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Abstract 14 

1. Mutation, the source of genetic diversity, is the raw material of evolution; however, 15 

the mutation process remains understudied, especially in plants. Using both a 16 

simulation and reanalysis framework, we set out to test the performance of two 17 

types of variant callers, generic ones and those developed for cancer research, to 18 

detect de novo somatic mutations. 19 

2. In an in silico experiment, we generated Illumina-like sequence reads spiked with 20 

simulated mutations at different allele frequencies to compare the performance of 21 

seven commonly-used variant callers to recall them. More empirically, we then 22 

reanalyzed two of the largest datasets available for plants, both developed for 23 

identifying within-individual variation in long-lived pedunculate oaks. 24 

3. Even in plants, variant callers developed for cancer research outperform generic 25 

callers regarding mutation recall and precision, especially at low allele frequency. 26 

Such variants at low allele frequency are typically expected for within-individual de 27 

novo plant mutations. Reanalysis of published oak data with the best-performing 28 

caller based on our simulations identified up to 7x more somatic mutations than 29 

initially reported. 30 

4. Our results advocate the use of cancer research callers to boost de novo mutation 31 

research in plants, and to reconcile empirical reports with theoretical expectations. 32 
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Introduction 33 

DNA sequence mutation is the raw material for evolutionary change, but, despite its crucial 34 

role, many fundamental questions around the mutation process are still open. The 35 

understanding of mutation processes is one of the most common conceptual difficulties in 36 

biology (Smith & Knight, 2012; Prevost et al., 2013). Mutations are often assumed to occur 37 

at a relatively constant pace (i.e. following the hypothesis of a 'perfect' molecular clock).  38 

Despite the extremely low number of direct mutation rates estimates, mutation rates are 39 

however known to be highly variable along the tree of life, differing by several orders of 40 

magnitude among species and kingdoms, and are considered as an evolvable trait per se 41 

Lynch et al., (2016). Mutations are assumed to be random, but the rate at which different 42 

nucleotides mutate strongly depends on the genomic context, in particular the surrounding 43 

nucleotides (Martincorena & Campbell, 2015), hereafter referred to as a mutation 44 

spectrum. The mutation spectra themselves are now believed to evolve over time 45 

(Milholland  et al., 2017), even at relatively short evolutionary timescales (Harris & 46 

Pritchard, 2017). The drivers of new mutations, previously thought to be simply due to DNA 47 

replication errors, are now also debated (Gao et al., 2019).  48 

Unlike most animals that transmit to the next generation only mutations present in their 49 

germ cells (i.e. sperm and eggs), plants are expected to produce heritable somatic mutations 50 

as they grow throughout their lives, departing from the so-called Weismann's germ plasm 51 

theory (Weismann, 1893; but see also Lanfear, 2018). As a consequence, long-lived species, 52 

such as trees, are generally assumed to accumulate more heritable mutations than herbs 53 
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per generation (Hanlon et al., 2019). To generate new knowledge on plant mutation 54 

processes9, several studies examined within-individual variation in long-lived trees, whose 55 

individuals can live for more than a thousand years (Schöngart et al., 2017). Two studies 56 

used the pedunculate oak (Quercus robur), a long-lived European tree species, as a plant 57 

model to identify somatic mutations. Schmid-Siegert et al., (2017) identified 17 mutations 58 

by comparing sequencing data from two branches of a 234-year-old individual. The authors 59 

therefore argued that their results are consistent with a low mutation rate in pedunculate 60 

oak. Plomion et al., (2018) identified 46 mutations using three branches of a younger 61 

