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ABSTRACT 15 

Trichothecenes (TCTs) are very common mycotoxins. While the effects of DON, the most 16 

prevalent TCT, have been extensively studied, less is known about the effect of other TCTs. 17 

DON has ribotoxic, pro-inflammatory, and cytotoxic potential and induces multiple toxic 18 

effects in humans and animals. Although DON is not genotoxic by itself, it has recently been 19 

shown that this toxin exacerbates the genotoxicity induced by model or bacterial genotoxins. 20 

Here, we show that five TCTs, namely T-2 toxin (T-2), diacetoxyscirpenol (DAS), nivalenol 21 

(NIV), fusarenon-X (FX), and the newly discovered NX toxin, also exacerbated the DNA 22 

damage inflicted by various genotoxins. The exacerbation was dose dependent and observed 23 

with phleomycin, a model genotoxin, captan, a pesticide with genotoxic potential, and 24 

colibactin, a bacterial genotoxin produced by the intestinal microbiota. For this newly described 25 

effect, the TCTs ranked in the following order: T-2>DAS>FX>NIV≥DON≥NX. The genotoxic 26 

exacerbating effect of TCTs correlated with their ribotoxic potential, as measured by inhibition 27 

of protein synthesis. In conclusion, our data demonstrate that TCTs, which are not genotoxic 28 

by themselves, exacerbate DNA damage induced by various genotoxins. Therefore, foodborne 29 

TCTs could enhance the carcinogenic potential of genotoxins present in the diet or produced 30 

by intestinal bacteria. 31 
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 35 

 36 

INTRODUCTION 37 

Mycotoxins are the most prevalent natural dietary toxins and contaminate up to 70% of 38 

global crop production (Eskola et al., 2020). They represent a major issue for food safety 39 

(Payros et al., 2021a). These secondary metabolites produced by microscopic fungi are resistant 40 

to industrial processes and cooking and contaminate finished processed food. Trichothecenes 41 

(TCTs) are one of the most prevalent classes of mycotoxins, comprising over 200 structurally 42 

related compounds with a common sesquiterpenoid skeleton (Polak-Śliwińska et al., 2021). The 43 

differences in their substitution patterns allow TCTs to be classified into four subgroups. Type 44 

A TCTs (TCTs-A) and type B TCTs (TCTs-B) are major food contaminants whereas type C 45 

and D TCTs rarely occur in food matrices. Type D TCTs have attracted more attention as indoor 46 

pollutants (Gottschalk et al., 2008). TCTs-A include T-2 toxin (T-2), diacetoxyscirpenol 47 

(DAS), and the newly discovered form NX (Varga et al., 2015; Pierron et al., 2022). TCTs-B, 48 

which are distinguished from TCTs-A by the presence of a ketonic oxygen at C-8, are mainly 49 

represented by deoxynivalenol (DON), nivalenol (NIV) or fusarenon-X (FX) (Figure 1). In 50 

Europe, almost 50% of cereals are contaminated with DON (Knutsen et al., 2017a), 16% with 51 

NIV (Knutsen et al., 2017b), and 10% with FX (Schothorst et al., 2003). T-2 was detected in 52 

20% of European cereal samples (Knutsen et al., 2017c) and DAS in 1.5% of European cereals 53 

and cereal-based food (Knutsen et al., 2018). 54 

The toxicity of DON, the most prevalent foodborne TCT, is well documented. Acute DON 55 

poisoning causes vomiting, nausea, and diarrhoea, while chronic exposure results in food 56 

refusal, anorexia, reduced body weight gain, and altered immune responses (Terciolo et al., 57 

2018; Pinton and Oswald, 2014; Payros et al. 2016). At the cellular level, DON triggers 58 

ribotoxicity signalled by protein translation arrest and recruitment of MAP kinases, resulting in 59 

inflammation, cytotoxicity and apoptosis, depending on the dose and duration of exposure 60 

(Payros et al., 2016; Alassane-Kpembi et al., 2013; Payros et al., 2021b). By contrast, other 61 

TCTs are largely overlooked in toxicology studies (Seeboth et al., 2010; Alassane-Kpembi et 62 

al., 2017a; Alassane-Kpembi et al., 2017b; Pierron et al., 2022). Additional studies are needed, 63 

both because these TCTs are widely distributed in food, and because they induce not only 64 

effects similar to DON, such as ribotoxicity, cytotoxicity, inflammation, vomiting and food 65 

refusal, but also specific effects. For example, T-2 induces a potent oral irritation effect with 66 

skin blistering (Wyatt et al., 1973), FX exhibits potent antiviral properties (Tani et al., 1995), 67 

