describing the surface soil horizon properties. In particular, the input param-

eter thetas_surf_soil2 (resp. thetas_surf_soil3, thetas_surf_soil2(V FZ), thetas_surf_soil3(V FZ)),
describing the water content at saturation in the surface soil horizon of the vineyard plots belonging to SU2

(resp. surface of the vineyard plots belonging to SU3, surface of the vegetative filter stripes belonging to SU2

and the surface of the vegetative filter stripes belonging to SU3) has the largest total Sobol’ index (≈ 0.9). The
second most influential input parameter, mn_surf_soil2 (resp. mn_surf_soil3, mn_surf_soil2(V FZ),
mn_surf_soil) is a parameter governing the relation in Van Genuchten soil hydraulic property description of
the surface soil horizon belonging to the corresponding soil type (Van Genuchten, 1980).
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Figure 5: Sobol’ indices of total order calculated on PC1 of each plot of the catchmentm ∈ {1, ..., 14}, with
corresponding bootstrap confidence limits. Rows correspond to soil types SU1, SU2 and SU3. The top seven

parameters with the highest total Sobol’ index are reported for each soil type. The color and the filling of the

bars represent the nature of the input parameters. The light, medium and dark brown correspond respectively

to those parameters that describe the physical properties of the surface, intermediate and deep soil horizon.

The different fillings of the bars correspond to those parameters that describe the soil types SU1, SU2 and SU3.

The colors and fillings are in line with those from Figure 1.

We can conclude that, for a fixed plot, the variability of the PC1, interpreted in Section 4.1 as the average surface

moisture over the observed timeperiod, can be traced back to the variability of the input parameters describing

the hydrodynamical properties (predominantly water content at saturation) of its surface soil horizon.

However, we find some cases which show influence of deeper soil parameters, such asm ∈ {2, 13}. Both plots
m = 2 and m = 13 belong to group Gsat and present plateaus in their output time series. The influence of

deeper soil parameters is more prominent in PC2 and is commented in Section 4.3.2.

The Sobol’ indices presented in Figure 5 were estimated with a high precision, as can be seen from the small

standard deviations calculated with a bootstrap of 100 runs. This is in line with the high values of the determi-

nation coefficientR2 previously seen in Table 2.

4.3.2 Sobol’ indices on the second principal component PC2

For the second principal component PC2, the Sobol’ indices of total order for all plots except {1, 5, 8, 11} are
reported in Figure 6. These plots were excluded from this study as their PC2 accounts for less than 1% of the
total output variance (Table 1). Two types of behavior can be observed in Figure 6. We can identify plotsm ∈
{4, 6, 10, 12, 14} /∈ Gsat where surface parameters are most influential, and plotsm ∈ {2, 3, 7, 9, 13} ∈ Gsat

where deep parameters govern the output variability.

The dependence on deep soil properties of group Gsat communicates that the saturation of the surface mois-

ture is not limited to the surface layers. Rather, the whole soil column under the plot is saturated, thus the

surface runoff observed is due to saturation excess overland flow.

We can conclude that the variability of the contrast in surface moisture during the plateau and outside of

the plateau for plots m ∈ Gsat can be traced back to the variability of the input parameters describing the

hydrodynamical properties of its deep soil horizon. The amplitude of the surface moisture time series for plots

m /∈ Gsat) is governed by the input parameters describing the hydrodynamical properties of its surface soil

horizon.

The standard deviations calculated with a bootstrap of 100 runs are depicted on Figure 6 are slightly larger
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Figure 6: Sobol’ indices of total order calculated on PC2 of plots m ∈ {2, 3, 7, 9, 12, 6, 4, 10, 14, 13}, with
corresponding bootstrap confidence limits. Rows correspond to soil types SU1, SU2 and SU3. The top seven

parameters with the highest total Sobol’ index are reported for each soil type. The color and the filling of the

bars represent the nature of the input parameters. The light, medium and dark brown correspond respectively

to those parameters that describe the physical properties of the surface, intermediate and deep soil horizon.

The different fillings of the bars correspond to those parameters that describe the soil types SU1, SU2 and SU3.

