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Climate Adaptive Response of Rice Yield in Vietnam:

New Insight through Panel Data Modeling with Heterogeneous Slopes

Abstract

Rice production is central to the Vietnamese economy, not only in terms of contribution to

Vietnam's GDP, but also to the food security of its population. However, Vietnam is one of

the countries most threatened by climate change in the coming decades, and its rice production

in particular. This paper focuses on rice yields and investigates their evolution over time and

between provinces over the period 1987-2015, depending on climatic conditions. Special attention

is devoted to the impact of heat stress. This impact is measured taking into account the potential

adaptation of farmers to these extreme events. To this end, a dynamic production function

allowing for spatial and temporal heterogeneity in rice yield responses of to climatic conditions is

estimated. Data descriptive analysis shows that the provinces with favorable conditions for rice

growth are also those that face the most risk of heat stress. Estimation results show that these

provinces adapt to heat stress conditions and that their adaptation e�ort begins to decrease

when heat stress risk becomes too high. Taking adaptation into account then makes it possible

to qualify the forecasts made regarding rice yields in the presence of climate change.

Keywords: Rice yield, climate change, adaptation, Vietnam, large panel data, mean observation

OLS

JEL Classi�cations: C23, D24, Q15, Q51, Q54, Q55

1 Introduction

Vietnam is located in Southeast Asia, with a high level of exposure to climate-related hazards and

extreme weather and climate events. Vietnam is thus often presented as one of the countries that are

most vulnerable to climate change.For instance, the Global Climate Risk Index 2020 ranked Vietnam

as the sixth country in the world most a�ected by climate variability and extreme weather events

over the period 1999-2018 (Eckstein et al., 2020). Moreover, at the end of the century, temperature

is projected to increase from approximately 1.3°C under a scenario of low greenhouse gases global
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emissions (RCP2.6) and to approximately 4.2°C under a high emissions scenario (RCP8.5), with faster

increases on the North of the country than in the South (Chapter 1 in Espagne et al., 2021). These

temperature rises are expected to lead to what might be considered chronic heat stress in some areas,

even under lower emissions pathways. Rainfall projections give mixed results. Therefore, in the 1.5°C

global warming level, annual rainfall is projected to increase by 0-20% relative to the baseline 1986-

2005. These rainfall projections vary signi�cantly between the di�erent Vietnamese regions. For larger

global warming levels, signi�cant increases (up to 30-40%) are possible for some locations. These

projections suggest a signi�cant increase in the risk of �ooding in some parts of Vietnam such as the

North East, the Red River Delta and Southern Vietnam. Sea-level rise projections exhibit, on average,

an increase from 44cm under RCP2.6 to 73cm under RCP8.5. These projections are more severe

for Mekong River Delta which is located in Southern Vietnam, whose estimated average delta plain

elevation is around 80cm and which represents 54.47% of Vietnamese rice-planted area. Sae-level

rise could reach 84cm under a high emissions scenario, causing large parts of the delta to fall below

sea-level by the end of the century.

Despite the rapid rate of industrialization since Doi Moi reforms launched in mid 1980s, agriculture

still remains a major economic sector in Vietnam with a GDP contribution of 14.85% in 2020 and

employing 18.8 million Vietnamese people over a total population of 97.41 million in 2019. Rice

production plays a central role in Vietnamese agriculture. Rice growing activity occupies 63% of

total agricultural land, with two major producing areas: Mekong River Delta and Red River Delta

which account for 54.47% and 24.80% of rice-planted area, respectively. Rice production reached

43.4 millions of tons in 2019, making Vietnam the �fth rice producing country in the world. Vietnam

also ranks as the world's second largest rice exporter.

Rice production is also essential to the livelihoods of 63% of Vietnamese farming households.

Moreover, rice production plays an important role in food security in Vietnam. Indeed, rice appears

to the main staple food in Vietnam accounting for 29.9% (resp. 25.1%) of total food expenditures of

rural (resp. urban) households in 2016 and 51.7% of their total per capita and per day calorie intake

(Bairagi et al., 2020).

Agriculture is arguably the sector most a�ected by climate change as it is directly exposed to
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climate elements.This is all the more so for rice production which takes place in the open air. Due to

the signi�cant contribution of rice production in Vietnamese economy but also its role in guarantying

food security of households in this country, it is important to assess its potential evolution faced to

climate change. This paper aims to contribute to the literature on the impact of climate change on

Vietnamese rice production by investigating the evolution of rice yields over the period 1987-2015 as

well as their variability between Vietnamese provinces, as a function of the climatic conditions which

these provinces faced during this period. The focus is on the impact of periods of heat stress and

potential adaptation of farmers to them at the provincial level. Then, following work on the impact of

climate change on crop yields (see, among others, Roberts et al., 2013), the impact of temperatures

is summarized in two indicators describing how much temperatures were favorable (growing degree

days) or unfavorable (killing degree days) during the growth period of rice, for a given year in each

province. Adaptation is captured by estimating a dynamic production function with heterogeneous

slopes, i.e. allowing spatial and temporal heterogeneity of rice yield responses to climate variations.

The estimation of responses by province and varying in time is made possible by the application of

the �mean-observation OLS� (MO-OLS) estimator recently proposed by Keane and Neal (2020a).

The paper is organized as follows. Section 2 provides an overview of the econometric approaches

adopted to analyze the impact of climatic conditions on crop yields. Special attention is paid to

approaches incorporating farmers' adaptation to these climatic conditions. We then introduce the

panel model with heterogeneous slopes recently investigated by Keane and Neal (2020a). Section 3

introduces the data used. This section provides a detailed description of the temporal changes in rice

yield distributions and the di�erences between provinces in these yields. A similar analysis is carried

out for the climate indicators, i.e. growing degree days and killing degree days. Section 4 provides the

results from estimation of a dynamic panel data model with heterogenous slopes and compare them

with those resulting from the estimation of panel models classically used in the literature. This section

then focuses on the spatial and temporal patterns of estimated heterogenous parameters associated

with killing degree days, drawing new insights from adaptation to heat stress in rice production in

Vietnam. Section 5 concludes. Appendices are devoted to the presentation of technical details involved

in MO-OLS estimation, growing and killing degree days computation, as well as the formulation of a
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simple crop model with weather and adaptation.

2 Methodology

Measuring the impact of climate change on agricultural outcome (production, revenue per ha, yield. . . )

is classically based on the estimation of a response function linking this outcome to various weather

indicators (see Dell et al., 2014; Kolstad and Moore, 2020, for surveys). For instance, Chung et al.

(2015) quanti�es the impact of seasonal climate variability on rice yield in the Central Highland of

Vietnam from 1986 to 2012. Using annual time-series of yield, temperature and precipitation for two

rice growing seasons, they show the favorable impacts of an increase in average minimum temperature

and average precipitation on rice yield, while an increase in average maximum temperature reduces

rice yield by about 6% and 8% depending on the growing season. However, this approach relies only

on short-run �uctuations in weather and, consequently, does not allow for estimation of a long-run

climate response including adaptation, but rather a short-run weather response. The challenge is then

to capture adaptive behavior not only at the extensive margin (e.g. increasing water use in the short

run to �ght against heat waves), but also at the intensive margin (e.g. adopting irrigated agriculture

practices).