DAS induces intestinal cell hyperplasia (Weaver, 1981), NIV triggers murine dendritic cells 68 



necrosis not documented for other TCTs (Luongo et al., 2010) and NX specifically targets the 69 

mitochondria (Soler et al., 2022). The differences between TCTs are also at the molecular level, 70 

with differences in the translation step inhibited. Although all TCTs are thought to inhibit 71 

peptide elongation (Foroud et al., 2019), T-2, DAS, NIV, and FX also inhibit the initiation step, 72 

and DON and FX also inhibit translation termination (Cundliffe et al., 1977).  73 

DON, which is not genotoxic on its own, has recently been described as capable of 74 

increasing the genotoxicity induced by model or bacterial genotoxins (Payros et al., 2017, 75 

Garofalo et al., 2022). This effect is observed with genotoxins with different modes of action, 76 

and a role for ribotoxicity has been proposed (Garofalo et al., 2022). In this work, we show that 77 

the genotoxicity exacerbation is not only an effect of DON, but also of T-2, DAS, NIV, FX, 78 

and NX. Importantly, TCTs do not only exacerbate the genotoxicity induced by a model 79 

genotoxin, but also the genotoxicity induced by captan, a pesticide contaminating the food, and 80 

the genotoxicity induced by colibactin, a genotoxin produced by Escherichia coli bacteria in 81 

the gut. Thus, although TCTs are not genotoxic, they could enhance the carcinogenic potential 82 

of genotoxins present in the diet or in our microbiota. 83 

 84 

METHODS 85 

Toxins and reagents. DON, NIV, T-2, FX, and DAS were purchased from Sigma-Aldrich 86 

(Saint-Quentin Fallavier, France) and Captan by Dr. Ehrenstorfer (GmbH, Germany/CIL-87 

Cluzeau). Phleomycin (PHM) (13.78 mM) was purchased from Invivogen (Toulouse, France). 88 

NX, obtained following the methods described by Aitken et al., was a generous gift from D. J. 89 

Miller (Aitken et al., 2019). Stock solutions were stored at -20°C. DON (5 mM), NIV (30 mM), 90 

T-2 (5 mM), FX (10 mM), DAS (3mM), and captan (50 mM) were dissolved in DMSO; NX 91 

(5mM) was dissolved in water.  92 

 93 

Cell treatments. Non-transformed rat intestinal epithelial cells (IEC-6, ATCC CRL-1592) 94 

were cultured in complete DMEM medium supplemented with 10% foetal calf serum, 1% non-95 

essential amino acids (Fisher scientific, Hampton, USA), and 0.1 U/mL bovine insulin (Sigma- 96 

Aldrich), at 37°C with 5% CO2. The cells were split regularly to maintain exponential growth. 97 

A fresh culture was started from a liquid nitrogen stock every 30 passages. The cells were 98 

confirmed free of mycoplasma contamination by 16S PCR. For viability assay, cells were 99 

seeded in white 96 well plates (Dutscher, Bruxelles, Belgium) and grown to reach ~80% 100 

confluence. Cells were then treated for 24 h with various doses of TCTs (or DMSO vehicle) 101 

before viability was measured. For ribotoxicity and genotoxicity measurement, cells were 102 



seeded in black 96 well plates (Greiner bio-one, Les Ulis, France) and grown to reach ~80% 103 

confluence. For ribotoxicity measurement, cells were incubated for 4 h with various doses of 104 

TCTs or DMSO vehicle followed by a 30 min incubation with puromycin (Sigma-Aldrich) at 105 

a final concentration of 10 µg/mL. For PHM and captan-induced genotoxicity measurement, 106 

cells were co-treated for 4 h with 5 µM PHM or 10 µM of captan and various doses of TCTs.  107 

Preparation of colibactin-producing bacteria. The intestinal carcinogenic Escherichia coli 108 

strain NC101 that produces the genotoxin colibactin, and the isogenic mutant strain 109 

NC101ΔclbP which do not produce the toxin (Yang et al., 2020) were cultured in Lysogeny-110 

broth (LB) Lennox medium overnight at 37°C with shaking. Epithelial cell-bacteria interaction 111 

medium DMEM 25 mM Hepes (Fisher scientific) was inoculated from overnight bacterial 112 

cultures and incubated at 37°C with shaking until the bacteria reached an optical density at 600 113 

nm of 0.5 before infection.  114 

 115 

Colibactin-induced genotoxicity measurement. IEC-6 cells were infected with E. coli 116 

producing colibactin as described previously (Payros et al., 2017). Briefly, cells were incubated 117 

with different doses of TCTs and infected for 4 h with wild type (WT) E. coli NC101 or the 118 

clbP isogenic mutant. Cells were then washed and incubated in complete DMEM medium 119 

supplemented with 200 µg/mL gentamicin and maintained 4 h post-infection in the presence of 120 

