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Abstract: Visible Near infrared and Shortwave Infrared (VNIR/SWIR, 400–2500 nm) remote sensing
data is becoming a tool for topsoil properties mapping, bringing spatial information for environmen-
tal modeling and land use management. These topsoil properties estimates are based on regression
models, linking a key topsoil property to VNIR/SWIR reflectance data. Therefore, the regression
model’s performances depend on the quality of both topsoil property analysis (measured on labora-
tory over-ground soil samples) and Bottom-of-Atmosphere (BOA) VNIR/SWIR reflectance which are
retrieved from Top-Of-Atmosphere radiance using atmospheric correction (AC) methods. This paper
examines the sensitivity of soil organic carbon (SOC) estimation to BOA images depending on two
parameters used in AC methods: aerosol optical depth (AOD) in the FLAASH (Fast Line-of-Sight
Atmospheric Analysis of Spectral Hypercubes) method and water vapor (WV) in the ATCOR (ATmo-
spheric CORrection) method. This work was based on Earth Observing-1 Hyperion Hyperspectral
data acquired over a cultivated area in Australia in 2006. Hyperion radiance data were converted to
BOA reflectance using seven values of AOD (from 0.2 to 1.4) and six values of WV (from 0.4 to 5 cm),
in FLAASH and ATCOR, respectively. Then a Partial Least Squares regression (PLSR) model was
built from each Hyperion BOA data to estimate SOC over bare soil pixels. This study demonstrated
that the PLSR models were insensitive to the AOD variation used in the FLAASH method, with
R2

cv and RMSEcv of 0.79 and 0.4%, respectively. The PLSR models were slightly sensitive to the WV
variation used in the ATCOR method, with R2

cv ranging from 0.72 to 0.79 and RMSEcv ranging from
0.41 to 0.47. Regardless of the AOD values, the PLSR model based on the best parametrization of
the ATCOR model provided similar SOC prediction accuracy to PLSR models using the FLAASH
method. Variation in AOD using the FLAASH method did not impact the identification of bare soil
pixels coverage which corresponded to 82.35% of the study area, while a variation in WV using the
ATCOR method provided a variation of bare soil pixels coverage from 75.04 to 84.04%. Therefore,
this work recommends (1) the use of the FLAASH AC method to provide BOA reflectance values
from Earth Observing-1 Hyperion Hyperspectral data before SOC mapping or (2) a careful selection
of the WV parameter when using ATCOR.

Keywords: Hyperion; hyperspectral imagery; atmospheric corrections; soil organic carbon; ATCOR;
FLAASH; mapping

1. Introduction

Soil is a heterogeneous composite material with a wide range of physical and chemical
properties. It supports life and vegetation on earth and plays a central role in many of
today’s environmental challenges. A solid understanding of soil is required for improved
soil management. Composition and properties such as clay, sand, silt, calcium carbonate,
free iron, organic carbon, and pH in the spatial and temporal domains. Soil organic carbon
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(SOC) is one of the major soil constituents because of its ability to influence plant growth
as a source of energy and a trigger for nutrient availability via mineralization [1]. SOC is
also important for the carbon cycle in terrestrial environments [2]. The determination of
SOC content is also an obvious requirement to determine the rate and/or extent of Carbon
soil sequestration. In agronomy, soil science, and climate change research, information
on geographical and temporal fluctuations in SOC content is needed [3,4]. Traditional
laboratory procedures for determining SOC content are time-consuming, expensive, and
labor-intensive. The VNIR/SWIR spectroscopy (350–2500 µm) can be used to estimate the
SOC in lab, field and from remote sensing conditions [5]. The soil reflectance spectra in
the 1100–2500 nm range generally includes three distinct absorption peaks around 1400,
1900, and 2200 nm with a few small absorption peaks between 2200 and 2500 nm [6]. The
effect of SOC containing biochemical constituents like chlorophyll, oil, cellulose, pectin,
starch, lignin, and humic acids [7] is dominant in the visible and near infra-red portion of
the spectrum (400–1100 nm), and some parts of the SWIR region (1100–2500 nm) [8], and
soil reflectance generally decreases with organic matter content [9]. Simple Linear Regres-
sion [10], Principal Component Analysis [11], Partial Least Squares regression (PLSR) [12],
and Artificial Neural Networks [13] are some of the statistical techniques used for SOC
estimation. Out of these methods, PLSR is the most common method. VNIR/SWIR hyper-
spectral remote sensing data were becoming a potential tool to extend SOC mapping [14,15].
However, this technique is affected by the presence of green and dry vegetation [16,17],
topsoil moisture [18] and atmospheric composition [19]. Concerning the latter, since the
mid-1980s some Atmospheric Correction (AC) methods have been developed which were
applied on VNIR/SWIR data obtained via airborne and spaceborne multispectral and
hyperspectral sensors. AC methods are used to convert the Top-Of-Atmosphere radiance to
the surface reflectance (also called Bottom-of-Atmosphere reflectance). By reducing external
atmospheric components, reflectance can be improved. Empirical models, radiative transfer
models, and hybrid models are the three categories of AC models. They have evolved from
an empirical approach to rigorous radiative transfer modeling [20].

Empirical models mainly rely on image statistics to estimate surface reflectance. A
few of the empirical methods are Internal Average Reflectance (IAR), Flat Field (FF), and
Empirical line method [21]. Darkest Pixel principle (DP) is also an empirical method,
where studies [22] indicated the best results for accurate surface reflectance estimation
are achieved using a method that adds the effect of Rayleigh scattering to conventional
dark object subtraction. For atmospheric correction and aerosol retrieval, semi-empirical
approaches such as QUick atmospheric correction (QUAC) [23] are used. Radiative trans-
fer methods simulate the absorption and scattering effects of atmospheric components.
To mimic the atmosphere, several algorithms have been created, notably ATREM (AT-
mospheric REMoval algorithm), ATCOR (ATmospheric CORrection [24], FLAASH (Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes [25], ISDAS (Imaging Spec-
trometer Data Analysis System [26], HATCH (High-accuracy ATmosphere Correction for
Hyperspectral data [27], and ACORN (Atmospheric CORrection Now) [28]. For the deriva-
tion of surface reflectance from hyperspectral imaging data, hybrid models commonly
combine radiative modeling with empirical methodologies. With physical models, Gor-
don [29] has summarized the evolution of Ocean color Atmospheric corrections right from
its early years to the current scenarios. Other physical models are also developed and used
for various applications [30,31]