Two main approaches have been proposed in the literature to deal with this challenge. The

�rst one, which was initiated by Mendelsohn et al. (1994), is called the Ricardian approach. This

approach is based on the estimation of the impact of climate change on farmland value using cross-

sectional data. Mendelsohn et al. (1994) measure variation in climate using 30-year average of

weather conditions in di�erent locations in the United States (US). Farmland values are known to

re�ect farmland pro�tability within a perfectly competitive market. They re�ect farmers' optimization

of their production technology or choice according to the climate they have faced. Thus, the main

advantage of the Ricardian approach is to capture the long-run equilibrium e�ects of climate change,

incorporating the net bene�ts of possible adaptation strategies. However, such approach would fail

to control for many unobserved omitted variables that are correlated with the climate and also a�ect

farmland values. For instance, lacking observations for factors such as soil quality or access to irrigation
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infrastructure would bias estimates of climate impacts on farm values.

Extensions of the Ricardian approach suggest using panel data (Schlenker et al., 2006; Massetti and

Mendelsohn, 2011). Indeed, the inclusion of individual �xed e�ects plus region-by-year �xed e�ects

in the regression model allows to control unobserved individual heterogeneity as well as unobserved

region speci�cities and time shocks. To date, Trinh (2018) is the unique study that applies the

Ricardian approach to study the impact of climate change on land value in Vietnam, using panel data.

This paper uses four waves of household level data from Vietnam Household Living Standard Survey

(VHLSS) over the period 2004-2014. Farmland values are approximated by net revenues, with net

revenue de�ned as gross crop revenue (or total sales for each crop) less all cost, divided by agricultural

land. Cross-sectional variation in climate is measured using time-average of monthly temperature and

precipitation over 65 years (1950-2014). Results show that in the dry season, increases in temperatures

are bene�cial to all farms in the warmer Southern regions, while increases in precipitation damage

only irrigated farms in the Central and Southern regions. The impact of higher temperature in the

wet season is similar, except that it will negatively a�ect net revenue of irrigated farms in the long

run. More rainfall in the wet season will increase net revenue only in the North region.

A limitation of the Ricaridan approach is that the classical panel data estimation method does not

permit to estimate the e�ect of the long-run climate averages because these averages have no temporal

variation. Indeed, transforming the panel data model using either within or �rst-di�erence operators

makes it possible to get rid of individual �xed-e�ects, but at the cost of the disappearance of any

time-unvarying variables such as long-run climate averages. Massetti and Mendelsohn (2011) propose

the use of the two-step estimation method proposed by Hsiao (2014) to estimate the impact of time-

unvarying variables in panel data models with �xed e�ects (see Trinh, 2018, for an application). This

estimation method provides consistent estimates of the impacts of individually time-varying variables

in its �rst step. Nevertheless, estimates of the impacts of time-unvarying variables (long-run climate

averages) got in the second step are inconsistent even when the number of individuals tends to in�nity,

if individual �xed-e�ects and time unvarying variables are correlated. It is thus easy to imagine omitted

variables, such as the location in a mountainous area, that can explain observed variability in farmland

prices and are correlated with climate.
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A second category of approaches has been recently introduced in the literature. Kolstad and Moore

(2020) classify them as emerging hybrid approaches. One of these emerging approaches proposes to

model the e�ect of weather and climate in two steps. First, the linear e�ect of weather variation

is estimated for each location in the panel dataset, which allows the linear response to weather

�uctuations to vary across space. Second, the coe�cient on weather (from the �rst step) is modeled

as a function of climate and other control variables. This approach exploits two sources of variation

in the panel data: (1) the time-series variation from the natural variation of weather within each

location, and (2) the cross-sectional variation in mean weather (climate) between locations. Hence,

�rst step estimates measure short-run responses to weather variation in each location, while second

step estimates capture the variation in these responses due to adaptation to climate. Indeed, in

the long-term, we can think that each location has chosen a production technology adapted to its

climate. For instance, hot locations have chosen a technology that performs well in hot temperatures

but poorly in cold temperatures and cold locations have chosen the opposite.

A �rst application of this approach has been proposed by Butler and Huybers (2013). Their

application deals with maize yields in US and makes use of county-level data observed from 1981 to

2008. Butler and Huybers (2013) uses the classical framework where the in�uence of temperature on

yield is parametrized by growing degree days (GDD) and killing degree days (KDD) (see, for instance,

Roberts et al., 2013). GDD are a commonly used measure for the cumulative warmth a crop has

experienced and bene�tted over the growing season. By contrast, KDD capture the detrimental e�ect

of high temperatures by accumulating the total number of hours with harmful temperatures over the

growing season. As a consequence, in a multiple regression of yields on GDD and KDD, the �rst

measure generally enters positively while the second measure enters negatively. Thus, in a �rst step,

Butler and Huybers (2013) estimate for each county:

yit = c0i + c1it+ β1iGDDit + β2iKDDit + εit, t = 1, . . . , T (1)

where yit denotes maize yield (in logarithm), and GDDit and KDDit denote growing degree days

and killing degree days in county i in year t, respectively. The linear time term in t accounts for

technological and other steady changes over the time period considered and εit is the residual error.
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β1i and β2i measure yield sensitivity of county i to GDD and KDD, respectively.

In a second step, Butler and Huybers (2013) put the focus on adaptation to warming climate and

thus regress estimated county values of KDD sensitivities, or β̂2i, on average county values of KDD

over the period considered, or KDDi, i.e.

β̂2i = α0 + α1 logKDDi + ηi, i = 1, . . . , N (2)

This speci�cation with the regressor expressed in logarithm appears to be the best in terms of �t

quality when compared with other linear speci�cations with transformed covariates. County time-

average value of KDD is used as an indicator of the long-run spatial heterogeneity among counties in

terms of climate.

The estimated value of parameter α1 shows a signi�cant negative impact of county time-average

value of KDD (in logarithm) on county KDD sensitivity. The relationship between these two variables

appears to be concave, i.e. county KDD sensitivity increases up to a given threshold for time-average

KDD, from which it starts to remain stable or even to decrease. Or, in other words, hotter counties

exhibit signi�cant adaptation to climate over the considered time period, these counties are becoming

less and less sensitive to yield losses from heat.