TCTs or DMSO vehicle, and then fixed for DNA damage measurement. 121 

 122 

Viability assay. Cell viability was assayed with the CellTiter-Glo Luminescent Cell Viability 123 

Assay (Promega, Charbonnières-les-Bains, France) as described (Khoshal et al., 2019). 124 

Luminescence was measured with a spectrophotometer (TECAN Spark, Mannedorf, 125 

Switzerland). 126 

 127 

Ribotoxicity analysis by In-Cell-Western. Ribotoxicity was measured using protein synthesis 128 

inhibition as a surrogate. The measurement of protein synthesis by puromycin labelling was 129 

performed as described (Henrich, 2016). Briefly, puromycin was immuno-detected by In-Cell-130 

Western using an anti-puromycin antibody (clone 12D10 diluted 1:5000; Millipore, Molseihm, 131 

France). GAPDH, which is constitutively expressed and has a half-life of 8 h (Dani et al., 1984), 132 

was used as a control. The anti GAPDH antibody was diluted 1:5000 (ABS16; Millipore). 133 

Secondary antibodies were diluted 1:5000 (IRDye 800CW; Rockland, and IRDye 680RD 134 

Licor). Puromycin signal was normalized with the average fluorescence of puromycin-labelled 135 

control cells (Henrich, 2016).  136 



 137 

Quantification of DNA damage by In-Cell-Western. In-Cell-Western was performed as 138 

previously described (Martin et al., 2013; Tronnet and Oswald, 2018; Theumer et al., 2018). 139 

Briefly, fixed cells were permeabilized and stained with the primary antibody anti-γH2AX 140 

(20E3 diluted 1:200; Cell Signalling, Saint-Quentin en Yvelines, France). Secondary antibody 141 

(IRDye 800CW diluted 1:1000; Rockland) and RedDot2 DNA marker (Biotium) were 142 

measured at 680 and 800 nm with a Sapphire Biomolecular Imager (Azure Biosystems). The 143 

genotoxic index was calculated by dividing the γH2AX signal by the corresponding DNA 144 

fluorescence and normalized with the average signal in control cells (Tronnet and Oswald, 145 

2018). 146 

 147 

Data analysis. GraphPad Prism 8.0 was used to calculate concentrations that inhibited the cell 148 

viability by 20% (IC20), and the protein synthesis by 20% (20% PSI level), performing a four-149 

parameter nonlinear regression model (sigmoidal dose-response analysis). Profile-likelihood 150 

confidence intervals were calculated from the nonlinear regressions. One-way analysis of 151 

variance (ANOVA) followed by Bonferroni’s multiple comparison were performed. The data are 152 

expressed as mean ± SEM. 153 

 154 

RESULTS 155 

Trichothecenes induce a dose-dependent reduction in cell viability. As the intestinal tract is 156 

the primary target of TCTs, the non-transformed intestinal epithelial cell line IEC-6 was used. 157 

Cytotoxicity was first evaluated 4 h and 8 h after TCTs treatment, and no cytotoxicity was 158 

detected (Table S1). The effect of TCTs on cell viability was then evaluated 24 h after treatment, 159 

and we observed a dose-dependent inhibition of viability induced by DON, NIV, T-2, FX, DAS 160 

and NX (Figure 2A). IC20 values, which correspond to the dose inducing a 20% reduction of 161 

cell viability, were calculated for each TCT (Figure 2B). For cytotoxicity, TCTs were classified 162 

as follows: T-2>DAS>FX>NIV>NX>DON.  163 

 164 

Trichothecenes induce a dose-dependent ribotoxicity. Ribotoxicity is the main mode of 165 

action of TCTs (Pestka, 2010). To quantify the ribotoxicity of the TCTs, we examined 166 

translational inhibition, assessed by the incorporation of the protein translation marker 167 

puromycin in newly synthesized peptides (Henrich, 2016). The incorporated puromycin was 168 

quantified by immunofluorescence. All the TCTs induced a dose-dependent ribotoxicity 169 

(Figure 3A). Treatment with TCTs did not induce a drop in GAPDH levels (which has an 8 h 170 



half-life), confirming that puromycin specifically labelled newly synthesized peptides (Figure 171 

3A, Figure S2). The doses inducing a 20% reduction in protein synthesis were calculated 172 

(Figure 3B). For their ribotoxic effect, TCTs were classified as follows: T-173 

2>DAS>FX>NIV>NX≥DON. 174 

 175 

Trichothecenes exacerbate DNA damage induced by the drug phleomycin. The genotoxic 176 

exacerbation properties of TCTs were first evaluated with phleomycin (PHM), a genotoxin 177 

commonly used as a model for genotoxicity assessments (Chen and Stubbe, 2005). IEC-6 cells 178 

were treated for 4 h with PHM and/or TCTs. As expected, cells treated with PHM alone 179 

exhibited DNA damage signalled by the γH2AX marker (Rogakou et al., 1998). TCTs alone 180 

did not induce γH2AX, indicating that they are not genotoxic by themselves. In contrast, all the 181 