(century-old) individual, which is an almost 10-fold higher rate after taking the tree age 62 

difference into account. Plomion et al., (2018) also recovered these new mutations on acorn 63 

embryos collected on the same branches as those used for the de novo mutation 64 

identification,  therefore producing empirical support for departure from Weismann's germ 65 

plasm theory in oaks. A shared limitation of both studies is that the authors have selected a 66 

single variant caller, without having investigated beforehand the robustness of the results 67 

from the selected method. The absence of a simulation work to identify the best suited 68 

detection method prior to the empirical investigations therefore represents a major limit 69 

with regards to the accuracy and completeness of the previously reported de novo 70 

mutations.  71 

The development of tools to detect mutations in humans is rapidly expanding in cancer 72 

research (Kim et al., 2018; Alioto et al., 2015). Detecting mutations in cancers is 73 

conceptually similar to detecting somatic mutations in plants, i.e., the aim is to detect 74 

mutations that potentially affect only a small fraction of the sequenced tissue. This specific 75 
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challenge is poorly addressed in plants, where mutation detection remains based on generic 76 

variant callers, which were initially designed to detect heterozygous sites, which have an 77 

expected frequency of 0.5 (Schmid-Siegert et al., 2017; Watson et al., 2016; Hanlon et al., 78 

2019; Orr et al., 2019). Generic variant callers primarily detect candidate mutations per 79 

sample against the reference genome and validate mutation robustness by comparing 80 

results between sample pairs, while cancer callers identify mutations by comparing two 81 

samples, one mutated and one normal sample, against the reference genome (Fig. 1). The 82 

per-sample strategy used in generic variant callers carries the risk of overlooking low-83 

frequency mutated reads in one or more samples that should invalidate the mutation in the 84 

other sample, whereas the consideration of paired samples in cancer variant callers instead 85 

better addresses low allelic frequency mutations in one or both samples. Transferring 86 

mutation detection tools from cancers to plants requires evaluating their performance in a 87 

plant research context. Cancer research frequently uses very high sequencing depths (100X 88 

- 1000X), while the depth available for plants is often considerably lower (e.g., 34X for 89 

Hanlon et al., 2019; 40X for Wang et al., 2018; or 70X for Schmid-Siegert et al., 2017), bar a 90 

few exceptions (240X for Orr et al., 2019; 250X for Plomion et al., 2018; or 1000X for 91 

Watson et al., 2016). To improve the detection of mutations for basic and applied plant 92 

research, a deep evaluation of the performance of variant callers is needed in relation to the 93 

biological features and quality of data typical of plant studies. 94 

Here, we performed both an in silico and an empirical data-based evaluation of the 95 

performance of variant callers to detect somatic mutations, using two large published 96 

datasets on the same species (pedunculate oak, Quercus robur) that applied different 97 
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strategies for sequencing depth and mutation detection (Schmid-Siegert et al., 2017; 98 

Plomion et al., 2018; see Fig. S1). We particularly explored the recall and precision rates 99 

depending on the sequencing depth and allelic frequency of the somatic mutation in tissues 100 

to answer the following questions: (1) Can cancer research methods, both in terms of 101 

protocols (i.e. sequencing depth) and tools (i.e. callers), improve the detection of somatic 102 

mutations?; and (2) Can reanalyses of within-individual sequencing data provide new 103 

insights regarding plant mutation processes? 104 
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Figure 1. Generic variant callers (top rows) detect candidate mutations per tissue sample 106 

(dark green and light green) against the reference genome (blue) and validate the robustness 107 

of mutations by comparing results between sample pairs, while cancer callers identify 108 

mutations by comparing two samples, one mutated (tissue A, dark green) and one normal 109 

(tissue B, light green), against the reference genome (blue). At low sequencing depth (A and 110 

E), neither the generic nor the cancer variant callers detect a low (A) or high (E) frequency 111 

mutation. At intermediate sequencing depths (B and F), both generic and cancer variant 112 

callers detect high-frequency mutations (F), but cancer variant callers are expected to be 113 

better at detecting low-frequency mutations than generic variant callers (B), which were 114 

originally designed to detect the expected high-frequency heterozygous sites. At high 115 

sequencing depths (C and G), both the generic and cancer variant callers detect high 116 

frequency (C) and low frequency (G) mutations. However, with intermediate sequencing depth 117 