Some studies compared performances of AC models for identifying tree species [32],
mineral mapping [33], littoral environments studies [34], and SOC content mapping [35].
Beyond the type of AC methods and the choice of the AC method, the atmospheric parame-
ters (e.g., Aerosol Optical Depth, Water vapor, Ozone, Visibility) used in AC methods might
be uncertain and the choice of these atmospheric parameters may impact the reflectance
quality. Only a few studies focused on an evaluation of the impacts of these atmospheric
parameters on reflectance quality such as ozone, water vapor, Rayleigh scattering, aerosol
scattering on the spectral reflectance of NOAA-AVHRR and derived NDVI data [36,37].
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Mannschatz et al. [38] studied sensitivity of LAI estimation from satellite imaging to atmo-
spheric correction using ATCOR, and highlighted that the ATCOR parameter ‘visibility’
has the strongest influence on LAI estimation. Griffin et al. [39] studied the sensitivity of
Visibility, Aerosol model type, Atmospheric model and solar zenith on surface reflectance
using AVIRIS data in FLAASH and ATREM and concluded the sensitivity to input visibil-
ity generally varied between +0.03 for both AC models. Davaadorj. A. [40] studied the
sensitivity of different aerosol models using Worldview 3 data with FLAASH and ATCOR
AC and concluded that maritime aerosol has the least sensitivity compared to rural and
urban models. The variation of surface reflectance caused by different surface types such
as sand, artificial turf, grass, bright and dark targets with respect to AOD was studied by
Nazer et al. and Bassani et al. [41,42].

In this context, the aim of the study is to evaluate the uncertainty of SOC prediction due
to two atmospheric parameters used in AC methods: the water vapor (WV) using ATCOR
and the Aerosol Optical Depth (AOD) using FLAASH. A Hyperspectral Hyperion image
was corrected by ATCOR and FLAASH AC methods to convert the at-sensor radiance
spectrum to the ground reflectance spectrum, with a feasible range of WV and AOD values,
respectively. And the PLSR method was selected as the classical chemometric method for
SOC content estimation based on each corrected Hyperion reflectance data. The data and
methods used are presented in Section 2 and the results in Section 3. Finally, the results are
discussed in Section 4.

2. Materials and Methods
2.1. Study Area

The Narrabri site is in Australia’s northwestern state of New South Wales (NSW)
(Figure 1a). The study area is divided into two subsites: the cotton fields of Namoi (referred
to as Narrabri site#1 henceforth) (149◦37′E, 30◦10′S), which cover 70 km2, and the pastures
in the town of Narrabri (referred to as Narrabri site#2), which covers 69 km2 (Figure 1b). The
Australian fields are extensive and continuous (approximately 500 m × 900 m). Vertisols
predominate in this area. The terrain is flat, with plane regions rising to an average elevation
of 210 m above sea level.
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2.2. Raw Hyperion Data

The EO-1 satellite’s Hyperion sensor monitors radiation from 400 to 2500 nm in
242 spectral bands with a spectral resolution of about 10 nm and a spatial resolution of
30 m. The Hyperion images have a sweep width of 7.6 km. Folkman et al. [43] provided a
full description of Hyperion’s characteristics, operations, and uses.

Two Hyperion cloud-free pictures were obtained over the Narrabri study area in this
study: the first on 13 December 2006 at 23:51 UT over Narrabri pasture soils (site#2), and
the second on 17 January 2007 at 23:47 UT over cropping soils (site#1) and traveling stock
routes of Namoi. The Hyperion images were georeferenced Hyperion images in L1T format
(Figure 1c,d).

2.3. Soil Sampling

Over the two Narrabri locations, a total of 98 soil samples were collected (Figure 1c,d)
from researchers of The University of Sydney in Australia [12]. It includes 46 samples
from Narrabri site#1’s cropping soils and stock routes collected in October 2006 (during
the same semester as Hyperion data) (Figure 1c) and 52 samples from Narrabri site#2’s
pastures collected in December 2006 (during the same month as Hyperion data) (Figure 1d).
During the field campaign, soil samples were gathered from bare soil areas. Because there
was no organic matter added or consumed in the field due to the absence of vegetation
during this period at the sampling locations, SOC content may be deemed steady between
sampling and picture collection. Climate change, particularly changes in temperature and
rainfall, have an impact on SOC by hastening its decomposition. However, it was reliably
concluded that SOC was very consistent between measurements in Narrabri site#1 during
a short period of three months from October 2006 to January 2007. Soil samples were taken
at a depth of 0 to 10 cm. This depth corresponds to the ploughed soil horizon, and the
Hyperion measurement may be deemed indicative of this tested depth because the soil
samples were gathered on cultivated areas. Soil samples are the average of sub-samples
obtained at the center and four corners of a 20 × 20 m area’s perimeter.

2.4. SOC Laboratory Measurements

Laboratory mid-infrared (MIR) spectroscopy was used to determine the SOC content
of soil samples. Samples were crushed to 200 µm for MIR analysis and analyzed as neat
powders. Each soil sample’s MIR spectral reflectance was measured using a Bruker Optics
Tensor 37 Fourier Transform Infrared spectrometer with an 8 cm-1 resolution and 64 scans
per second in the range 2500 to 25,000 nm. PLSR from MIR calibrations was used to predict
the SOC content of each soil sample [12]. The calibration used 13 factors, and the model’s
root mean squared error in the test set validation was 0.15 dag/kg, with an R2 of 0.91 [12].
The SOC ranges from 0.002% to 3.6%, with a mean of 1.56%, and a standard deviation of 0.97%.