TCTs induced exacerbation of PHM-induced DNA damage, in a dose-dependent manner 182 

(Figure 4A). A significant increase occurred from 1 µM for DON, 3 µM for NX, 10 nM for T-183 

2, 0.3 µM for FX, 30 nM for DAS, and 3 µM for NX (Figure 4B). The exacerbation of 184 

genotoxicity did not induce cell detachment, indicating that this effect was not a consequence 185 

of massive cell death (Figure 4, Table S1).  186 

 187 

Trichothecenes exacerbate DNA damage induced by captan, a pesticide which 188 

contaminates food. We then tested the ability of TCTs to exacerbate genotoxicity induced by 189 

a food-contaminating genotoxin, such as the pesticide captan, which can be found in fruits, 190 

vegetables, and cereals (Shinde et al., 2019). For this purpose, IEC-6 cells were exposed to 191 

captan and/or TCTs for 4 h. Captan alone induced DNA damage, and TCTs induced an 192 

exacerbation of the genotoxicity of captan, in a dose-dependent manner. Significant increase 193 

occurred from 3 µM for DON and NX, 1 nM for T-2, 1 µM for FX, and 3 nM for DAS, and did 194 

not induce cell death (Figure 5, Table S1).  195 

 196 

Trichothecenes exacerbate genotoxicity induced by colibactin, a genotoxin produced by 197 

members of the intestinal microbiota. We then determined whether TCTs also exacerbate 198 

genotoxicity induced by a bacterial genotoxin produced by the intestinal microbiota, colibactin. 199 

The genotoxicity of colibactin was measured by infecting IEC-6 cells with the live colibactin-200 

producing bacterium Escherichia coli NC101. Since colibactin is unstable and is not purifiable, 201 

direct contact between live colibactin-producing E. coli strain and eukaryotic cells is required 202 

to induce DNA damage (Chagneau et al., 2022; Nougayrède et al., 2006; Bossuet-Greif et al., 203 

2018). Cells were infected with strain NC101 and either co-treated with TCTs or not. Cells 204 



infected with the WT strain showed an increase in their γH2AX signal, resulting from colibactin 205 

damage, whereas cells infected with the NC101 ΔclbP strain, which is impaired for colibactin 206 

synthesis, did not show DNA damage (Figures 6, S1). By contrast, TCTs-treated and WT-207 

infected cells exhibited exacerbation of colibactin-induced DNA damage, which increased with 208 

TCT dosage. A significant increase occurred at 3 µM for DON, NX and NIV, 1 nM for T-2, 0.3 209 

µM for FX, and 10 nM for DAS (Figure 6), and was not associated with cell death (Table S1). 210 

Exacerbation of DNA damage was not associated with increased colibactin production by TCT-211 

treated bacteria, nor was it associated with an impact of TCTs on bacterial growth 212 

(Supplementary methods 1, Figure S1).  213 

 214 

DISCUSSION 215 

Food contamination by TCTs is a public health issue of the utmost importance. TCTs 216 

levels in foods are indeed high and may even increase in the future, in part due to climate change 217 

(Van Der Fels, 2016). DON, which is not genotoxic, was recently described as a genotoxicity 218 

enhancer (Garofalo et al., 2022; Payros et al., 2017). In this work, we show that this is not only 219 

an effect of DON, but also a novel effect attributable to at least five other TCTs: NIV, T-2, FX, 220 

DAS and the recently discovered NX toxin. These TCTs exacerbate not only the genotoxicity 221 

induced by the model genotoxin phleomycin, but also the genotoxicity induced by captan, a 222 

pesticide with genotoxic properties, and by colibactin, a bacterial genotoxin produced in the 223 

gut. For this newly identified effect, TCTs were classified as follows: T-224 

2>DAS>FX>NIV≥DON≥NX.  225 

The cytotoxicity of TCTs was compared in non-transformed IEC-6 intestinal cells. Our 226 

data show that TCTs, which were not cytotoxic after a treatment lasting 4 h or 8 h, induced a 227 

dose-dependent inhibition of cell viability after 24 h. These data allowed the classification of 228 

TCTs as follows: T-2>DAS>FX>NIV>NX>DON. Although, to the best of our knowledge, this 229 

is the first direct comparison and ranking of TCTs' cytotoxicity in IEC-6 cells, the classification 230 

is consistent with the literature. T-2 toxin is indeed known as the most toxic TCT, with IC20 231 

about 1000 times greater than others (Fernández-Blanco, 2018). DAS is slightly less cytotoxic 232 

than T-2, but more than FX (Moon, 2003), and FX is more cytotoxic than NIV and DON 233 