The two-step approach originally proposed by Butler and Huybers (2013) has been recently applied

to the measure of the impact of climate change on residential electricity and natural gas consumption

in California (Au�hammer, 2022), and on mortality in the U.S. (Heutel et al., 2021). Although the

two-step approach uses the temporal and individual dimensions to identify short and long term climate

impacts, it does not fully exploit the panel dimension of the data. Moreover, this approach does not

allow to investigate adaptation over time within counties. As recently emphasized by Keane and Neal

(2020a), due to adaptation to climate, we could expect the function mapping weather conditions into

crop yields to exhibit regional and time �xed e�ects in both intercepts and slopes. Keane and Neal

(2020a) then propose an estimation strategy in panel data modeling that addresses adaptation across

regions and time in a �exible way. More precisely, they consider estimation of the following panel data
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model:

yit = ci + τt + β1itGDDit + β2itKDDit + β3itPrecit + β4itPrec
2
it + εit, (3)

i = 1, . . . , N, t = 1, . . . , T

where yit denotes crop yield (in logarithm), and GDDit and KDDit denote growing degree days and

killing degree days in county i in year t, respectively. They add precipitations in county i in year

t, denoted by Precit, and its squared value, or Prec2it, in order to investigate a potential nonlinear

impact of precipitations on crop yield (see, among others, Burke and Emerick, 2016). This model

generalizes the classical two-way �xed e�ects speci�cation, with ci and τt denoting the individual and

time �xed e�ects, respectively, by considering both spatial and temporal heterogeneity in the slope

coe�cients, or βkit, k = 1, . . . , 4. This approach is more general and �exible than those proposed by

Butler and Huybers (2013). This approach does not assume a speci�c form of non-linearity for the

KDD coe�cient such as Eq. (2). Instead, slope heterogeneity is allowed to be correlated with the

regressors. The nature of the relationship between β2it and KDDit can be assessed in a second step

by regressing estimates of β2it provided by estimation of Eq. (3), on KDDit.

Restrictions must be imposed in order to estimate coe�cients in Eq. (3). Indeed, this equation

involves more coe�cients to be estimated than data points. Keane and Neal (2020a) then recommend

to restrict attention to additive heterogeneity across the region and time dimensions, i.e.

βkit = βk + λki + θkt, k = 1, . . . , 4 (4)

As a consequence, each region's relative sensitivity to weather is assumed to be �xed over time.

Moreover, time e�ects shift all region's sensitivities up or down to the same degree.

The panel data model de�ned by Eq. (3) and (4) can be estimated using the �mean observation

OLS� (MO-OLS) procedure developed by Keane and Neal (2020a). The MO-OLS estimator is con-

structed by �rst running pooled OLS to obtain β̂, then running regressions by region to collect β̂i,

i = 1, . . . , N , and lastly a set of regressions by year to collect β̂t, t = 1, . . . , T . A biased preliminary

estimator for each βit is given by β̂it = β̂i + β̂t − β̂. Keane and Neal (2020a) show how the bias
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can be calculated to arbitrary accuracy and removed using an iterative procedure. Speci�cally, they

show that the expression for the bias is a Cauchy sequence such that the new bias introduced in each

iteration gets smaller and smaller. Details on MO-OLS estimation are provided in Appendix A.

Keane and Neal (2020b) compare the predictive performances of MO-OLS estimator with two other

approaches: classical two-way �xed e�ect panel data estimator and the nonparametric technique of

deep neural networks (DNNs). They show that both DNNs and MO-OLS estimators outperform

classical two-way �xed e�ect panel data estimator for predicting yields, both in an exercise using

the US county-level corn yield data from 1950 to 2015 and a Monte-Carlo cross-validation exercise.

Moreover, MO-OLS estimation substantially outperforms the two other approaches in forecasting yield

in a 2006-2015 sample.

3 Data

3.1 Rice data

The rice yield database is obtained from the International Rice Research Institute1, containing infor-

mation on annual agricultural statistics such as rice production, area harvested, rice yields across 64

sub-national units nationwide from 1987 to 2015. In this period, Vietnam embarked on major struc-

tural reforms, or Doi Moi reforms, which gradually converted the country from a highly centralized

planned economy to a socialist-oriented market economy with more openness to international trade.

The sub-national units refer to the �rst tier administrative units that are made up of municipalities

and provinces in Vietnam. Our time period of study involved splitting of divisions with high population

density and merging of geographically adjacent units. From 1987 to 2003, Vietnam was made up

of 61 administrative units. In 2003-2004, Dien Bien was set apart from the remainder of Lai Chau

province; Dak Lak was subdivided into Dak Lak and Dak Nong; Hau Giang was seperated from Can

Tho city. Hence, from 2004-2007, there were 64 administrative units in Vietnam. Since 2008, the

government incorporated Ha Tay province into Hanoi city, resulting in 63 administrative units left in

1IRRI is a research organisation that promotes agro-research and development, faring in reviving rice seedlings and
improving crop yield in the world. Information about the institute can be found at https://www.irri.org/
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Figure 1

Map of rice yield distribution (tonnes/ha) in 2015

Note: The map on the left shows the nine agro-ecological zones of Vietnam marked by their partic-
ular types of soil, topography and climate context. The map on the right displays rice yields across
60 provinces in VN. The grey area is where rice yields were not available. (Source: Authors' own
elaboration from IRRI's data).

Vietnam. To have a consistent sample size, we construct spatially consistent geographic units over the

study period. In split or merger cases, new geographical entities are created with the rice production

and area harvested to be combined from the corresponding units split or merged. Rice yields for these

new entities are obtained by dividing the modi�ed rice production by the area harvested. Therefore,

there are 60 administrative units presented in our panel data.

Figure 1 maps the rice productivity across the 60 provinces under study in 2015. Rice cultivation

is mainly concentrated in Mekong River and Red River Delta. The most productive rice growing area

is Thai Binh at a record of around 6.64 tons per hectare. Rice farming is also heavily concentrated

along the coast with South Central Coast as another rice production heartland of Vietnam. The area

of light blue signi�es poor productivity for rice in Vietnam and can be found in landlocked regions.

The provinces with the lowest rice yield of Vietnam is Son La in the Northwest of Vietnam. Rice

production in rural areas is apparently higher than that of the urban zones because the rural population
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Figure 2

Rice yield distributions from 1987 to 2015

still depends on the agricultural sector for livelihood.

Figure 2 shows the evolution of rice yields over the period from 1987 to 2015. After stagnation

between 1987 and 1992, rice yields have grown steadily since 1992, and this growth has a�ected all

Vietnamese provinces. It is then interesting to see if they have all progressed in the same way or if

some of them have seen their yields increase while others have not. Figure 3 reports the distributions

of rice yields for the 60 provinces. Provinces are ordered according to rice yields. Figure 3 shows a

stability over time in order between provinces, the most productive remaining the most productive and

so on, and this even if the respective positions of certain neighboring provinces in terms of yield may

have changed certain years. This descriptive analysis therefore highlights a persistence in provinces'

rice yields, i.e. provinces tend to �stick� with their previous position in the ranking, which econometric

modeling must take into account.
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Figure 3

Rice yield distributions by province

3.2 Climate data

Weather data used in this study are daily temperatures and precipitations. Temperature data comes

from the Climate Prediction Center (CPC) database developed by the National Oceanic and Atmo-

spheric Administration (NOAA). It provides historical data on daily maximum and minimum temper-

ature for a grid of 0.50×0.50 degree of latitude and longitude.2 Precipitation data comes from Asian

Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE)

project.3 The rainfall dataset has mean daily precipitation (millilitre per day) gridded at a 0.25×0.25

degree resolution used as a proxy for moisture conditions. The time units are days from January 1st

1987 to December 31st 2015.