2.5. Atmospheric Parameters
2.5.1. Water Vapor

Water vapor (WV) absorption has a strong effect within specific absorption bands,
but spectral bands for land surface observations are typically designed to avoid strong
absorption lines. Hence water vapor absorption must be accurately corrected in the selected
bands. From a joint project between the National Center for Environmental Prediction
(NCEP, formerly “NMC”) and the National Center for Atmospheric Research (NCAR) [44],
the total column WV over the study area ranged between 0.9 cm to 3.7 cm in the last 15 years
(from 2000 to 2015, Figure 2, Table 1). These WV values were estimated by reanalysis models
built from historic meteorological data collected over 15 years.
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for Atmospheric Research (NCAR).

Table 1. WV and AOD estimations, estimated by the joint project between the National Centers for
Environmental Prediction (NCEP, formerly “NMC”), the National Center for Atmospheric Research
(NCAR), and the atmosphere global product based on Modis MOD08_M3 V6, respectively.

Water Vapor (WV)
(in cm)

Aerosol Optical Depth
(AOD)

Minimum 0.9 0.02
Maximum 3.7 1.50

Mean 2 0.48
Median 1.9 0.42

Standard Deviation 0.7 0.25

At the date of the Hyperion images acquisition, the total column WV value would
be estimated between 2.8 cm and 3.1 cm. Finally, considering the “Mid Latitude Summer”
climatic condition over the study area, the default WV value usually selected in the ATCOR
model would be 2–3 cm (Table 3, [12]). The Hyperion data were corrected from atmospheric
effects using six WV values, preselected by the ATCOR software: 0.4, 1, 2, 2.9, 4, and 5 cm.

2.5.2. Aerosol Optical Depth

Molecular scattering and absorption can be adequately explained, but not the optical
properties of aerosols for the portion of the spectrum dominated by scattering processes
rather than thermal emission. Kaufman [45] demonstrated how aerosols reduce apparent
spatial resolution, alter the apparent spectral characteristics, resulting in a loss of classifica-
tion accuracy. From MODIS MOD08_M3 V6, which is an atmosphere global product that
contains monthly 1 × 1-degree grid average values of atmospheric parameters, the AOD
values over the study area ranged from 0.02 to 1.5 over the last 15 years (from 2000 to 2015,
Figure 3, Table 1) [46].
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At the date of Hyperion images acquisition, over the study area, the AOD value
would be estimated between 0.25 and 0.26. Finally, considering the “Mid Latitude Summer”
climatic condition over the study area, the default AOD value in FLAASH would be 1.
The Hyperion data were corrected from atmospheric effects using seven AOD values in
FLAASH: 0.2, 0.4, 0.6, 0.8, 1, 1.2, and 1.4.

2.6. Methodology

The FLAASH and ATCOR atmospheric correction was performed in ENVI and AT-
COR software, respectively. Bands selection and bare soil pixels selection were performed
in QGIS, an open-source GIS software. The regression model, including the calibration
data preparation, the model building, and the evaluation of the performances were per-
formed in Matlab(R). Historical AOD and WV data were extracted using the Google
Earth Engine platform.

2.7. Atmospheric Correction Models
2.7.1. ATCOR Atmospheric Correction Model

ATCOR uses the MODTRAN5 radiative transfer model [24] with the newest high-
resolution transmission molecular absorption (HITRAN) database for atmospheric correc-
tion. MODTRAN5 is an updated version with greater spectral resolution and supplemen-
tary atmospheric gas treatment [47,48]. In the 400–2500 nm range, ATCOR uses a variable
wavenumber grid to achieve a constant spectral sample distance of 0.4 nm [24]. In this
study, the band model of MODTRAN was used.

For each image, ATCOR assumes a Lambertian surface and requires a sensor type,
flight date, solar zenith angle, sensor view geometry, average ground height, and adjacency
range. The initial visibility estimate was 30 km. The spectral specifications for the sensor
Hyperion are stored in a calibration file called “hyperion 167.cal” provided by ATCOR.
There is an atmospheric database, which consists of look-up tables for radiative transfer
calculations that span a wide range of weather situations and sun angles. The user has the
option of using the standard MODTRAN model for atmosphere and aerosol types to depict
the scene, and each image receives its own MODTRAN solution.

In this study, both Hyperion images were corrected from atmospheric effects with the
ATCOR model (Figure 4) using the six WV values, preselected by the ATCOR software:
0.4, 1, 2, 2.9, 4, and 5 cm. The default values of other parameters were selected for running
the ATCOR model as described in Table 2. Six atmospherically corrected Hyperion images
were created for both sites (site#1 and site#2).
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Table 2. ATCOR parameters.

Parameter Selected Value

Atmospheric Model Mid-Latitude Summer
Adjacency correction No

Aerosol Model Rural
Visibility 30 km

Region for water vapor retrieval 820 nm
Spectral polishing No

CO2 390 ppm
Water vapor Ranges from 0.9 cm to 3.7 cm

2.7.2. Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubus (FLAASH)
Atmospheric Correction Model

FLAASH is an atmospheric adjustment approach based on physics [49]. It calculates
the parameters needed for RT equations using the MODTRAN4 code, which results in
surface reflectance. A scaled DISORT (DIScrete Ordinate Radiative Transfer) algorithm
is utilized to calculate atmospheric multiple scattering, and the correlated k technique is
employed to represent absorption for places with significant absorption effects. FLAASH,
with a resolution of 5 cm−1, results in SSD ranging from 0.08 to 3.12 nm depending on
wavelength in the 400–2500 nm range.

Hyperspectral sensors, such as HyMAP, AVIRIS, HYDICE, Hyperion, Probe-1, CASI,
and AISA, and multispectral sensors, such as HyMAP, AVIRIS, HYDICE, Hyperion, Probe-
1, CASI, and AISA), are supported by FLAASH (such as Landsat, SPOT, IRS, and ASTER).
Retrieval of water vapor and aerosol are only possible when the image comprises bands
with incorrect wavelength locations. A method for extracting an estimated aerosol/haze
amount from chosen dark land pixels in the picture is included in the FLAASH model.

In this study, both Hyperion images were corrected from atmospheric effects with
the FLAASH model (Figure 4) using the seven AOD values selected based on the Modis
MOD08_M3 V6 product (Section 2.5.2): 0.2, 0.4, 0.6, 0.8, 0.1, 0.12, and 0.14. The default
values of other parameters were selected for running the FLAASH model as described
in Table 3. Seven atmospherically corrected Hyperion images were created for both sites
(site#1 and site#2).