The colors and fillings are in line with those from Figure 1.

than in Figure 5 for plots belonging to Gsat. This is in line with what was observed previously in Table 2; the

determination coefficientR2 was lower on themetamodels built on PC2, especially for plots belonging to Gsat.

Nonetheless, the precision of Sobol’ indices is still satisfactory.

4.3.3 Aggregation to the catchment scale

To obtain synthetic sensitivity indices of the input parameters over the whole spatio-temporal domain, the

Sobol’ indices on PC1 and PC2 from Sections 4.3.1 and 4.3.2 are aggregated temporally using Eq. 7 where

j ∈ 1, 2 and for plot m: λ1 = λ
(m)
1 and λ2 = λ

(m)
2 . Then, the obtained GSI

(m)
w sensitivity indices are

aggregated spatially using Eq. 8 withM = 14, Var(Y (m)) = λ
(m)
1 + λ

(m)
2 and SIw,m = GSI

(m)
w .
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Figure 7: Aggregated GSI of all plots at the catchment scale. Ten input parameters with the highest GSI are

reported. The color and filling of the bars represents the nature of the input parameters as in Figures 1, 5 and

6.

Spatio-temporal sensitivity indices are reported on Figure 7. They are essentially a summary of the results

presented in Sections 4.3.1 and 4.3.2. As PC1 explains over 80% of the total variability of each plot (Table 1),
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and as theta_surf has a Sobol index superior to 0.85 (Figure 5), it comes as no surprise that by doing a weighted

average (Eq. 7) and (Eq. 8), the most influential parameters are the thetas_surf of all soil types and vegetative

filter strips, ordered by the number of plots belonging each soil type.

5 Conclusion

In this work, variance-based sensitivity indices are calculated for the surface moisture outputs of the PESH-

MELBA model. The sensitivity indices consider both the temporal and the spatial aspect of the output. Firstly,

the most influential input parameters on the output dynamics are obtained for the first two functional princi-

pal components of every plot on the catchment. Then, these sensitivity indices are aggregated temporally and

spatially, enabling a synthetic view of the most influential parameters on the whole spatio-temporal domain.

Notably, the surface hydrodynamic parameters have a predominant influence on the catchment’s surfacemois-

ture. In particular, the input parameters describing the water content at saturation of all soil types constituting

the catchment account for more than 80% of the total output variability.

This synthetic view provides a summary of the most influential parameters at the catchment scale, however in

order to understand local contributions to the dynamics, the Sobol’ indices calculated on the principal compo-

nents are more informative. Thus, the average surface moisture of the period is governed by the surface soil

hydrodynamic properties. Furthermore, the contrast between the surface moisture during saturated periods

and unsaturated periods is influenced by deep soil hydrodynamic properties. The dependence on deep soil

properties implies that the saturation in water is not limited to the surface layers. Rather, the whole soil col-

umn under the plot is saturated. Hence, the surface runoff observed on these plots is due to saturation excess

overland flow

The use of PCEmetamodels for the calculation of Sobol’ indices lowers significantly the number of PESHMELBA

model simulations needed. Indeed, only 3000 model simulations are used to calculate all sensitivity indices

with high precision.

Further research could focus on the application of cluster based approaches, such as in Roux et al. (2021), thus

distinguishing the inter and intra variability of the simulations that reach surfacemoisture saturation and those

who don’t. Additionally, other sensitivity indices, such as the HSIC could be adapted to spatio-temporal outputs

and compared to the indices obtained in this work.
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Table 3: List of PESHMELBA model parameters selected for the sensitivity analysis. The suffixes surf, interm

and deep specify the soil horizon, while suffixes soil1, soil2 and soil3 specify the soil type (SU1, SU2, SU3). The

suffix (VFZ) is present for parameters of vegetative buffer strips. Gaussian, lognormal and uniform distributions

are listed asN (µ, σ), LN (µ, σ) and U(a, b). The parameter thetar is bounded to positive values only.