Geo-spatial interpolation method was applied to have temperature estimates on a 0.25x0.25 degree

2The Global Positioning System (GPS) coordinates utilized in our study range from 104.875 ◦E to 109.375 ◦E for
longitude and from 8.625◦ N to 23.125 ◦N.

3Netcdf format data can be retrieved from https://www.cpc.ncep.noaa.gov and / http://aphrodite.st.

hirosaki-u.ac.jp/
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resolution grid. Indeed, the original data detailed on a 0.5x0.5 degree resolution grid does not sample

all Vietnamese provinces. Generalized additive models (Wood, 2017) were estimated in order to

capture the complex nonlinear relationship between temperature and location using original data.

Fitted models were used to predict temperature data over the �nest grid.4

Figure 4

GDD and KDD distributions by year
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The interpolated weather data were then up-scaled to match the yield measurement spatial unit.

Administrative boundaries were �rst overlaid with the gridded weather dataset. Then, for aggregated

maximum (or minimum) temperature of a particular province, we found the maximum (or minimum)

record of all observed maximum (or minimum) daily temperature values gridded within that province.

We proceeded similarly for precipitation, i.e we took a simple average of observed precipitations within

the provinces.

In line with the current literature on climate change impact on crop yields (Roberts et al., 2013),

we �nally computed growing degree days (GDD) and killing degrees days (KDD) for each province and

4More information on the chosen interpolation strategy can be found at https://swilke-geoscience.net/post/
spatial_interpolation/
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Figure 5

GDD and KDD distributions by province
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year to assess the e�ect of weather conditions during the growing season on yields. Computational

details on GDD and KDD computation are provided in Appendix B.

The changes in the distributions of GDD and KDD over the studied period do not appear to be

characterized by any identi�able pattern as shown in Figure 4 . The year 1998 stands out from the

others because several provinces show very high values for Killing Degree Days. Indeed, this year was

characterized by a large decrease in rainfall during the dry season (only about 30-70% of the annual

average), and prolonged heatwave, all this causing severe droughts in main rice producing provinces.

On the other hand, the analysis of the distributions of GDD by province (see Figure 5) shows a

clear ranking of the provinces in terms of rice growing conditions. A similar fact is also observable

for the distributions of KDD by province. Although the two rankings does not �t perfectly, the

Spearman correlation between them is equal to 0.731 and is signi�cantly di�erent from zero with a

p-value much smaller than usual signi�cance levels. The Vietnamese provinces with the most favorable

climate for the growth of rice are also those that experience the greatest risks in terms of unfavorable
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temperatures for this growth, and vice versa. This observation is corroborated when looking at the

spatial distribution of average values of GDD and KDD (see Figure 6).

Figure 6

Spatial distributions of mean GDD and KDD in Vietnam

To sum up, Table 1 gives summary statistics for all the variables used below.

Table 1

Descriptive statistics for variables used for econometric analysis

Variables Mean Standard Minimum 25% 75% Maximum
Deviation Percentile Percentile

Rice Yield 4.048 1.205 1.120 3.077 4.969 6.637

GDD 4,687.027 289.332 3,875.414 4,479.303 4,964.526 5,227.362

KDD 206.485 78.791 10.976 153.596 256.828 497.137

Precipitation 1,331.774 272.169 246.384 1,148.470 1,509.492 2,261.893

Crop acreage 118,296.000 121,029.900 5,400 43,775 150,025 770,400
Observations 1740

Note: Precipitation is the simple average of precipitation values within province.
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4 Results

4.1 Classical panel data models

Table 2 reports results from estimation of the three following models:

yit = c+ ρyi,t−1 + β1GDDit + β2KDDit + β3Precit + β4Prec
2
it + εit (5)

yit = ci + τt + ρyi,t−1 + β1GDDit + β2KDDit + β3Precit + β4Prec
2
it + εit, (6)

yit = ci + τt + ρyi,t−1 + β1GDDit + β20KDDit + β21 (log(KDDit) ×KDDit −KDDit)

+β3Precit + β4Prec
2
it + εit, (7)

i = 1, . . . , N, t = 1, . . . , T

These three models integrate the lagged rice yield value (in logarithm) in addition to classical weather

variables, i.e. KDDit and Precit, in the set of regressors. The objective is to capture the strong

temporal dependence observed in rice yields highlighted in the descriptive presentation of the data. In

other words, the lagged rice yield value captures state dependence as the assumption that rice yield

is redrawn randomly in each period is inconsistent with evident shown in the data.

Model (5) is the classical Pooled-OLS model that does not take into account any unobserved

individual or time heterogeneity while model (6), or Fixed-E�ect model, captures it by adding individual

and time �xed e�ects in its speci�cation. As shown in Keane and Neal (2020a) (see also Appendix C),

this last speci�cation can be deduced from a simple formalization of the rice production function that

does not take into account any adaptation to climate change from farmers. This simple modeling can

be generalized in order to incorporate adaptation behavior of farmers to extreme temperatures. The

resulting prediction of a log linear relationship in farmers' high temperature response to KDD leads

to the model (7) which includes as an additional regressor a nonlinear function of KDD to capture

adaptation to high temperatures. β20 is thus expected to be negative and β21 positive.

A �rst striking result appears in Table 2: the coe�cient associated with lagged rice yield value is

found to be positive and signi�cantly di�erent from zero (at 1% signi�cance level), regardless of the

estimated model. The expectation that Pooled-OLS estimator overestimates the true coe�cient on
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Table 2

Classical panel data estimates of the impacts of temperature and precipitation on rice yields in
Vietnam

Pooled-OLS FE-OLS FE-OLS
without adaptation with adaptation

Lagged rice yield 0.93707∗∗∗ 0.65740∗∗∗ 0.65998∗∗∗

(in logarithm) (0.00575) (0.02516) (0.02514)

GDD 0.00003∗∗∗ -0.00006 -0.00002
(0.00001) (0.00004) (0.00004)

KDD -0.00011∗∗∗ -0.00005 -0.00211∗∗

(0.00003) (0.00009) (0.00094)

log(KDD) × KDD - KDD �� �� 0.00037∗∗

(0.00017)

Precipitation 0.19831∗∗ 0.17185∗ 0.17533∗

(0.07591) (0.08930) (0.09014)

Precipitation2(÷1000) -0.08174∗∗∗ -0.08213∗∗∗ -0.08396∗∗∗

(0.02803) (0.03073) (0.03102)

Constant -0.10187 �� ��
(0.06997)

Observations 1680 1680 1680
R squared 0.928 0.912 0.912
Fixed E�ects No Province, Year Province, Year

Note: Standard errors are reported in parentheses, and are clustered at the province level.

the lagged rice yield value, whereas the Fixed e�ects estimator will underestimate it (Bond, 2002), is

satis�ed. Hence, the true value of ρ lies between 0.66 and 0.94. As a consequence, rice yields exhibit

large state dependence, even when unobserved individual heterogeneity is taken into account.