Table 3. FLAASH parameters.

Parameter Selected Value

Atmospheric Model Mid-Latitude Summer
Adjacency correction No

Aerosol Model Rural
Visibility 30 kms

Region for water vapor retrieval 820 nm
Spectral polishing No

CO2 390 ppm
Aerosol optical depth Ranges from 0.02 to 0.15
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2.8. Bands Selection

The HYPERION spectral bands with a very low SNR and those located in the at-
mospheric absorption bands are removed, as previously done by Gomez et al. [12], Lu
et al. [50], and Minu et al. [35]. A total of 122 spectral bands, belonging to spectral ranges
from 467 to 854 nm, 1063 to 1336 nm, 1548 to 1790 nm, and 1981 to 2355 nm, were finally
kept to estimate SOC content from PLSR models. Different degrees of vertical stripping
were indicated by visual observation of individual reflectance bands. It was discovered that
excluding certain bands from the study was beneficial [50,51]. This is done after FLAASH
or ATCOR has applied atmospheric adjustment (Figure 4). Bands surrounding large at-
mospheric absorption areas (e.g., at the 950, 1400, 1900, and 2500 nm water absorption
bands) that appear as over/under-corrected reflectance values were also removed from
the reflectance spectrum. After using the FLAASH and ATCOR algorithms, a few bands
with negative or zero reflectance values near the 450 nm spectral area that were not actual
reflectance values were also removed.

Finally, a total of 122 spectral bands were used in both ATCOR and FLAASH and then
used to estimate SOC content from PLSR models. This is in accordance with the bands
used by Minu et al. [35]. These 122 spectral bands belong to the spectral ranges from 467 to
854, 1063 to 1336, 1548 to 1790, and 1981 to 2355 nm.

2.9. Bare Soil Pixels Selection

The Normalized Differential Vegetative Index (NDVI) was used to identify and mask
green vegetation pixels [52], based on the following equation:

NDVI = (NIR − Red)/(NIR + Red) (1)

where NIR and Red are the reflectance measured at 834 nm and 661 nm, respectively. Pixels
with NDVI values over 0.2 were masked.

The Modified Normalized Difference Water Index (MNDWI) was used to identify
and mask water pixels. The MNDWI is calculated for the enhancement of open water
features [53], as follows:

MNDWI = (Green − SWIR1))/(Green + SWIR1) (2)

where Green and SWIR1 are the reflectance measured at 559 nm and 1609 nm, respectively.
It also diminishes built-up area features that are often correlated with open water in other
indices. Pixels with MNDWI values greater than 0 were masked.

The Normalized Burned Ratio 2 (NBR2) index was used to mask the dry vegetation [54]
as follows:

NBR2 = (SWIR1 − SWIR2)/(SWIR1 + SWIR2) (3)

where SWIR1 and SWIR2 are the reflectance measured at 1609 nm and 2193 nm, respectively.
Pixels with an NBR2 value greater than 0.2 were masked [54].

2.10. Regression Model
2.10.1. Data Preparation

Before performing quantitative statistical analysis, a noise reduction was achieved
through standard pre-treatments: a Savitzky–Golay filter with third-order polynomial
smoothing and window widths of 61 nm [55], mean centering and variance scaling. A
generalised moving average filter, the Savitzky Golay filter [55], is also known as a digital
smoothing polynomial filter or least-squares smoothing filter. The filter coefficients are
calculated by fitting a polynomial of a particular degree with an unweighted linear least-
squares fit. It requires equidistant bandwidth and fits a local polynomial regression on
the signal. It is feasible to get a high amount of smoothing without attenuating data
features using a higher degree polynomial. Mathematically, it’s nothing more than a
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weighted sum of nearby values. The Hyperion spectra were filtered with a third order
Savitzky Golay filter.

xi =
∑n

j=1 Xij

n
(4)

Standard normal variate (SNV) calculates the standard deviation of all the pooled variables
for the given sample [56]. The entire sample is then normalized by this value, thus giving
the sample a unit standard deviation (s = 1).

wi =

√
∑n

j=1(Xij− xi)2

n− 1
+ δ−1 (5)

where n is the number of variables, xij is the value of the jth variable for the ith sample, and
δ is a user-definable offset. The user-definable offset can be used to avoid over-normalizing
samples which have near-zero standard deviation. The default value for this offset is zero,
indicating that samples will be normalized by their unweighted standard deviation. The
selection of δ is dependent on the scale of the variables. A setting near the expected noise
level (in the variables’ units) is a good approximation.

Outliers are observations that differ significantly from normal values and are not
compatible with the rest of the data [57,58]. Spectra can be defined as a spectral outlier
when the sample is spectrally different from the rest of the samples. Out of the 98 samples
for which SOC values are present, spectral outliers were identified using Mahalanobis
distance [59]. This class of methods only uses distance space to flag outlier observations.
The Mahalanobis distance (MD) for the ith observation is given by:

MDi =
√
(xi − x)tC−1 (xi − x)

C = 1
n−1 X′X

(6)

where X is the data matrix of size n × p, where p is the number of variables and n is the
number of observations. xi is an observation (a row of X), x is the mean vector, and C is the
sample covariance matrix which gives information about the covariance structure of the
data. In the analysis, Mahalanobis distance cutoff was set to 3.

2.10.2. PLSR with Leave-One-Out Cross-Validation (LOOCV)

In this study, Partial Least Squares Regression (PLSR) is carried out to find predictive
models for soil organic carbon data and discusses the effectiveness of these methods in
predicting soil carbon using spaceborne Hyperspectral data. Here, the PLSR method is used
to regress a relationship between response variables to many predictor variables [60]. Care
should be taken whilst choosing the number of latent variables. Using many components
will lead to a good fitting model but is a strategy that leads to overfitting. In this case,
cross-validation, which is a widely used method, was used in choosing the optimal number
of variables. The maximum number of latent variables was defined as 10, then the optimal
number of latent variables was determined using the prediction residual error sum of
squares (PRESS) analysis. This allows avoiding under- and over-fitting.