(Aupanun et al., 2019; Alassane-Kpembi et al., 2017a). We observed that IEC-6 cells exhibit a 234 

modest sensitivity to DON. As a matter of fact, after 24 h of treatment, we found an IC20 of 235 

20.2 µM when others found IC20 of ≈0.5 µM in IPEC-1 cells, or ≈3 µM in Caco-2 cells 236 

(Alassane-Kpembi et al., 2015; Pierron et al., 2022). Our results are consistent with those 237 

obtained by Bianco et al., who found an IC50 for DON of 50.2 µM in IEC-6 cells, confirming 238 



the limited sensitivity of this cell line (Bianco et al., 2012). In addition, our results highlight 239 

that NX is approximately twice as cytotoxic as DON in IEC-6 cells. This result is consistent 240 

with the results of Pierron et al. which showed a higher inflammatory potential for NX 241 

compared to DON in porcine intestinal explants (Pierron et al., 2022). In contrast, the literature 242 

shows that NX-induced cytotoxicity is comparable to that of DON in HT-29 and Caco-2 cells 243 

(Varga et al., 2018; Pierron et al., 2022). Importantly, the doses of TCTs that were cytotoxic 244 

after 24 h of exposure were higher than the doses that exacerbated genotoxicity (Table 1). This 245 

indicates that non-cytotoxic doses of TCTs exacerbate genotoxicity. Because DNA damage is 246 

a source of genetic mutations through repair errors, this result raises questions about the fate of 247 

these cells (Basu, 2018). Cells co-exposed to genotoxins and TCTs survive and could therefore 248 

pursue their cell cycle and division following repair of DNA damage. Further studies are needed 249 

to examine whether cells co-exposed to TCTs and genotoxins could accumulate mutations, 250 

ultimately resulting in cellular transformation.  251 

In this work, we also classified TCTs for their ribotoxicity. The ranking T-252 

2>DAS>FX>NIV>NX≥DON parallels that obtained for cytotoxicity and is coherent with the 253 

structures of TCTs. The most ribotoxic TCTs carry substitutions thought to improve binding to 254 

the ribosome, such as the isovaleryl group at C8 in T-2 or the acetyl groups at C4 and C15 in 255 

DAS (Wu et al., 2013; Wang et al., 2021). Differences in TCTs' ribotoxicity may also be related 256 

to divergences in structural rearrangements induced by ribosome binding (Garreau de 257 

Loubresse et al., 2014). Depending on the structure of TCTs, structural rearrangements could 258 

differ and induce variations in the mode of protein synthesis inhibition.  We have previously 259 

suggested that DON-induced ribotoxicity is involved in the genotoxicity exacerbation 260 

phenotype. Indeed, ribotoxic compounds reproduced the effect, while the non-ribotoxic DON 261 

derivative DOM-1, did not (Garofalo et al., 2022). The correlation between TCTs' ribotoxic 262 

and genotoxicity exacerbating doses observed in this work (Table 1) support this hypothesis. 263 

Interestingly, TCTs with substitutions that increase affinity to the ribosome have a greater 264 

capacity to exacerbate genotoxicity. This suggests that there is a structure-function link between 265 

ribotoxicity and genotoxicity exacerbation. TCTs could be classified into 3 subgroups 266 

according to their capacity to exacerbate the genotoxicity, with regard to their affinity with the 267 

ribosome: T-2, DAS > FX > NIV, NX, DON.  268 

Several mechanism could be involved the ribosome-dependent exacerbation of 269 

genotoxicity. In response to DNA damage, cells reprogram their gene expression to synthetize 270 

proteins of the DNA damage response (Spriggs, Bushell and Willis, 2010). TCTs-induced 271 

ribotoxicity could disrupt the production of these stress response proteins.  Through their 272 



ribotoxic effect, TCTs can induce inflammation (Pestka, 2010; Garcia et al 2018), which 273 

represses the DNA damage response (Jaiswal et al., 2000). Finally, it has been documented that 274 

DON activates the protein kinase R (PKR), which triggers inhibition of the DNA damage repair 275 

and sensitizes cells to DNA damage (Zhou et al., 2014). As they share structural similarities 276 

with DON, TCTs could also recruit PKR and induce sensitization to DNA damage. Further 277 

work is required to understand how ribotoxicity results in this novel effect of TCTs. 278 

We observed that exacerbation of genotoxicity occurred at realistic doses of TCTs. The 279 

European Food Safety Authority (EFSA) established a no observable adverse effect level 280 

(NOAEL) for DON of 100 µg/kg body weight (bw)/day (Knutsen et al. 2017a), and 65 µg/kg 281 

bw/day for DAS (Knutsen et al., 2018). The Benchmark Dose Limit (BMDL10) for NIV is 350 282 