(D and H), a poorly represented heterozygous site in one tissue may remain undetected in that 118 

tissue by the generic caller while it may be detected in the second tissu and thus be considered 119 

a mutation, resulting in a false positive (D). By comparing the two samples together, cancer 120 

callers will avoid this error (H). 121 

 122 
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Material and methods 123 

Study design 124 

We developed two workflows: 1) to generate Illumina-like sequencing reads including 125 

mutations with varying biological and sequencing parameters; and 2) to detect mutations 126 

with multiple variant callers (Fig. S1). We used both singularity containers (Kurtzer et al., 127 

2017) and the snakemake workflow engines (Köster et al., 2012) to build automated, highly 128 

reproducible (FAIR), and scalable workflows. We then used both workflows to test the best 129 

performing variant caller for mutation detection in silico based on biological and 130 

sequencing parameters. We finally used the identified variant caller to detect mutations in 131 

pedunculate oak, Quercus robur L., by re-analysing data from two somatic mutation projects 132 

on oaks led by INRA Bordeaux, France (Plomion et al., 2018) and the University of 133 

Lausanne, Switzerland (Schmid-Siegert et al., 2017). 134 

Generation of mutations 135 

To ensure the feasibility of the project and to limit the computational load, a first step is to 136 

subsample one or several sequences of user-defined length in the reference genome. The 137 

first workflow named generateMutations therefore uses a bespoke R script named 138 

sample_genome to generate these subsets. The workflow then takes advantage of the two 139 

scripts included in simuG (Yue & Liti, 2019), vcf2model.pl, and simuG.pl, respectively, 1) to 140 

build a model of heterozygous sites distribution for an haploid reference genome based on 141 
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a user-defined set of known heterozygous sites in vcf format and 2) to build the second 142 

reference haploid genome comprising a user-defined number of heterozygous sites to 143 

accurately represent diploidy. Typically, the user can define a number of heterozygous sites 144 

based on the product of nucleotide diversity (�) and genome length (L). The workflow uses 145 

a homemade R script named generate_mutations to spike randomly the reference genome 146 

with a user-defined number of mutations which are drawn in a binomial distribution using 147 

a user-defined transition/transversion ratio (R). Finally, the workflow takes advantage of 148 

InSilicoSeq (Gourlé et al., 2019) defined with the model option hiseq to generate datasets of 149 

mutated and non-mutated in silico Illumina-like sequencing reads using (1) the original 150 

reference haploid genome; (2) the reference haploid genome with heterozygous sites, as the 151 

workflow was developed for a diploid species; and (3) the reference genome spiked with 152 

mutations following user-defined allelic fraction (AF) and depth of sequencing depth (C).  153 

Detection of mutations 154 

The second workflow named detectMutations aims to detect somatic mutations from 155 

mapped sequencing reads on a genome reference. Pair-end sequencing reads of every 156 

library are quality checked using FastQC before trimming using Trimmomatic (Bolger et al., 157 

2014) keeping only paired-end reads without adaptors and a phred score above 15 in a 158 

sliding window of 4 bases. Reads are aligned against the reference per chromosome using 159 

BWA mem with the option to mark shorter splits (Li & Durbin, 2009). Alignments are then 160 

compressed using Samtools view in CRAM format, sorted by coordinates using Samtools 161 

sort, and indexed using Samtools index (Li et al., 2009). Duplicated reads in alignments are 162 
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marked using GATK MarkDuplicates (Auwera et al., 2013). Finally, the workflow uses seven 163 

variant callers to detect mutations, including generic variant callers to detect variants and 164 

dedicated variant callers for mutation detection. Generic variant callers to detect variants 165 

include GATK HaplotypeCaller with GATK GenotypeGVCFs (Auwera et al., 2013) and 166 

freebayes (Garrison & Marth, 2012) using and reporting genotype qualities, without priors 167 

on allele balance, with a minimum alternate allele fraction of 0.03, a minimum repeated 168 

entropy of 1 and a minimum alternate allele count of 2. Cancer variant callers developed for 169 

mutation detection include VarScan (Koboldt et al., 2009), Strelka2 (Kim et al., 2018), MuSE 170 