The results of the estimation of the three models show a positive and signi�cant e�ect of pre-

cipitation on rice yield. However, this e�ect becomes less and less pronounced as the amount of

precipitation increases. The results regarding the e�ect of precipitation are similar whether or not we

take into account the presence of individual and temporal �xed e�ects or the possibility of farmers'

adaptation.

The two Fixed-E�ect models (6) and (7) do not exhibit a signi�cant and positive relationship

between rice yield and GDD, while Pooled-OLS model (5) does. Results regarding the impact of

high temperatures are more mixed. A signi�cant and negative impact is shown when estimating the
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Figure 7

Estimated marginal e�ect of KDD on rice yields using FE-OLS with adaptation estimates
(with 95% con�dence interval)
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Pooled-OLS model, while the impact cannot be disentangled from zero when estimating the Fixed-

E�ect model without adaptation. The introduction of the nonlinear regressor in model (7) makes the

direct impact of KDD negative and signi�cant, as expected. In turn, the added regressor is positive

and highly signi�cant. Accordingly, as KDD increases, the total marginal e�ect of KDD on rice yield

gets smaller as follows:

∂yit
∂KDDit

= −0.00211 + 0.00037 ln (KDDit) . (8)

Figure 7 reports this estimated marginal e�ect drawn as a function of KDD. In accordance with

the economic modeling of adaptation behaviors proposed by Keane and Neal (2020a) (see Appendix

C), this function is increasing and concave. As the climatic conditions for rice production worsen in

terms of high temperatures, farmers are making an increasing e�ort to adapt to these conditions.

This e�ort seems su�cient to annihilate any impact of high temperatures from a threshold of KDD

around 200 degree days.
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Table 3

MO-OLS estimates of the impacts of temperature and precipitation on rice yields in Vietnam

Mean Weighted Median Standard 25% 75%
Mean Deviation Percentile Percentile

Lagged rice yield .369017*** .3732414 .3797735 .1989875 .2411912 .5178423
(in logarithm) (.0304878)

GDD .0005283*** .0004151 .0003268 .0007192 .0000527 .0008113
(.0000946)

KDD -.0006413*** -.0003812 -.0003281 .0011987 -.0009688 .0000899
(.0001617)

Precipitation .3980065** .3239101 .236618 1.477125 -.5835178 1.408696
(.1991514)

Precipitation2(÷1000) -.1718048*** -.134721 -.0927474 .563858 -.5249135 .2224721
(.0755211)

Constant -1.750997*** -1.193757 -1.186775 3.300954 -3.578941 .601102
(.4387644)

R squared .9737651 Observations 1680

Note: Standard errors are reported in parentheses.

4.2 Heterogeneous slope model (MO-OLS)

It should be noted that this result is closely related to the parametric speci�cation chosen in Eq. (7).

It is therefore interesting to investigate it in more detail using a more general speci�cation that allows

for both province and time heterogeneity in parameters on temperature and precipitation, or

yit = cit + ρityi,t−1 + β1,itGDDit + β2,itKDDit + β3,itPrecit + β4,itPrec
2
it + εit (9)

i = 1, . . . , N, t = 1, . . . , T

Table 3 reports results from the estimation of Eq. (9) using MO-OLS presented above. This table gives

unweighted and weighted means of the estimated coe�cients, using crop acreage of each province

as weight, as well as their standard deviations, medians and 25% and 75% percentiles. Due to the

asymptotic normality of the distribution of the unweighted mean, it is possible to associate a standard

error with it and therefore to test its signi�cance, which cannot be done for each province and time

varying parameters.
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The unweighted mean parameter on lagged rice yield is equal to 0.369 and is signi�cantly di�erent

from zero, showing existence of true persistence in rice yield. High rice yields in current years are

driven by high rice yields in past years, and vice versa, after controlling for observed and unobserved

heterogeneity among provinces. Nevertheless, this average e�ect is smaller than the marginal e�ect of

0.660 obtained in the last column of Table 2 where we adaptation is modelled parametrically using the

nonlinear KDD parameter. Unobserved factors seems to play a greater role in explaining persistence in

rice yield when spatial and time heterogeneity are considered in production function modeling. Finally,

the variation coe�cient, or 0.539, is small and shows a concentration of individual estimates around

their average values.

Results further highlight an inverse U-shaped relationship between rice yield and precipitation.

The rice yield increases as the precipitation increases but this positive e�ect gradually diminishes until

it is canceled or eventually begins to decrease. Furthermore, this e�ect appears more pronounced

when the spatial and temporal heterogeneity are taken into account in the modeling of the production

function. Indeed, the mean values of the parameters associated with precipitation shown in Table 3

are twice as large as the estimated values shown in Table 2. Nevertheless, the statistics summarizing

the distribution of estimated individual and temporal values show a high variability of the responses

of rice yield to precipitation with respect to geography and time.

The unweighted average parameter on GDD is equal to 0.00053 and is signi�cantly di�erent from

zero, implying that one extra degree days of temperature between 7◦C and 29◦C causes a 0.053%

increase in rice yield. Note that no signi�cant and positive e�ect of GDD appears when estimating

production function models with only individual and temporal �xed e�ects. Here too, individual

responses to GDD do not appear to be widely dispersed around their mean.

The unweighted mean parameter on KDD is negative, as expected, and is signi�cantly di�erent

from zero, showing that one extra degree days of temperature above 29◦C causes a −0.064% de-

crease in rice yield. The standard deviation of the KDD parameter, or 0.00120 is twice as large as

the estimated mean value, with a 75/25 percentile range of 0.00009 to −0.00969. The MO-OLS

estimates display thus substantial heterogeneity in estimated KDD sensitivity. Moreover, estimated

KDD sensitivities appear to be positive for some provinces and some years. Such positive values
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Figure 8

Estimated marginal e�ect of KDD on rice yield as a function of KDD
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contradict the expected results with respect to the sign of KDD sensitivities. Nevertheless, in the

absence of any result pertaining to the asymptotic distribution of the estimated heterogeneous slopes,

it is impossible to say whether these values are statistically signi�cantly positive.

It is therefore interesting to investigate the shape of the relationship linking KDD sensitivity to

KDD. Figure 8 reports the nonparametric regression of estimated heterogeneous KDD sensitivities, or

β̂MO-OLS

2,it , on corresponding values of KDD, or KDDit and the corresponding 95% con�dence interval.5

First, the estimated curve shows that, on average, KDD sensitivity is always negative and signi�cantly

di�erent from zero.6 Second, the estimated curve suggests a more complex relationship between yield

response and KDD that the parametric models fail to capture (Figure 8 also reports the estimated

marginal e�ect in FE-OLS model with adaptation). Therefore, as KDD moves from 0 to 60, rice yields

respond more negatively to heat stress. Adaptation seems to be overlooked in cooler regions. These

regions are not the ones with the best conditions for rice growth as shown in the description of the data.