Name Definition Unit Distribution

thetas_surf_soil1 water content at saturation [L3L−3] N (0.3375, 0.0338)
thetas_interm_soil1 [L3L−3] N (0.3362, 0.0336)
thetas_deep_soil1 [L3L−3] N (0.2844, 0.0284)
thetas_surf_soil2 [L3L−3] N (0.3375, 0.0338)
thetas_interm_soil2 [L3L−3] N (0.3537, 0.0354)
thetas_deep_soil2 [L3L−3] N (0.4162, 0.0416)
thetas_surf_soil3 [L3L−3] N (0.3375, 0.0338)
thetas_interm_soil3 [L3L−3] N (0.3322, 0.0332)
thetas_deep_soil3 [L3L−3] N (0.316, 0.0316)
thetas_surf_soil1(VFZ) [L3L−3] N (0.3375, 0.0338)
thetas_surf_soil2(VFZ) [L3L−3] N (0.3375, 0.0338)
thetas_surf_soil3(VFZ) [L3L−3] N (0.3375, 0.0338)
thetar_surf_soil1 residual water content [L3L−3] N (0.0372, 0.0093)
thetar_deep_soil1 [L3L−3] N (0.0661, 0.0165)
thetar_surf_soil2 [L3L−3] N (0.0372, 0.0093)
thetar_interm_soil2 [L3L−3] N (0, 0.0093)
thetar_deep_soil2 [L3L−3] N (0, 0.0093)
thetar_surf_soil3 [L3L−3] N (0.0372, 0.0093)
thetar_deep_soil3 [L3L−3] N (0.0612, 0.0153)
thetar_surf_soil1(VFZ) [L3L−3] N (0.0372, 0.0093)
thetar_surf_soil2(VFZ) [L3L−3] N (0.0372, 0.0093)
hg_surf_soil1 Van Genuchten water retention curve parameter [−] N (−9.69, 0.969)
hg_surf_soil2 [−] N (−9.69, 0.969)
hg_deep_soil2 [−] N (−30.18, 3.018)
hg_surf_soil3 [−] N (−9.69, 0.969)
hg_surf_soil1(VFZ) [−] N (−9.69, 0.969)
hg_surf_soil2(VFZ) [−] N (−9.69, 0.969)
hg_surf_soil3(VFZ) [−] N (−9.69, 0.969)
mn_surf_soil1 Van Genuchten water retention curve parameter [−] N (0.2685, 0.0268)
mn_deep_soil1 [−] N (0.2274, 0.0227)
mn_surf_soil2 [−] N (0.2685, 0.0268)
mn_interm_soil2 [−] N (0.1289, 0.0129)
mn_deep_soil2 [−] N (0.1, 0.01)
mn_surf_soil3 [−] N (0.2685, 0.0268)
mn_deep_soil3 [−] N (0.1791, 0.0179)
mn_surf_soil1(VFZ) [−] N (0.2685, 0.0268)
mn_surf_soil2(VFZ) [−] N (0.2685, 0.0268)
mn_surf_soil3(VFZ) [−] N (0.2685, 0.0268)
Ks_surf_soil2 hydraulic conductivity at total saturation [cm/h] LN (2.6291, 0.198)
Ks_interm_soil2 [cm/h] LN (2.0292, 0.198)
Ks_interm_soil2 [cm/h] LN (1.2206, 0.198)
Ks_deep_soil2 [cm/h] LN (0.3391, 0.198)
Ks_interm_soil3 [cm/h] LN (2.3762, 0.198)
Ks_surf_soil1(VFZ) [cm/h] LN (2.6884, 0.198)
Ks_surf_soil2(VFZ) [cm/h] LN (2.6884, 0.198)
Ks_surf_soil3(VFZ) [cm/h] LN (2.6884, 0.198)
Kx_surf_soil2 hydraulic conductivity at soil matrix saturation [cm/h] LN (−2.2926, 0.198)
Kx_interm_soil2 [cm/h] LN (−2.833, 0.198)
veget_LAImax_1 maximal Leaf Area Index [−] U (2, 3)
plot_hpond maximal ponding height of the plots [cm] U (0.8, 1.2)
river_di distance between the riverbed and the aquifer [cm] U (120, 180)
river_ks hydraulic conductivity of the riverbed at saturation [cm/h] LN (2.1268, 0.198)
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