(Fan et al., 2016), Mutect2 (using a panel of normal and without soft clipped bases; 171 

Benjamin et al., 2019), and Somatic Sniper (filtering reads with mapping quality less than 172 

25,  filtering mutations with quality less than 15 with prior probability of a mutation of 173 

0.0001; Larson et al., 2012). Then we only focused on the simulated mutations, and 174 

therefore excluded from the analyses the known heterozygous sites provided by the user 175 

thanks to the vcf file for GATK, freebayes, Somatic Sniper, and Strelka2 using BEDTools 176 

subtract (Quinlan & Hall, 2010) or directly within the variant caller for Mutect2 and 177 

VarScan. 178 

In silico experiment 179 

We used the generateMutations workflow to generate 1000 mutations in the oak genome 180 

with varying biological and sequencing parameters. To ensure consistency between the in 181 

silico experiment and the reanalysis of empirical data, we used the reference genome 182 

"Qrob_PM1N'' of Quercus robur 3P from Bordeaux, ENA accession number PRJEB8388 183 
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(Plomion et al., 2018), thus assessing the behaviour of variant callers in the same genomic 184 

context as used for the empirical work. To reduce the computational load, we only 185 

generated mutations on the first megabase of the first chromosome of the oak assembly 186 

("Qrob_Chr01") in order to later focus the detection on this region. To check that the 187 

conclusions regarding the callers are independent of the considered genomic region, we  188 

ran five independent investigations based on randomly selected genome areas of a 189 

megabase in length. Our results were highly congruent over all our investigations 190 

(Pearson's correlations, recall: 0.999,  precision: 0.947). We used known heterozygous sites 191 

from the reference genome (Plomion et al., 2018) to simulate back one thousand 192 

heterozygous sites (� = 0.01 , L = 1 Mb , N = � x L = 10�). We used varying values of 193 

transition/transversion ratio (R = [2, 2.5, 3]), allelic fraction (AF = [0.05, 0.1, 0.25, 0.5]), and 194 

sequencing depth (C = [25, 50, 100, 150, 200]), resulting in 60 simulated datasets of 195 

mutated and associated base reads (3R x 4AF x 5C). We then used the detectMutations 196 

workflow to detect (recall) spiked mutations with every variant caller (Mutect2, freebayes, 197 

GATK, Strelka2, VarScan, Somatic Sniper, and MuSe). Using known spiked mutations, we 198 

assessed the number of true positive (TP), false positive (FP), and false negative (FN) for 199 

each variant caller to detect mutations and each combination of biological and sequencing 200 

parameters. We used the resulting confusion matrix to calculate the recall (
��

�����
) and the 201 

precision rates (
��

�����
). The recall rate represents the ability of the variant caller to detect 202 

all mutations, while the precision rate represents the ability of the variant caller to not 203 

confound other sites with mutations. We finally assessed each variant caller to detect 204 

mutations using the recall and the precision rates with varying transition/transversion 205 
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ratio (R), allelic fraction (AF), and sequencing depth (C) to identify the best performing 206 

variant caller based on biological and sequencing parameters. 207 

Oak data reanalyses 208 

We re-analyzed publicly available oak data from two projects led by Bordeaux, France 209 

(Plomion et al., 2018) and Lausanne, Switzerland (Schmid-Siegert et al., 2017) (SRA 210 

PRJNA327502 and ENA PRJEB8388, respectively). We then used the best-performing 211 

variant caller based on our in silico investigation, Strelka2, and the variant caller for 212 

mutation detection from the original publication to compare the results, i.e., GATK with Best 213 