µg/kg bw/day (Knutsen et al., 2017b), and 3.3 µg/kg bw/day for T-2 (Knutsen et al., 2017c). 283 

Estimating, as Maresca et al., 2013, that for a human weighing 70 kg, the small intestine content 284 

is 1L, these doses can be converted to intestinal concentrations of 23.6 µM DON, 0.5 µM T-2, 285 

12.5 µM DAS, and 78.4 µM NIV. Our study shows no effect doses for genotoxicity 286 

exacerbation well below these reference values, with 1 µM, 3 nM, 10 nM, and 3 µM for DON, 287 

T-2, DAS and NIV, respectively. We observed that structurally related TCTs displayed 288 

comparable effects, and could therefore be classified into 3 subgroups: T-2, DAS > FX > NIV, 289 

NX, DON. As TCTs frequently co-occur in foodstuffs (Alassane-Kpembi et al., 2017b), it 290 

would be appropriate to set group TDIs for TCTs, as it has been done for other groups of 291 

structurally related mycotoxins (Steinkellner et al. 2019). 292 

The exacerbation effect occurred with captan, a pesticide which induces in vitro DNA 293 

damage (Fernandez-Vidal et al., 2019). Captan can contaminate fruits and vegetables, but also 294 

cereals, which are the main source of TCTs (Shinde et al., 2019). Captan has been associated 295 

with multiple myeloma in farmers (Presutti et al., 2016), and is classified by the European 296 

Commission as “suspected of causing cancer” (European Commission, 2008). Notably, the 297 

exacerbation effect occurred at realistic doses of captan. The NOAEL for captan is indeed 25 298 

mg/kg bw per day (Anastassiadou et al., 2020), which corresponds to an intestinal concentration 299 

of 5.8 mM. Here, the exacerbated genotoxic effect of captan was observed with a dose as low 300 

as 10 µM, well below the NOAEL. Interestingly, TCTs also exacerbate the effect of colibactin, 301 

an endogenous genotoxin produced by the intestinal microbiota throughout the host’s life. 302 

Indeed, approximately 15% of 3-day-old neonates are colonized by colibactin-producing E. coli 303 

(Payros et al., 2014), and 25% of adults harbour these bacteria (Putze et al., 2009; Tenaillon et 304 

al., 2010; Johnson et al., 2008). In addition, the prevalence of the B2 phylogenetic group of E. 305 

coli, which includes up to 50% of colibactin-producing strains, is increasing in developed 306 



countries (Tenaillon et al., 2010). The intestinal microbiome also encodes other bacterial 307 

genotoxins such as cytolethal distending toxins (Taieb et al., 2016). Thus, humans are 308 

potentially co-exposed to TCTs together with endogenous genotoxins produced by the 309 

microbiota as well as multiple exogenous diet-borne genotoxins, such as captan, and other 310 

genotoxic pesticides such as glyphosate (International Agency for Research on Cancer, 2017), 311 

alcohol-derivatives (Brooks et al., 2014), and components of red meat (Bastide et al., 2011). 312 

Given the high prevalence of TCTs in foods, it is conceivable that TCTs could exacerbate the 313 

effect of the multiple genotoxic agents to which we are exposed. 314 

 315 

CONCLUSION 316 

We report that even though TCTs are not genotoxic by themselves, these contaminants promote 317 

the genotoxicity of genotoxins which are in the diet, such as pesticides, or are produced by the 318 

intestinal microbiota. Considering the wide prevalence of both TCTs and genotoxins, a large 319 

part of the population could be impacted by this novel effect. This is alarming because DNA 320 

damage drives cancer development (Basu, 2018). A preliminary report on a large-scale 321 

epidemiological study in the European Union has suggested a link between long-term exposure 322 

to DON and an increased risk of colon cancer (Huybrechts et al., 2019). If confirmed, 323 

exacerbation of DNA damage by DON could be a key to explaining this epidemiological link. 324 

Here, we show that DON is not the only dietary TCT to exhibit this genotoxicity-exacerbating 325 

property. There is an urgent need for additional studies on the impact of TCTs on carcinogenesis 326 

induced by other environmental toxicants. 327 
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Figure 1: Chemical structures of trichothecenes. Dietary TCTs are classified in two main 609 

groups. Group A TCTs include T-2 toxin (T-2), diacetoxyscirpenol (DAS), and NX. Groupe B 610 