Cross validations also avoid overfitting by not using the same data to both fit a model
and to estimate prediction error. In this study, 10-fold cross-validation was used. Here
the original data was divided into subsets or folds, which in this case is 10. One of the
folds is not used in the model building and is used to estimate the error. This process is
replicated for all the folds for multiple iterations. This leads to a minimized prediction
error for different numbers of latent variables. Hence there is no fixed validation dataset.
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2.10.3. Model Evaluation

The coefficient of determination (R2
cv) is the percent of the total variation in the

response variable that is explained by the regression line [61]. The R2
cv was obtained for

the cross-validation dataset as follows:

R2 = 1− SSE
SST

(7)

where SSE is the sum squared differences between the predicted and observed value, and
SST is the sum of squared differences between the observed and overall mean value.

The root means squared error (RMSEcv) is the average prediction error (square root of
mean squared error) [62].

RMSE =

√
∑n

i=1(yi − ŷi)2
n

(8)

RPD is the ratio of the standard deviation (SD) of analyzed data to RMSEcv. It is given
by the following equation:

RPD =
SD

RMSE
(9)

Chang and Laird [63] defined three classes of RPD: category A (RPD > 2) describes
models that can accurately predict the soil property, category B (2 > RPD > 1.4) describes
models with limited predictive power, and category C (RPD < 1.4) describes models that
have no prediction ability.

The ratio of performance to interquartile (RPIQ) value is more objective than RPD [64]
as it is based on quartiles, which better represents the spread of the population. The
quartiles are milestones in the population range: Q1 is the value below which 25% of the
samples are found; Q3 is the value below which 75% of the samples are found; and Q2,
commonly called the median, is the value under which 50% of samples are found. RPIQ is
the ratio of IQ to RMSE, where IQ is the difference between the third quartile Q3 and the
first quartile Q1. A larger RPIQ value indicates improved model performance. The formula
is shown as follows:

IQ = Q3−Q1
RPIQ = IQ

RMSE
(10)

The Variable Importance in Projections (VIP) is a weighted sum of squares of PLS
weights, with weights generated from each PLS component’s Y-Variance [65,66]. Multi-
plying the VIP and the absolute value of PLS regression coefficients from the PLSR model
yields the wavelengths important for modeling. Each PLSR model was examined for a
higher value for the product of absolute regression coefficient and variable importance
for projection (VIP) to identify significant wavelengths in determining SOC content from
spectral reflectance data rather than the full spectrum.

2.10.4. SOC Mapping

The calibrated PLSR models were applied to bare soil pixels. This would produce
an estimated SOC map for each model. In case of a negative estimated SOC value, this
value was replaced by 0 g/kg. So, a total of 13 SOC maps were obtained: six from the
Hyperion images corrected by FLAASH and different AOD values and seven from the
Hyperion images corrected by ATCOR and different WV values. A map of the standard
deviation of the estimated SOC along the six SOC maps obtained from the Hyperion images
corrected by FLAASH was produced. A map of the standard deviation of the estimated
SOC along the seven SOC maps obtained from the Hyperion images corrected by ATCOR
was produced.
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3. Results
3.1. Bare Soil Coverage Analysis

Similar histograms of NDVI, MNDWI and NBR2 values were obtained whatever be the
AOD value used in the FLAASH model to correct the Hyperion images (Figure 5(A1,B1,C1)).
Moreover, a similar bare soil coverage of 82.35% was obtained, whatever be the used AOD
value (Table 4). So, a variation of the AOD value used in the FLAASH model did not
impact the reflectance at the spectral bands used to calculate the NDVI, MNDWI, and
NBR2 spectral indexes (Equations (1)–(3)).
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Remote Sens. 2022, 14, 5117 12 of 24

Table 4. Figures of merit obtained from PLSR models, based on Hyperion data corrected by the
FLAASH method, and depending on 7 values of AOD.

AOD 0.2 0.4 0.6 0.8 1 1.2 1.4

Bare soil coverage (%) 82.35 82.35 82.35 82.35 82.35 82.35 82.35
R2

cv 0.79 0.79 0.79 0.79 0.79 0.79 0.79
RMSEcv (%) 0.40 0.41 0.40 0.40 0.40 0.40 0.40

RPD 2.23 2.21 2.22 2.23 2.23 2.23 2.23
RPIQ 3.26 3.24 3.25 3.26 3.27 3.26 3.26

bias (%) 0.32 0.33 0.33 0.33 0.33 0.33 0.33
Number of Latent Variables 2 2 2 2 4 2 2

By contrast, the selection of the WV value used in the ATCOR model to correct the
Hyperion images appeared to impact marginally the spectral bands used to calculate the
NDVI, MNDWI, and NBR2 spectral indexes (Equations (1)–(3)). Histograms of NDVI
and MNDWI values displayed the same shapes irrespective of the WV value used in the
ATCOR model, with the same modes at 0.1 and −0.4 for NDVI and MNDWI, respectively
(Figure 5(A2,B2)). Histograms of NBR2 values displayed the same shapes with a slight
shift of modes (Figure 5(C2)). Consequently, the bare soil coverage varied depending on
the used WV value from 75 % (obtained with a WV of 0.4) to 84 % (obtained with a WV of
2) (Table 5).

Table 5. Figures of merit obtained from PLSR models, based on Hyperion data corrected by the
ATCOR method, and depending on 6 values of WV. The best performances are highlighted in bold.