Practices for Swiss data (Schmid-Siegert et al., 2017) and Mutect2 for French data (Plomion 214 

et al., 2018). The Swiss data comprised 2 libraries of medium sequencing depth (60X) 215 

representing one lower and one upper branch. The French data comprised 3 libraries of 216 

high sequencing depth (160X) representing 3 branches (lower, mid, and upper). For both 217 

Swiss and French data, we compared each pair of sample points sequentially as the 218 

reference library and the potentially mutated library to distinguish mutations among 219 

branches from heterozygous sites and sequencing errors. For the French data, we further 220 

filtered out candidate somatic mutations by using a cross-validation procedure to keep a 221 

coherent temporal pattern among mutations following the original publication (Plomion et 222 

al., 2018). Contrary to a general expectation and a common view in the field (Schmid-223 

Siegert et al., 2017, Orr et al., 2019), detected mutations do not always accumulate following 224 

the developing plant architecture (Zahradníková et al., 2020). As a consequence, our cross-225 

validation represents a conservative strategy for the mutation detection, but it should be 226 
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noted that this strategy could have removed some true somatic mutations.  We used these 227 

raw datasets to identify the mutations from the original studies after realigning the 228 

megabase containing the mutation on the 3P genome using BLAT (Kent, 2002). For both 229 

datasets, we finally kept candidate mutations with (1) a read depth for both the normal and 230 

mutated samples between half and two times the mean sequencing depth (30-120X and 80-231 

320X for Swiss and French datasets, respectively), (2) an absence of the mutated allele in 232 

the normal sample, (3) a minimum of 10 copies of the mutated allele in the mutated sample 233 

and (4) an allelic frequency <0.5. In addition, Strelka2 calculates an empirical variant score 234 

(EVS) based on a supervised random forest classifier trained on data from sequencing runs 235 

under various conditions, which provides an overall quality score for each variant (Kim et 236 

al., 2018). We took advantage of the EVS to define a conservative set of candidate mutations 237 

for both datasets, hereafter referred to as the EVS datasets. Given that the proportion of the 238 

genome falling within the sequencing depth boundaries used for the detection (i.e. between 239 

50 and 200% of the mean sequencing depth) varies depending on the dataset, we weighted 240 

the observed number of mutations by the proportion of the genome satisfying the 241 

sequencing depth criteria to provide a more accurate and comparable estimate of the real 242 

total number of mutations. Across both empirical studies, the proportion of the genome 243 

with 50-200% sequencing depth varies between 71 and 87%, therefore the impact of the 244 

weighting in the estimation of the real total number of mutations is low. 245 
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Results 246 

To compare the performance of different variant callers to detect mutations, we simulated 247 

sequencing data containing new mutations at a given allele frequency (fraction of simulated 248 

reads per genomic position carrying the mutated allele), and using varying depths of 249 

sequencing (for variable transition/transversion ratios, see Supplementary Note S1). We 250 

then evaluated the performance of variant callers as a function of allele frequency and 251 

sequencing depth. We found marked differences in: (1) the recall, the ability to recover the 252 

simulated mutations; and (2) the precision, the proportion of truly simulated mutations 253 

among all variants detected. For allele frequencies equal to, or lower than, 0.25, cancer-254 

specific variant callers (Strelka2, Mutect2, MuSE, but not Somatic Sniper) outperform 255 

generic variant callers such as GATK, freebayes, and VarScan (Fig. 2). For allele frequencies 256 

over 0.25, all variant callers perform similarly well, except for freebayes, which identified 257 

many false positives. Over the 80 tested parameter combinations, Strelka2 was the best 258 

performing variant caller for various allelic frequencies and sequencing depths (in 57/80 259 

simulated datasets , with an average recall of 0.95 for a precision of 0.98, Fig. S2-4 and 260 