5Nonparametric estimation is based on recent advances in estimating generalized additive models from splines
(Wood, 2017).

6Estimated degrees of freedom associated with the estimated curve are equal to 8.549. They are larger than 1,
indicating the nonlinearity of the curve. Moreover, the null hypothesis of joint nullity of all the parameters involved
in the spline basis approximation of the smooth function is clearly rejected. Indeed, a low p-value, beyond classical
signi�cance levels, is associated with the estimated value of the F-statistics involved in the test.
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The costs of adapting to high temperatures may therefore not be o�set by yield gains in these regions.

As KDD moves from 60 to 220, rice yields are less and less sensitive to high temperatures. Adapting

to high temperatures is becoming increasingly pro�table. The increase in KDD is accompanied by an

increase in GDD for the provinces concerned. They are therefore experiencing increasing incentives

to adapt to high temperatures and to limit the resulting losses in terms of yield. For KDD values

exceeding 220, the estimated curve shows a slow decrease and even stabilization in the yield response.

Although the provinces concerned are those which experience the best conditions in terms of rice

cultivation, their e�orts to adapt to heat stress seem to be less and less e�ective, this stress becomes

a great concern. For KDD values exceeding 400, the curve estimate becomes increasingly imprecise

due to the scarcity of available observations (see the rug of observations on the x-axis of Figure 8).

No clear trend appears regarding the evolution of the distribution of provincial responses to KDD

over time, as shown in left panel of Figure 9. The beginning of the period, 1988-1992, is characterized

by a deterioration in these responses. Subsequently, from 1993 to 1998, the evolution is characterized

by wide �uctuations. These �uctuations diminish considerably from 1999 to 2009 and pick up again

in the last years studied. We do not therefore see an increasingly pronounced adaptation process to

heat stress over the period, as observed for wheat in the US by Keane and Neal (2020a).

However, a very clear pattern appears when looking at the di�erences between the distributions

of responses to KDD of Vietnamese provinces. The right panel of Figure 9 clearly shows a ranking

of Vietnamese provinces from the most KDD sensitive to the least. The descriptive analysis of the

climatic condition distributions revealed a clear ranking of the Vietnamese provinces, showing that

the more they experience favorable conditions for rice growth, the more they face the risk of heat

stress. So, is there a link between this classi�cation and that regarding sensitivity to heat stress? The

Spearman correlation coe�cient between the ranking of provinces relative to GDD and that relative

to KDD sensitivity is 0.246 and is not signi�cantly di�erent from zero. The correlation coe�cient

between now the ranking of provinces relative to GDD and that relative to KDD sensitivity, or 0.380,

is higher and signi�cantly di�erent from zero at classical signi�cance levels. This clearly re�ects an

adaptation to heat stress which is getting stronger as this stress is high. Despite being signi�cant,

this correlation remains weak because there is no perfect �t of the two rankings. A perfect �t would
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Figure 9

Distributions of β2,it
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have resulted in a linear relationship between KDD sensitivity and KDD value. However, as shown in

Figure 8, this relation appears to be log-linear for a part of the potential values of KDD, and even

decreasing for the low or very high values of this climatic indicator.

5 Conclusion

Our paper contributes to the growing literature of climate change impact in Vietnam's agricultural

sector in several ways. There have been many discussions around agricultural communities about the

potential e�ects of climate change related to changes in both temperature and rainfall at the national

scale. Nevertheless, the literature has treated the yield response without accounting for adaptations to



25

get a full measure of climate damage. The need for large-scale adaptive measures to vulnerability to

increased warming might be overlooked. Vietnamese farmers have engaged in all kinds of adaptations

to protect their crop against heat stress over the half past century. Models that do not allow for

adaptation might result in biased estimates of the e�ects of high temperatures on plant growth.

In addition, the conventional empirical models treated the country as one region which implies

that climate change adaptation remains the same everywhere. The panel data model with hetero-

geneous slopes recently proposed by Keane and Neal (2020a) provides us a tool to investigate how

the responsiveness of rice yield to climate conditions varies over time and across Vietnam's regions.

Indeed, heterogeneity in the parameters of the production function linking the rice yield to climatic

conditions makes it possible to infer di�erent impacts on heat stress tolerance under di�erent envi-

ronmental conditions and adaptation measures. This heterogeneity takes a �xed e�ect form not only

in intercepts, as in classical linear panel data models, but also in slopes. In addition, as a byproduct,

this approach makes it possible to infer the link between heterogeneous responses and heat stress,

without �xing its form as in the �xed e�ects model with adaptation also proposed by Keane and Neal

(2020a) following Butler and Huybers (2013).

A dynamic version of the production function capturing not only heterogeneity in slopes but also

state persistence in rice yields is estimated using panel data for the 1987-2015 period across 60 sub-

national units. We use the MO-OLS estimator proposed by Keane and Neal (2020a). Results clearly

show strong temperature e�ects on rice yield. We �nd that rice yield is magni�ed when bene�cial

temperatures (warming to the 7�29 ◦C range in a growing season) increase. Extreme heat (average

temperatures exceed 29 ◦C) intensi�es yield loss. Rice yield also relies heavily on rainfall for growth,

but excessive rainfall can bring signi�cant damage.

Results also show that the heat stress response function is nonlinear in extreme heat. This function

seems to have a natural logarithm form when using parametric speci�cations, as shown by Butler and

Huybers (2013) and Keane and Neal (2020a) when dealing with wheat yield in the U.S. There is good

evidence from the parametric models that adaptation increases plant heat stress tolerance. However,

whether crop is still resilient beyond an extreme climate threshold is questionable. We thus estimate

nonparametrically the function, in order to overcome the caveats of classical parametric speci�cations.
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Results then suggest that rice yield sensitivity to heat stress is maximized in the middle range of killing

degree days, but declines signi�cantly if they rise above an upper threshold. Put di�erently, farmers

adapt all the more to heat stress as it becomes important. And this holds true up to a threshold

beyond which the gain resulting from their adaptation e�ort is exceeded by the losses due to heat

stress.

From a policymakers' perspective, location is very important to consider when thinking about

developing food security and sustainability solutions. There are big disparities, yet well-de�ned spatial

patterns in sensitivity across regions. In general, moving towards colder environments, the impact of

higher temperatures on yield is more severe. There is a signi�cant di�erence between crops in rice

production hubs such as Mekong River Delta, Red River Delta and other parts of the country in their

response to heat stress. The �nding also implies that increases in temperature in the coming decades

could have even more disruptive e�ects on agriculture in the coastal part.