Water Vapor
(in cm) 0.4 1 2 2.9 4 5

Bare soil coverage (%) 75.04 80.54 84.04 83.50 83.17 82.85
R2

cv 0.75 0.78 0.79 0.75 0.72 0.72
RMSEcv (%) 0.44 0.41 0.41 0.44 0.47 0.46

RPD 2.04 2.17 2.19 2.03 1.91 1.93
RPIQ 2.98 3.17 3.21 2.97 2.80 2.83

bias (%) 0.35 0.33 0.31 0.34 0.38 0.35
Number of Latent Variables 5 2 3 4 2 6

For the same pixel, it is observed that there is no variation of the spectrum along with
the AOD range, but variations can be observed of the spectrum along with the WV range
(Figure 6). No absorption bands of clay or carbonate are observed in the spectrum with
FLAASH AC. Meanwhile, for the spectrum with ATCOR AC, the higher the WV the higher
the albedo of the spectra.
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3.2. SOC Prediction Models Performances Using Hyperion Data Corrected by FLAASH

A PLSR model was built from the Hyperion spectra corrected by the FLAASH model
and from SOC associated with the available soil samples. Four spectral outliers were
removed from the calibration database, regardless of the study area, and the number of
latent variables were determined following the rule of the first local minimum of the
RMSEcv and varied between 2 and 4 (Table 4). The performance of the PLSR models was
correct, with R2

cv of 0.79, RMSEcv of 0.40 and RPD of 2.2 whatever be the AOD values
(Table 4). So, the selection of the AOD for correcting the Hyperion images using the
FLAASH model did not affect the model’s performance for SOC prediction.

3.3. SOC Prediction Models Performances Using Hyperion Data Corrected by ATCOR

A PLSR model was built from the Hyperion spectra corrected by the ATCOR model
and from SOC associated with the available soil samples. Four spectral outliers were
removed from the calibration database, regardless of the study area, and the number of
latent variables were determined following the rule of the first local minimum of the
RMSEcv, which varied between 2 and 6 (Table 5). The performances of the PLSR models
were correct, with R2

cv from 0.72 to 0.79, RMSEcv from 0.41 to 0.47 and RPD from 1.9
to 2.2 (Table 5).

The best performance was obtained from the model based on spectra corrected by the
ATCOR model and WV of 2 cm (Table 5). The lowest performance was obtained from the
model based on spectra corrected by the ATCOR model and WV of 4 cm (Table 5).

3.4. Significant Wavelengths for SOC Estimation

Between 41 to 43 wavelengths were identified as significant in the PLSR models
built from the 6 Hyperion images corrected by FLAASH and different AOD values. 41
of these significant wavelengths are common between the six PLSR models. 48% of the
significant wavelengths belonged to the VNIR (400–1100 nm) and 42% of the significant
wavelengths belonged to the spectral domain from 1100–2000 nm (Figure 7A). In the region,
2000–2400 nm fewer significant wavelengths (14%) were found corresponding to some
minerals (Carbonates and Clay) (Figure 7A).
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Between 28 to 42 wavelengths were identified as significant in the PLSR models
built from the two Hyperion images corrected by ATCOR and different WV values, and
only 1 of these significant wavelengths are common between the thirteen PLSR mod-
els. Most of the significant wavelengths (36%) belonged to the spectral domain from
1100 to 2000 nm (Figure 7B). 33% of significant wavelengths belonged to the spectral do-
main from 2000–2500 nm (Figure 7B).



Remote Sens. 2022, 14, 5117 14 of 24

3.5. SOC Maps Using Hyperion Data Corrected by FLAASH

PLSR models built from Hyperion images corrected with different AOD values using
the FLAASH model were applied to the bare soil pixels to produce SOC maps over both
sites. The percentage of negative predictive SOC values over both sites varied from 2.64 to
6.31% depending on the AOD value used to correct the Hyperion images with the FLAASH
model (Table 6). The percentage of negative predictive SOC increases from an AOD of 0.4 to
AOD 1.4 (Table 6) while the highest percentage was observed with an AOD of 0.2 (Table 6).

Table 6. Percentage of negative SOC estimated using Hyperion data corrected by FLAASH, from
both the sites.

AOD Negative SOC Pixels %

0.2 6.31
0.4 1.93
0.6 2.64
0.8 2.65
1.0 3.27
1.2 4.98
1.4 5.50

The distributions of SOC contents estimated by PLSR over both sites varied slightly
when using an AOD value from 0.4 to 1.4 with a mode around 1.8%, while the distribution
of SOC contents estimated by PLSR when using an AOD value of 0.2 has a mode around
1.6% (Figure 8). The SOC map using AOD 0.2 has a greater number of pixels which have
SOC of greater than 3%. This is not observed in the other SOC maps. The SOC prediction
map with AOD 80 is visualized in the Figure 9.

Variation in the SOC content of the pixels adjacent and in between vegetation pixels
can also be observed. This can be clearly seen in the Standard Deviation map (Figure 10).
A higher standard deviation along the riverbed in site#2 is observed. This may be due to
no bare soil and a mixture of water, green, and dry vegetation. High standard deviation is
observed in areas that have negative values with AOD = 0.2 and AOD > 1.0.
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It is observed that there is a slight deviation in the spectral signatures with varying
AOD in the VNIR region of 400 to 1100 nm and no deviation in the rest of the spectrum
up to 2400 nm (Figure 6). The percentage of bare soil pixel is very consistent 82.35% and
good consistency is observed for the significant wavelengths for the prediction model with
FLAASH atmospheric correction (Table 4). Hence due to these observations, consistency
can be observed in the model performance across varying AOD levels.

The range of AOD in the Narrabri region varies from 0.02 to 1.5 as per Table 1.
Comparing the SOC maps obtained by varying the AOD level with the exception of AOD
level 0.2, good consistency prediction from AOD 0.4 to AOD 1.4 is observed. This is also
confirmed by the histogram as per (Figure 8). The standard deviation map of SOC variation
is fairly consistent with high variation at a few places. These places match with farm
boundaries indicating inconsistencies at a farm level.
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3.6. SOC Maps Using Hyperion Data Corrected by ATCOR

PLSR models built from Hyperion images corrected with different WV values using
the ATCOR model were applied to the bare soil pixels to produce SOC maps over both
sites.

The percentage of negative predictive SOC values over both areas varied from 1.78%
(obtained with a WV of 5 cm) to 5.51% (obtained with a WV of 0.4 cm) depending on the
WV value used to correct the Hyperion images with the ATCOR model (Table 7).
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Table 7. Percentage of negative SOC estimated using Hyperion data corrected by ATCOR, from both
the sites.