Table S1 and S2) and the second fastest caller (Fig. S9). 261 
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262 

Figure 2: Variant caller performances to identify simulated mutations for varying allelic263 

frequencies and sequencing depths (see Fig. S5 for all parameter combinations).  The recall is264 

the ability to detect (recover) the simulated mutations. The precision is the proportion of265 

simulated mutations among all variants detected (i.e. including false positives). Each poin266 

represents the averaged mutation recall or precision (10 simulations) for increasing allelic267 

frequency and sequencing depth. The shaded area represents the variation of recall and268 

precision rates over the 10 replicates computed for all callers, but only visible for the precision269 

of Muse, Mutect2, and VarScan. Linetype opposes generic callers (dashed) against cancer270 

variant callers  developed for cancer research (solid). 271 
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We further investigated the performance of the best performing variant caller, Strelka2, on 272 

two empirical datasets on pedunculate oak (Schmid-Siegert et al., 2017; Plomion et al., 273 

2018) in comparison to the variant callers used in the original publications, i.e., GATK and 274 

Mutect2, respectively (see Supplementary Note S2). Mapping the raw data of  Schmid-275 

Siegert et al., (2017) and Plomion et al., (2018) on the oak genome that we used as a 276 

mapping reference for our empirical study, we successfully mapped 14 and 60 of the 277 

mutations detected in the original articles, respectively. Across variant callers, we 278 

recovered 12 (86%) and 60 (100%) of these original mutations in our total list of candidate 279 

somatic mutations (Fig. 3A), strongly supporting the results shown by the two previous 280 

studies. However, our analyses were able to detect far more robust candidate mutations 281 

than initially reported. Applying filtering based on sequencing depth and mutated allele 282 

copies (see Supplementary Note S2), Strelka2 produced a smaller set of candidate 283 

mutations than GATK but similar to Mutect2, with an estimated number of  mutation 284 

candidates 10- to 25-fold higher than that of the original studies (Fig.  3A). Adding Strelka2 285 

recommended filtering based on empirical variant scores yielded the most conservative 286 

dataset with a similar number of mutations between both studies and a 2 to 7-fold increase 287 

compared to the original number of mutations. Due to lack of access to biological material 288 

from the original studies, conclusions were drawn from this list of  conservative candidate 289 

somatic mutations (but see supplementary note S4 for a discussion regarding validation of 290 

mutations). The distribution of allelic frequencies of detected mutations partly explains 291 

differences among detection methods (Fig. 3A), with Strelka2 and Mutect2 detecting 292 

mutations with lower allelic frequencies than the candidate mutations presented in the 293 
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original publications, especially for the Plomion et al., (2018) study that used higher 294 

sequencing depths. 295 

Based on the set of conservative mutations detected by Strelka2 (EVS), we then explored 296 

annotations and mutation spectra in both datasets (Fig. 3B-C), which have rarely been 297 

explored in model plant species (but see first evidence based on mutation accumulation 298 

lines in Arabidopsis in Weng et al., 2019) and never in the wild. The proportions of 299 

mutations found in different genomic regions (e.g. genic, intergenic) were highly correlated 300 

between both original studies and proportional to the representation of the genomic 301 

regions, supporting a random distribution of mutations throughout the genome (Fig. 3B). 302 

Mutation spectra of the two studies are significantly correlated (Pearson’r=0.49, p<7.4 10-303 

5), with an enrichment in C>T transitions, particularly in some specific genomic contexts 304 

(Fig. 3C). 305 
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306 

Figure 3: Candidate mutation spectra depending on variant callers and filtering in Schmid307 

Siegert et al., (2017) and Plomion et al., (2018). A. Allelic frequency distribution for every308 

dataset, including the candidate mutations from the original article present in the raw data309 

from the reanalysis (red), the results of GATK with Best Practices (blue), Mutect2 after310 

filtering (green), and Strelka2 after filtering (purple), and the results of Strelka2 using the311 

filtering based on empirical variant scores named EVS (orange). The labels indicate the312 

number of candidate mutations in each dataset. Per caller comparisons are available in Fig313 