This paper focuses on the impact of climatic conditions, and, more speci�cally, heat stress, on rice

yields in Vietnam, in presence of farmers' adaptive behavior. Further studies should be undertaken to

go into more detail about rice production in Vietnam. Therefore, it would be interesting to consider

separately the two, and, sometimes, three rice growing seasons of rice in Vietnam, each season having

its own climates requirements. Such a distinction was not possible with the available data. Similarly,

other meteorological indicators such as humidity, wind spreed, sunshine duration, evaporation, could

be considered (Zhang et al., 2017)
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Appendices

A The MO-OLS estimator

Recently, Keane and Neal (2020a) consider the estimation of a linear panel data model with hetero-

geneous coe�cients like

yit = β′itxit + uit, i = 1, . . . , N and t = 1, . . . , T, (A1)

where xit = (1, x1it, . . . , xKit)
′ is a (K + 1) × 1 vector of regressors, βit = (β0it, β1it, . . . , βKit)

′

is a (K + 1) × 1 vector of coe�cients that vary across individuals and overtime, and uit is the

idiosyncratic error term. The vector of regressors xit includes a constant term, which allows for

intercept heterogeneity across i and t, and it may also include lags of the dependent variable or any

of the regressors as needed. Regressors are assumed to be weakly exogenous and the idiosyncratic

error term to have �nite conditional second order moment given xit.

Linear panel data model with coe�cients varying both over individuals and periods are in general

overparameterized, having N × T coe�cients and disturbance second order moments. This by far

exceeds the number of parameters estimable from one panel data set. Keane and Neal (2020a)

propose then the parsimonious alternative where

βit = β + λi + θt.

β = (β0, β1, . . . , βK)′ is the vector of the constant e�ects across all observations, λi = (λ0i, λ1i, . . . , λKi)
′

are the individual e�ects that vary across every unit in the panel, and θt = (θ0t, θ1t, . . . , θKt)
′ are time

e�ects that vary between each time period.

Keane and Neal (2020a) propose an iterative estimation procedure, they call "mean observation

OLS" (MO-OLS), to get consistent estimates of βit. This procedure consists in running a series of

feasible regressions and then removing the resulting biases. Three preliminary sets of regressions are
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initially run. First, pooled OLS estimation is applied to Eq. (A1) rewritten as

yit = x′itβ + vit with vit = x′itλi + x′itθt + uit, , i = 1, . . . , N and t = 1, . . . , T

to obtain β̂ , or

β̂ =

(
1

NT

N∑
i=1

T∑
t=1

xitx
′
it

)−1(
1

NT

N∑
i=1

T∑
t=1

xityit

)
Second, regressions by individual using Eq. (A1) rewritten for each indivudual i as

yit = x′it (β + λi) + vit with vit = x′itθt + uit, t = 1, . . . , T

are run to get β̂i, or

β̂i =

(
1

T

T∑
t=1

xitx
′
it

)−1(
1

T

T∑
t=1

xityit

)
Third, Eq. (A1) is rewritten for each year t as

yit = x′it (β + θt) + vit with vit = x′itλi + uit, i = 1, . . . , N

and estimated in order to get

β̂t =

(
1

N

N∑
t=1

xitx
′
it

)−1(
1

N

N∑
t=1

xityit

)

A preliminary biased estimator of βit is then given by β̂
Prel

it = β̂i + β̂t − β̂. Indeed, using matrix

calculus, it can be shown that

β̂
Prel

it = β + λi + θt +R(λi,θt) +Q(x,u) (A2)

where the �rst bias term R(λi,θt) that depends on unknown values of parameters in λi and θt, arises

from correlation between the regressors and the heterogeneity, and the second bias term Q(x,u) only

involves the regressors and the errors. The latter vanishes asymptotically given the weak exogeneity



32

assumption for regressors.

Keane and Neal (2020a) show how the bias can be calculated to arbitrary accuracy and removed.

This requires replacing λi and θt by their estimates β̂i and β̂t to form a biased estimate ofR(λi,θt).By

replacing R(λi,θt) by its estimate corrected for its bias, we eliminate the original bias from β̂
Prel

it ,

while introducing a new bias. Keane and Neal (2020a) show that this new bias is smaller than the

original bias.

This process can be repeated using β̂i and β̂t to approximate the new bias. In turn, this generates

a new bias which is smaller in magnitude. In fact, this process can be repeated L times to render the

heterogeneity biases arbitrarily small and form the �nal estimates:

β̂it = β̂i + β̂t − β̂ +
L∑

`=0

(−1)`+1

(
Q−1xx,N

1

N

N∑
i=1

xitx
′
itΓ1,` +Q−1xx,T

1

T

T∑
t=1

xitx
′
itΓ2,`

−Q−1xx,NT

1

NT

N∑
i=1

T∑
t=1

(xitx
′
itΓ1,` + xitx

′
itΓ2,`)

)
(A3)

withQxx,N =
(∑N

i=1 xitx
′
it/N

)
,Qxx,T =

(∑T
t=1 xitx

′
it/T

)
, andQxx,NT =

(∑N
i=1

∑T
t=1 xitx

′
it/NT

)
.

Moreover, Γ1,` = Q−1xx,T

(∑T
t=1 xitx

′
itΓ2,`−1/T

)
and Γ2,` = Q−1xx,N

(∑N
i=1 xitx

′
itΓ1,`−1/N

)
when ` >

0 , and Γ1,0 = β̂i and Γ2,0 = β̂t. This is a Cauchy sequence in `, so a suitable L can be chosen by

terminating the sequence once it converges to a desired tolerance. In practice, small values of L are

usually adequate. Eq. (A3) is simple to construct as it is a function of only the preliminary estimates(
β̂i, β̂t, β̂

)
and the covariates xit.

Keane and Neal (2020a) show consistency of β̂it when N and T together tend to in�nity. They

then de�ne the Mean Observation OLS (MO-OLS) estimate as the simple average of of estimates of

the observation-level coe�cients, or

β̂MO =
1

NT

N∑
i=1

T∑
t=1

β̂it (A4)

Finally, they provide results for consistency and asymptotic normality of β̂MO.
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B GDD and KDD computation

Calendar days do not provide reliable information about the timing of crop development because crop

grows by the accumulation of heat over the growing season (Gilmore and Rogers, 1958). When the

air temperature exceeds the base temperature for a certain length of time, rice will grow. If the

temperature falls below the base temperature, development slows. Degree day accumulations are

used by growers to monitor the development of biological processes and thus are used in crop and

pest management. Following Arnold (1960), Baskerville and Emin (1969) and Snyder (1985), degree

days are usually computed from daily minimum and maximum air temperature, or Tmin and Tmax,

using a sinusoidal approximation, or

T = M +W sin(t)

where t is time expressed in radians from −π/2 to 3π/2, or t = π(h− 6)/12 where h varies form 0

to 24 hours, M = (Tmax + Tmin)/2, and W = (Tmax − Tmin)/2. This approximation is depicted on

Figure A1 when Tmin = 5◦C and Tmax = 30◦C.