Water Vapor (in cms) Negative SOC Pixels %

0.4 5.51
1.0 4.60
2.0 4.63
2.9 3.22
4.0 4.53
5.0 1.78

The distributions of SOC contents estimated by PLSR over both sites varied signifi-
cantly when using a WV value from 0.4 to 5 cm (Figure 11), with different modes from 1.2%
(obtained with a WV of 2 cm) to 1.8% of SOC (obtained with a WV of 0.4 cm). The PLSR
model built from Hyperion spectra corrected by ATCOR and a WV value of 2 cm provided
the best performances (Table 5) while the estimated SOC contents over the sites displayed
the lower SOC values (Figure 11). The SOC prediction map with WV 2 cm is visualized in
the Figure 12.
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There is variation in the SOC map using WV of 0.4, 4, and 5 cm, respectively (Figure 11),
compared to the rest of the maps, which are fairly consistent. Variation in the pixels around
and between vegetation can also be observed. This can be clearly seen in the standard
deviation map (Figure 13). High standard deviation is observed along the riverbed due
to no bare soil pixel and the mixture of water and vegetation pixels in site#2. A couple of
prominent stripes in site#1 and site#2 are observed. In site#1, high standard deviations are
observed along the farm boundaries.



Remote Sens. 2022, 14, 5117 18 of 24
Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 25 
 

 

 
Figure 12. SOC prediction maps using WV of 2cm with ATCOR method. 

There is variation in the SOC map using WV of 0.4, 4, and 5 cm, respectively (Figure 
11), compared to the rest of the maps, which are fairly consistent. Variation in the pixels 
around and between vegetation can also be observed. This can be clearly seen in the stand-
ard deviation map (Figure 13). High standard deviation is observed along the riverbed 
due to no bare soil pixel and the mixture of water and vegetation pixels in site#2. A couple 
of prominent stripes in site#1 and site#2 are observed. In site#1, high standard deviations 
are observed along the farm boundaries. 

The distribution of SOC estimates varied with different WV conditions though simi-
larity in the modes is observed between 1 cm, 2 cm, and 2.9 cm (Figure 11). The best results 
statistically are obtained for the models in this range. A higher percentage of SOC is esti-
mated in the 0.4 cm, 4 cm, and 5 cm (Figure 11). It is to be noted these ranges are not in 
the range of WV over the study area (Figure 2, extracted from NCEP). Small deviations in 
SOC can be observed throughout the study area and stronger deviations in SOC can be 
observed where there is uncertainty associated with surface types like riverbeds and 
boundaries of farm plot (Figure 13). 

Figure 12. SOC prediction maps using WV of 2cm with ATCOR method.

The distribution of SOC estimates varied with different WV conditions though sim-
ilarity in the modes is observed between 1 cm, 2 cm, and 2.9 cm (Figure 11). The best
results statistically are obtained for the models in this range. A higher percentage of SOC is
estimated in the 0.4 cm, 4 cm, and 5 cm (Figure 11). It is to be noted these ranges are not
in the range of WV over the study area (Figure 2, extracted from NCEP). Small deviations
in SOC can be observed throughout the study area and stronger deviations in SOC can
be observed where there is uncertainty associated with surface types like riverbeds and
boundaries of farm plot (Figure 13).
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4. Discussions
4.1. Bare Soil Identification Variations Based on Atmospheric Parameters

The choice of the AOD parameter in the FLAASH AC method seems to have no impact
on the three tested spectral indexes (NDVI, MNDWI, and NBR2; Figure 5(A1,B1,C1)).
Therefore, the percentage of bare soil pixels, based on NDVI indexes, remained constant
along the AOD parameters in FLAASH (Table 4). On the other hand, the WV parameter
in the ATCOR AC method affects the three tested spectral indexes (NDVI, MNDWI, and
NBR2; Figure 5(A2,B2,C2)). Therefore, the percentage of bare soil pixels identification
varied depending on the WV parameter (Table 5).

As soil properties estimations are affected by the presence of green and dry vegetation
on spectra [16,17], bare soil pixel identification is a major step in soil properties mapping
by remote sensing. As this step of bare soil pixels identification depends on spectral indices
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calculations (e.g., NDVI and NBR2) [67,68], the choice of the AOD parameter may impact
the soil properties mapping. Additionally, the topsoil moisture conditions may also affect
reflectance spectra and therefore spectral indices calculation, such as the NBR2 index [67],
and then soil properties mapping [18].

4.2. Performance Analysis of PLSR Models after FLAASH AC Method

The SOC predictions obtained by PLSR models using Hyperion data corrected by the
FLAASH AC method were accurate within the range of the AOD parameter (Tables 4 and 5).
These PLSR performances are in accordance with Gomez et al. [12] using the same data and
the Atmospheric Removal Program’ (ATREM) model, and with Minu et.al [35] using the
same data and the FLAASH method, who obtained R2

cv of 0.71 and RMSEcv of 0.46% for
SOC prediction. These PLSR performances for mapping SOC are slightly better than those
obtained by Lu et al. [50], who also used the FLAASH AC method to derive reflectance
from Hyperion radiance.

The performance results in the SOC prediction model using Hyperion data corrected
by the FLAASH method show a constant R2

cv and RMSEcv of 0.79 and 0.4% whatever the
AOD parameter. This is in line with the study of Griffin et al. [39] where for the dry and
relatively clear rural aerosol case, the effect of varying the aerosol optical depth produces
errors < 0.02 with sensitivity. Davaadorj A. [40] also stated that FLAASH produced less
variability in reflectance with varying AOD compared to other AC models (ATCOR). Most
of the significant wavelengths (48%, Figure 7A) used in the PLSR models belonged to the
VNIR spectral range (400–1100 nm) and more precisely around 600 to 750 nm which has
been also referred by Ben Dor et al. [69] confirming that PLSR models are based on spectral
features. The remaining 42% of significant wavelengths belonged to the spectral domain
from 1100–2000 nm (Figure 7), including 1358 nm, probably due to OH ions in water [70].