TCTs include deoxynivalenol (DON), nivalenol (NIV), and fusarenon-X (FX). Group A TCTs 611 

can be distinguished from group B TCTs by the presence of a C8 keto-oxygen (circled in red). 612 
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Figure 2: Trichothecenes induce dose-dependent cytotoxicity in cultured intestinal 634 

epithelial cells. A: Non-transformed rat intestinal epithelial IEC-6 cells were treated for 24 h with 635 

various concentrations of TCTs and then viability was assessed by measuring ATP levels.  Data are 636 

expressed as mean ± SEM (3 to 6 independent experiments). P-values were calculated using one-637 

way ANOVA with Bonferroni’s multiple comparison, a: p<0.01; b: p<0.0001: B: Concentrations 638 

that inhibited cell viability by 20% (IC20) for each trichothecene were calculated using the data 639 

presented in panel A. 95% confidence intervals are shown in italics. 640 
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 666 

Figure 3: Trichothecenes induce dose-dependent ribotoxicity in cultured intestinal 667 

epithelial cells. A: IEC-6 cells were treated for 4 h with different concentrations of TCTs and then 668 

the cells were treated for 30 min with puromycin, a protein translation marker. Incorporation of 669 

puromycin into newly synthesized peptides was quantified with an anti-puromycin antibody by In-670 

Cell-Western. All the data are expressed as mean ± SEM (4 independent experiments). Values that 671 

are significantly different compared to the vehicle control are indicated a: p<0.01; b: p<0.0001: B: 672 

Concentrations that inhibited the protein synthesis by 20% (20% PSI) were calculated using the 673 

data presented in panel A. 95% confidence intervals are shown in italics. 674 
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Figure 4: Trichothecenes exacerbate the genotoxicity induced by the DNA-damaging drug 711 

phleomycin in a dose-dependent manner. A: IEC-6 cells were co-treated for 4 h with 5 µM 712 

phleomycin (PHM) and increasing doses of DON (red), NIV (yellow), T-2 (blue), FX (pink), DAS 713 

(green), or NX (purple). Then, DNA damage was measured by quantification of H2AX 714 

phosphorylation by In-Cell-Western. All data are expressed as mean ± SEM (4 independent 715 

experiments). P-values were calculated using a one-way ANOVA with Bonferroni’s multiple 716 

comparison. Values that are significantly different compared to vehicle are indicated by black 717 

asterisks, and values that are significantly different from infected cells without TCT are indicated 718 

by red asterisks. *:p<0.1;  **: p< 0.01; ***: p<0.001, ****: p< 0.0001, n.s. : not significant. B: No 719 

exacerbation doses for each TCT were defined from data in panel A. 720 
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Figure 5: Trichothecenes exacerbate the genotoxicity induced by the fungicide captan in a 789 

dose-dependent manner. A: IEC-6 cells were co-treated for 4 h with 10 µM captan and increasing 790 

doses of DON (red), NIV (yellow), T-2 (blue), FX (pink), DAS (green), or NX (purple). Then, DNA 791 

damage was measured by quantification of H2AX phosphorylation by In-Cell-Western. All data are 792 

expressed as mean ± SEM (3 independent experiments). P-values were calculated using one-way 793 

ANOVA with Bonferroni’s multiple comparison. Values that are significantly different compared 794 

to vehicle are indicated by black asterisks, and values that are significantly different from infected 795 

cells without TCT are indicated by red asterisks. *:p<0.1;  **: p< 0.01; ***: p<0.001, ****: p< 796 

0.0001, n.s.: not significant. B: No exacerbation dose for each TCT was defined from data in panel 797 
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Figure 6: Trichothecenes exacerbate the genotoxicity induced by the bacterial genotoxin 857 

colibactin in a dose-dependent manner. A: IEC-6 cells were infected 4 h with live colibactin-858 

producing E. coli strain NC101 (multiplicity of infection of 10 bacteria per cell) with increasing 859 

doses of DON (red), NIV (yellow), T-2 (blue), FX (pink), DAS (green), or NX (purple). Cells were 860 

washed to remove bacteria and further incubated with the TCTs for 4 h. Then, DNA damage was 861 

measured by quantification of H2AX phosphorylation by In-Cell-Western. All data are expressed 862 

as mean ± SEM (3 independent experiments). P-values were calculated using one-way ANOVA 863 

with Bonferroni’s multiple comparison. Values that are significantly different compared to vehicle 864 

are indicated by black asterisks, and values that are significantly different from infected cells 865 

without TCT are indicated by red asterisks. *: p<0.1; **: p< 0.01; ***: p<0.001, ****: p< 0.0001, 866 

n.s.: not significant. B: No exacerbation doses for each TCT were defined from data shown in figure 867 
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Table 1: Trichothecenes classification for cytotoxicity, ribotoxicity, and capacity to 894 

exacerbate the genotoxicity. Green boxes: doses inducing no significant cytotoxicity, 895 

ribotoxicy or genotoxicity exacerbation. Red boxes: doses inducing significant cytotoxicity, 896 

ribotoxicity or genotoxicity exacerbation. 897 
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HIGHLIGHTS  