Degree days at a given threshold temperature are measured by integrating the aera under the

sinusoidal curve above this threshold temperature. In Figure A1, this area corresponds to the di�erence

between the area under the sinusoidal curve for time between π/2 − θ and θ, and the aera of the

rectangle whose base goes from π/2− θ to θ and height is equal to the threshold temperature value.

This results in the following expression of degree days as a function of the value C of the temperature

threshold:

DDC =


0 if C > Tmax

Tavg − C if C < Tmin(
(Tavg − C) (π − 2 sin−1(θ)) + (Tmax − Tmin) cos(sin−1(θ))

)
/2π otherwise

where Tavg = (Tmax + Tmin)/2 and θ = (2C − Tmax − Tmin)/(Tmax − Tmin).

Figure A2, which has been adapted fromYoshida (1978) by Krishnan et al. (2011), provides us

a guideline for choosing the boundaries of the temperature for rice development.As shown in Figure



34

Figure A1

Graphical illustration of DD computation

A2, rice crop only develops if there is adequate heat, i.e. if the minimum temperature for the day is

above a base temperature. Rice Crop will develop faster with more heat between a base temperature

and an optimum temperature. Growth will slow between this optimum and an upper temperature

and eventually cease occurring outside the upper temperature range. We choose optimum growing

temperature between 7◦C and 29 ◦C to ensure our low and high temperature thresholds are within the

acceptable range for the positive growth rate of rice in Vietnam 7. Beyond this range, high temperature

could reduce yield by delaying �owering and shortening the duration of grain-�lling. Hence, growth

and productivity would rapidly decrease.

Cumulative bene�cial temperatures ("growing degree days") are calculated by adding up bene�cial

temperature per day over a season to predict when rice crop will reach maturity, i.e. GDDit =

7The optimum growing temperature chosen in our study also counts for the fact that the temperature experienced
by the crop itself is normally higher than the measured air temperature above the plant canopy as noted by Butler and
Huybers (2013) and Keane and Neal (2020a). We also �nd that the other choices of threshold reduce the predictive
power of the �t in our regressions.
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Figure A2

Rice plant response to varying temperature at di�erent growth stages.

DD7,it − DD29,it where DDd,it is the accumulation of degree days at temperature threshold d for

province i over the growing season in year t. Harmful temperatures (�killing degree days�) indicating

the ampli�ed warming that might be detrimental to crops are calculated as KDDit = DD29,it.

The rice yield data we have is annual. Accordingly, the di�erent harvests that take place in North

and South Vietnam during one year are summarized in only one growing season going from March to

October (Wassmann et al., 2009).

C A simple model of agricultural yield with weather and adaptation

This appendix replicates section 1 in Keane and Neal (2020a). In this section, they present a sim-

ple model of agricultural yield with adaptation. Their aim is to provide a coherent framework for

the empirical work they present in their paper. This model starts with a production function that
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incorporates measures of temperature:

Yit
Cit

= AtµiIit (1 + β1(GDDit −GDDmin) + β2KDDit) (A5)

Yit denotes the crop output (in tonne) for farm i at time t, while Cit indicates the land area (hectare)

planted. Thus, Yit/Cit measures crop productivity or yield (tonne per hectare). Basic factors of

production, denoted by Iit, are capital, labor, and fertilizers that vary across farms and time. µi

is an indicator of unobserved soil characteristics pertaining to farm i, and At indicates total factor

productivity that enhances crop productivity at time t.

The yield �uctuation associated with temperature variation is characterized by growing degree

days, or GDDit, and killing degree days, or KDDit, as de�ned in Appendix B. GDDmin stands for

the minimum level of GDD needed for crop to experience a positive yield. Intuitively, β1 is expected

to be positive whereas β2 is expected to be negative. (β1(GDDit−GDDmin)+β2KDDit) measures

the percent shift in crop yield due to temperature factors.

Taking the log on both sides of Eq. (A5), and making use of the approximation ln(1 + x) ≈ x

when x is small, we obtain:

yit = ln(Ai) + (ln(µi) − β1GDDmin) + ln(Iit) + +β1GDDit + β2KDDit (A6)

where yit = ln (Yit/Cit). Keane and Neal (2020a) then notice that Eq. (A6) is akin that estimated

in several recent papers (See, among others, Lobell et al., 2011; Burke and Emerick, 2016). In these

papers, �xed e�ects over i and i are used to capture the At, µi, and Iit terms.The estimation of

model (6) is part of this approach which neglects any adaptation to climate change by farmers.

Subsequently, the simple model is extended to present a more sophisticated adaptive farm man-

agement approach. Climate change imply that the weather experienced by a farmer would change.

A farmer who deal with a potential loss of crop revenue due to increased temperatures would adjust

production choices by adapting its production technology to the new climatic situation. For instance,

in drier and hotter periods, yields may be lower than normal and seeds with heat or drought tolerance

traits can be selected to better protect the crop. Farmers adapt crop production by adopting best



37

practices that decrease sensitivity of yield to extreme heat or droughts at a monetary cost.

Figure A3

Relationship between optimal adaptation, or α∗it, yield sensitivity, or β∗2,it, and KDDit

Let now the coe�cient that indicates yield response to KDD varying across farmer an time ac-

cording to β2it = s/ (1 + αit) where αit denotes units of adaptation purchased in farm i in period

t, and s, which is negative, indicates the adverse impact of heat stress on crop yield when αit = 0.

Determining optimal responses to extreme temperature due to climate climate involves trading o� the

bene�ts of the adaptation choice against its cost. Pro�t for farm i in period t is total revenue minus

total cost, i.e.

πit = ptYit − γαit − rtIit (A7)

where pt is the price of the crop,γ is the price of adaptation, and rt is the rental rate per unit of

production factor in period t. To maximize pro�t, farmers purchase the optimal level of adaptation.
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Setting ∂π/∂α = 0 leads to

α∗it =

√
pt(CitAiµiIit)(−s)KDDit

γ
− 1 (A8)

Hence, the optimal level of adaptation increases in correspondence with KDDit. In hot-enduring

regions, farmers have more incentive to protect their crop through investing in various adaptation

activities. Figure A3 displays the optimal level of adaptation α∗it and the corresponding sensitivity

to KDD β∗2,it as a function of KDD.8 The relationship between KDD and β∗2,it looks like a log-linear

function. Taken in absolute value, the sensitivity to KDD tends to become negligible when KDD

increases, highlighting a better adaptation to the extreme temperatures of the hotter provinces. The

prediction of this simple economic model is in line with the empirical �ndings of Butler and Huybers

(2013). This prediction motivates the estimation of model (7) where the marginal e�ect of KDDit

on yit approximates a log linear dependence, or

∂yit
∂KDDit

= β20 + β21 ln (KDDit) . (A9)

The prediction assumes that β20 is negative while β21 is positive, assumptions that can be tested.

8As Keane and Neal (2020a), we �x pt(CitAiµiIit) = 1 and s = −0.01.