The distribution of SOC estimation over bare soils were similar with Hyperion images
corrected with FLAASH and AOD of 0.4 to 1.4 (Figure 8). While constant PLSR perfor-
mances were observed whatever the AOD parameters (Table 4), differences in the SOC
mapping can be observed in the maps (Figure 10). The differences in SOC estimations over
some fields (Figure 10) due to the choice of AOD in FLAASH may be due to dry vegetation
residue [71]. Studies by Nazeer et al. [41] and Bassani et al. [42] showed that influences of
AOD vary with respect to the surface types, such as grass, water, artificial turf, sand etc.
The current study deals with only one surface type i.e., bare soil, whereas compared to
Nazeer et al. [41] and Bassani et al. [42] who accounted for multiple surface types.

4.3. Performance Analysis of PLSR Models after ATCOR AC Method

The SOC predictions obtained by PLSR models after the ATCOR AC method were
accurate within the range of the WV (Table 5). These PLSR performances are in accordance
with Gomez et al. [12] using ATREM AC method [20,72] and with Minu et.al [35] using the
same data and the ATCOR AC method and obtained R2

cv of 0.76, respectively.
In the ATCOR method, the R2

cv lies in between 0.72 and 0.79 and variations in RPD
and RPIQ values can be observed. A RPD higher than 2 is observed for WV of 0.4 to 2.9 cm
while RPD values in between 1.91 to 2 were observed for WV 4 to 5 cm. An increase in the
reflectance values of the spectral signatures for higher values of WV i.e., 4 cm, and 5 cm in
the VNIR region of 400–1100 nm, as well as SWIR region of 1200 to 2400 nm (Figure 6B), is
observed. Consistency in the significant wavelengths of the models using 1, 2, and 2.9 cm
of WV is seen. 33% of significant bands in predicting SOC are in the region 2000–2400 nm
(Figure 7). Henderson et al. [8] showed that soils generated from various parent materials
had the best correlation with SOC concentration at wavelengths of 1955–1965, 2215, 2265,
2285–2295, and 2315–2495 nm. A combination of metal–OH bonding and O–H stretching
causes an absorption band in the soil signature (Figure 6B) around 2200 nm [73]. In an
ATCOR adjusted signal, this absorption band is retrieved. At wavelengths between 640
and 690 nm, Bartholomeus et al. [16] highlighted the strongest association between the
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inverse of reflectance and SOC (Figure 6B). They also discovered a negative relationship
with respect to SOC between the area of the absorption feature between 2050 and 2200 nm.

Best SOC estimation performances were obtained with Hyperion images corrected
with ATCOR and WV of 2 cm (Table 5), which is the default parameter in for “Mid-
latitude summer” context (Table 3, [24]), while at the date of Hyperion images acquisition,
the WV value would be estimated between 2.8 cm and 3.1 cm (Figure 2, extracted from
NCEP). Inversely, worst SOC estimation performances were obtained with Hyperion
images corrected with ATCOR and WV of 4 and 5 cm (Table 5) which are not in the range
of WV over the study area from NCEP data (Figure 2).

4.4. ATCOR versus FLAASH for SOC Predictions

The best SOC prediction model after the ATCOR method was obtained with a WV
of 2 cm (Table 5) and gave similar performance than the one after FLAASH method and
whatever the AOD. Though the overall percentage of the bare soil pixel selection using spec-
tral indices between ATCOR method and FLAASH method was similar (Tables 4 and 5),
FLAASH method showed more consistency than the ATCOR method. The study conducted
by Yusuf et al. 2018 [74] showed that for rural aerosol model FLAASH and ATCOR showed
similar Standard Error of Estimate for surface types such as vegetation, sand, and water
bodies. In the study conducted by Marcello et al. [75] on soil using worldview imagery us-
ing for a rural aerosol model, FLAASH gave an RMSE of 0.0398 and ATCOR gave an RMSE
of 0.0406, which is line with the superior RMSE of FLAASH over ATCOR (Tables 4 and 5).

The reflectance obtained by FLAASH spectra has a slightly higher albedo compared to
ATCOR spectra (Figure 6). Similar results have been also observed by Manakos et al. [76]
where FLAASH and ATCOR spectra of rural aerosol model were studied with respect to
Asphalt and Gravel surface types. The comparison of Spectral angle mapper results for
FLAASH and ATCOR were similar for the Asphalt surface type, but FLAASH performed
slightly better with the Gravel surface type [76]. Majority of the significant wavelengths
were found after 2000 nm in the ATCOR method (Figure 7B), whereas the majority of the
significant wavelengths were found in the visible region in the FLAASH method (Figure 7A).
Similar results were arrived at by Minu et al. [35] while comparing FLAASH and ATCOR
for the soil reflectance. FLAASH method showed better consistency overall in the SOC
distribution than the ATCOR method (Figures 8 and 11). With respect to mapping of SOC,
FLAASH method showed high standard deviations at a few farms whereas salt and pepper
standard deviation distribution was found throughout the study area (Figures 10 and 13).

5. Conclusions

This study highlights the influence of AOD and WV input parameters in AC methods.
The AOD parameter was found to have no impact on performance of the FLAASH method
and the spectral reflectance. Some amount of variability of estimated SOC was found at
low values of AOD i.e., 0.2 and it was found to be fairly consistent at other values of AOD.
Variation of the WV had an effect on the performance of the ATCOR method. The best
performance of the ATCOR method was observed at 2 cm. With increase in WV, there
was increase in the reflectance values between 1000 nm and 2000 nm. The estimation
of SOC was consistent around the default value of 2 cm (i.e., from 1 cm to 2.9 cm) but
inconsistency is observed at WV < 1 cm and >2.9 cm. Hence in terms of atmospheric
parameters, it is found that AOD is a more robust parameter to WV in terms of uncertainty
in selection. Caution must be exercised when selecting values of WV in ATCOR method
which are not close to the default parameter. As Hyperion is a moderate resolution satellite
of 30 m spatial resolution, the bare soil pixel selection is an important step. Wrong bare
soil classification especially at the locations when different surface types meet has a high
impact and uncertainty on the estimated SOC.

Finally, the next hyperspectral sensors (EnMAP, PRISMA, and HyspIRI) will generate
an increasing amount of VNIR/SWIR data around the planet, providing a new chance
for mapping topsoil features. If the soil spectroscopy community tries to produce fre-
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quently topsoil characteristics maps, the selection of a robust and appropriate AC method,
input AC parameters, regression method, and bare soil identification process will become
crucial phases.
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