S7. B. Annotation of the mutations detected by Strelka2 across chromosomes using the314 

filtering based on empirical variant scores named EVS for Schmid-Siegert et al., (2017, green)315 

and Plomion et al., (2018, orange) compared to the genomic expectation (grey, see316 

Supplementary Note S3). Error bars represent the standard deviation (SD) of the observed317 
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percentages across chromosomes, and the annotation above the columns indicates the 318 

significance of the Student's t-test two-sided comparing the mean percentage of mutations to 319 

the mean genomic expectation, with ns, **, and *** corresponding to non-significant, p<0.01, 320 

and p<0.001 differences, respectively. C. Context-dependent mutation spectra depending on 321 

mutation types for the results of Strelka2 using the filtering based on empirical variant scores 322 

named EVS. Mutation types have been summarised into six main classes with thicker lines for 323 

transversion compared to transition, and then differentiated depending on their 5’ and 3’ 324 

genomic contexts, see Fig. S8-9. Pearson’s correlation r measures the two-sided correlation of 325 

the mutation spectra between Schmid-Siegert et al., (2017) and Plomion et al., (2018). 326 

Discussion 327 

Mutation research in plants still primarily uses generic variant callers and methodologies 328 

that are not developed for the specificity and complexity of within-individual de novo 329 

mutation detection. We examined if plant mutation research could benefit from the 330 

development of tools and protocols initially designed for human cancer research, which is a 331 

rapidly expanding field (Kim et al., 2018). We found marked differences in the performance 332 

of variant callers for mutation detection based on sequencing depth and allelic frequency. 333 

We found that cancer variant callers performed better than generic variant callers for 334 

mutation detection at low or intermediate allelic frequency or with low sequencing depth, 335 

and similarly well for high allelic frequency. Low allelic frequency mutations, potentially 336 

due to the chimeric nature of plant shoot apical meristems structures (Burian, 2021), might 337 

be very important due to their great abundance that may balance out their low chance of 338 
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transmissions. Therefore, plant mutation studies should make greater use of cancer variant 339 

callers such as Strelka2 rather than generic variant callers such as GATK to detect somatic 340 

mutations, in agreement with previous studies on germline mutations detection (Chen et al., 341 

2019), especially for detecting low frequency mutations and when using low sequencing 342 

depth. The importance of allele frequency-dependency in variant detection is not restricted 343 

to somatic mutations, but also concerns for instance polyploid species, which includes many 344 

agriculturally important autopolyploid plant species (e.g. potato, sugarcane). Our 345 

simulation framework therefore provides general insights regarding the impact of allelic 346 

dosage in mutation detection which go beyond somatic mutation detection. 347 

One problem that may arise when analysing sample pairs with cancer variant callers 348 

is the rapid increase in pairwise comparisons when using a larger sample size than 349 

previous studies (e.g., N=3 in Plomion et al. 2018). A simple solution is the use of a single 350 

reference sample such as a cambium sample from the base of the tree, which is therefore 351 

considered as the closest genome to the seed, to compare it to all samples from branches 352 

(Hanlon et al., 2019). By reanalyzing the raw oak data (Schmid-Siegert et al., 2017; Plomion 353 

et al., 2018), we found that the marked differences in the performance of variant callers 354 

could account for the discrepancies in genome-wide plant somatic mutation rate estimates. 355 

Our reanalysis shows robust evidence for an up to 7-fold higher number of mutations than 356 

previously reported, a value closer to the expectations based on the theory (Schoen & 357 

Schultz, 2019; Burian, 2021). We argue that knowledge and methodological transfers from 358 

cancer to plant mutation detection are expected to contribute strongly to the upward trend 359 

of  this field and to reconcile empirical reports with theoretical expectations. 360 
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