 A novel effect of trichothecenes (TCTs) has been identified 

 TCTs exacerbate genotoxicity 

 Six type A or type B TCTs display this effect  

 This effect is observed with a drug, a pesticide, and a toxin produced by microbiota 

 For genotoxicity exacerbation, TCTs are classified: T-2>DAS>FX>NIV≥DON≥NX 
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Supplementary methods 1:  15 

 16 

In vitro crosslinking assay and bacterial load analysis. To examine colibactin production by 17 

the bacteria, a DNA crosslinking assay was performed as previously described (Bossuet-Greif 18 

et al., 2018). Briefly, 400 ng linear DNA was exposed to 1.5×106 bacteria in 100 µl infection 19 

medium in the presence of TCTs or DMSO vehicle. After 4 h at 37°C, bacteria were pelleted, 20 

plated on LB agar plates, and enumerated. The DNA was purified from the culture supernatant 21 

using the Qiagen QIAquick PCR kit (Qiagen, Hilden, Germany). Purified DNA was loaded on 22 

a denaturing agarose gel (pH 8) and electrophoresis was carried for 45 min at 25V followed by 23 

2 h 30 min at 50V. After gel neutralization, DNA was stained with Gel Red (Biotium, San 24 

Francisco, USA) and visualized in a Bio-Rad Chemidoc XRS system. The percentage of 25 

crosslinked DNA was quantified by using the FIJI software (https://imagej.net/Fiji). 26 
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 48 
Table S1: The genotoxicity exacerbation induced by trichothecenes is not associated with 49 

cytotoxicity. DNA in the cells was calculated from RedDot2 DNA staining using the In-Cell-50 

Western method. Values were obtained after normalization from untreated cells considered as 51 

100%.  52 
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 68 

No genotoxin
(4h)

No genotoxin
(8h)

Phleomycin (5 µM)
(4h)

Captan (10 µM)
(4h)

NC101 WT (MOI 10)
(8h)

 Control 
(vehicle) 100 100 98.8 ± 1.6 90.1 ± 1.3 105.1 ± 2.8

DON (10 µM) 83.7 ± 5.8 87.6 ± 6.9 82.4 ± 13.2 99.8 ± 12.5 91.6 ± 8.5

T-2 (10 nM) 86.2 ± 6.6 95.5 ± 2.0 97.7 ± 17.9 107.6 ± 7.8 112.8 ± 3.7

DAS (30 nM) 92.2 ± 12.8 94.2 ± 6.2 104.1 ± 11.6 108.8 ± 3.04 111.4 ± 3.7

NIV (3 µM) 100.6 ± 5.4 103.9 ± 8.4 100.1 ± 6.2 114.7 ± 4.3 109.8 ± 7.4

FX (1 µM) 101.8 ± 3.4 103.7 ± 1.0 90.5 ± 5.2 107.9 ± 12.0 107.0 ± 2.7

NX (10 µM) 85.9 ± 6.9 97.4 ± 2.4 77.4 ± 6.8 85.5 ± 4.1 79.1 ± 0.9

DNA quantification (% of control cells)
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 98 

Figure S1: Trichothecenes does not impact colibactin production and bacterial growth. 99 

A, B: E. coli NC101 WT or ΔclbP (MOI 100) were grown for 3.5 h, and then linearized DNA 100 

was added and incubated for 30 min. DNA was purified and analysed by denaturing gel 101 

electrophoresis, and the percentage of crosslinked DNA (arrow) was quantified by image 102 
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analysis. C: Non-transformed rat intestinal epithelial IEC-6 cells were infected for 4 h with the 103 

producing-colibactin E. coli strain NC101 WT or to the colibactin-deficient strain NC101 ΔclbP 104 

(MOI 10). Then, H2AX phosphorylation levels were quantified by In-Cell-Western. D, E: 105 

colibactin production was measured as in panel A in presence of TCTs. F: after the interaction 106 

between bacteria TCT and DNA, the bacteria were counted by serial dilution and plating. After 107 

an overnight incubation, Colony Forming Units (CFU) were enumerated. All the data are 108 

expressed as mean ± SEM (3 independent experiments). All P-values are calculated using one-way 109 

ANOVA with Bonferroni’s multiple comparison. n.s: not significant. 110 
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 128 

Figure S2: Non-transformed rat intestinal epithelial IEC-6 cells were treated for 4 hours with 129 

various concentrations of DON (red), NIV (yellow), T-2 (blue), FX (pink), DAS (green), or NX 130 

(purple). GAPDH levels were measured with an anti-GAPDH antibody by In-Cell-Western. All the 131 

data are expressed as mean ± SEM (4 independent experiments).  132 
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