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Allergens are antigens that generate an IgE response (sensitization) in susceptible

individuals. The allergenicity of an allergen can be thought of in terms of its ability to

sensitize as well as its ability to cross-link IgE/IgE receptor complexes on mast cells and

basophils leading to release of preformed and newly formed mediators (effector activity).

The identity of the allergens responsible for sensitization may be different from those that

elicit an allergic response. Effector activity is determined by (1) the amount of specific IgE

(sIgE) and in some circumstances the ratio of sIgE to total IgE, (2) the number of high

affinity receptors for IgE (FcεR1) on the cell surface, (3) the affinity of binding of sIgE for

its epitope and, in a polyclonal response, the collective avidity, (4) the number and spatial

relationships of IgE binding epitopes on the allergen and (5) the presence of IgG that can

bind to allergen and either block binding of sIgE and/or activate low affinity IgG receptors

that activate intracellular inhibitory pathways. This review will discuss these important

immunologic and physical properties that contribute to the effector activity of allergens.
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INTRODUCTION

The word allergen refers to a specific molecule, usually a protein that generates an IgE response
as opposed to a more general term, antigen that is a molecule that induces any immune response
(1). Allergenicity can refer to the ability of an antigen to elicit the production of specific IgE (sIgE),
bind to sIgE antibodies, induce cross-linking of sIgE bound to the high affinity receptor, FcεR1,
for IgE (IgE/FcεR1complexes) and trigger cell degranulation that may ultimately lead to an allergic
reaction in a sensitized subject (2, 3). Arguably, all of these aspects must be present for an allergen
to be clinically relevant although there are exceptions due to cross-reactivity when IgE sensitization
is primarily induced by a different allergen (2, 3). The concept of “allergenicity” in general or in
a specific context has been reviewed previously, most often focusing on the ability of allergens to
elicit an IgE response but also acknowledging the importance of clinical reactions (4–16). This
review is focused solely on the effector function of allergens and the ability of an allergen to elicit an
allergic reaction by cross-linking of IgE/FcεR1complexes to activate mast cells and basophils. The
examples given are frequently regarding peanut allergens as these have been extensively studied.
However, these concepts likely apply to most, if not all, allergens.

Before discussing the effector function of allergens, it is important to note that the allergens
within an allergenic source (e.g., a food) that are the most potent for sensitization may be different
from the allergens that are responsible for elicitation of the allergic response. As an example,
sensitization to peanuts may be mediated primarily by Ara h 1, which is a vicilin, also known as
a 7S globulin (17, 18). In another mouse model, IgE sensitization to Ara h 1 was induced after
oral sensitization to raw or roasted peanut (19). In contrast, production of IgE to Ara h 6 was
not induced in mice sensitized to raw peanut and purified native Ara h 6 also displayed limited
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intrinsic sensitization capacity (19). The formation of large
complexes during heat-treatment, notably between Ara h 1 and
Ara h 6, were probably required for Ara h 1 to act as carrier for
Ara h 6 uptake, activation of dendritic cells, and induction of
specific Th2 immune response to Ara h 6. On the other hand, the
2S albumins of peanuts, Ara h 2 and Ara h 6, have been shown to
bemuchmore potent thanAra h 1 or Ara h 3, an 11S-globulin, for
eliciting IgE-mediated mast cell activation in peanut allergy (16,
17, 20–22). The mechanism whereby one allergenic protein may
sensitize and thus generate an IgE response that allows a different
but homologous allergen to cause an effector response, likely
involves cross-reactive linear and/or conformational epitopes
(23, 24). However, for proteins displaying low overall identity
such as between Ara h 1 and Ara h 2 or between peanut and tree-
nut proteins, the mechanism is less well-understood and may
involve discrete sequences similar in physicochemical properties
(16, 25–27).

Allergenic proteins are limited to a small number of
protein families (28). In some cases, the effector function
is predominantly mediated by even a smaller number of
allergens that can be specifically depleted by specific high affinity
antibodies. This has been tested for peanut allergens, where,
following immunodepletion, Ara h 2 and Ara h 6 were found
to account for most of the allergenic activity of a peanut
whole extract (22, 29). Similarly, immunodepletion of Fel d
1 from an extract of cat allergens demonstrated that Fel d
1 is the most potent cat allergen (30). On the other hand,
other allergenic extracts appear to have multiple allergens that
contribute to effector function with combinations that vary in
clinical relevancy for different individuals (31).

Thus, the ability of an allergen to cross-link
IgE/FcεR1complexes on mast cells and basophils is determined
by (1) the amount of specific IgE (sIgE) and the ratio of sIgE to
total IgE (tIgE), (2) the number of FcεR1 molecules on the cell
surface, (3) the affinity of binding of sIgE for its epitope and, in
a polyclonal response, the collective avidity, (4) the number and
spatial relationships of IgE binding epitopes on the allergen and
(5) the presence of IgG that can bind to allergen and either block
binding of sIgE and/or activate low affinity IgG receptors (FcγR2
in humans and FcγR2b in mice) that activate intracellular
inhibitory pathways (32–36).

TOTAL AND SPECIFIC IgE

The term specific IgE has evolved over the years. This was
initially referring to IgE detected when a saline extract of an
allergenic source such as individual animal danders, specific
pollens, mold spores or food was used as the capture in an
absorbent assay. More recently, specific IgE refers to IgE that
binds an individual allergenic protein such as Fel d 1 from cat
or Ara h 2 from peanut as discussed in this review. sIgE can be
measured in research labs using ELISA assays and commercially
in the ImmunoCap R© (ThermoFisher) or other similar format.
Microarray technology (e.g. ISAC R© by ThermoFisher) has
allowed simultaneous measurement of IgE binding to a variety
of purified or recombinant allergens (37).

As the Cε3 region of the Fc portion of IgE binds to the
alpha chain of FcεR1, there is equal binding of all IgE molecules
to FcεR1, independent of specificity which resides in the Fab
region. However, the density of any given specific IgE on the
cell surface is inversely proportional to the amount of IgE of
other specificities. Therefore, the effector activity of an allergen
is influenced not only by the number of IgE/FcεR1 complexes
but also by the ratio of sIgE to tIgE. This becomes important
when considering sIgE in a sample with a substantial portion of
the IgE directed at other allergens or without known specificity.
Consequently, if the ratio of sIgE to tIgE is high, the probability of
the same allergen to cross-link with sIgE and meet the threshold
of complexes required to generate a measurable effector response
is easier to reach than if the ratio of sIgE to tIgE is low (see below).
Blanc et al. showed that sera exhibiting a lower ratio sIgE to tIgE
required higher concentrations of allergens to trigger RBL SX-38
degranulation, which was not efficiently induced when the ratio
was <2% (21). However, using human cultured mast cells, the
lowest fraction of sIgE able to activate cells was around 0.3% (38).
Hemmings et al. reported that, for peanut allergens, the ratio of
sIgE to tIgE, along with the diversity of the sIgE repertoire to
peanut allergens, were the major determinants of basophil and
mast cell activation (39). In that study, compared to the level of
sIgE alone, the ratio sIgE to Ara h 2 and Ara h 6 to tIgE improved
the discrimination between patients who were clinically allergic
peanut as opposed to those who were only sensitized (39). In
addition to the amount of sIgE, the affinity of that IgE for binding
to allergens is important (34, 38). This is further discussed below.

EFFECTOR CELLS AND FCεR1

The effector function of an allergen requires that sIgE be bound
to FcεR1 on mast cells and basophils. While the half-life of
circulating IgE is ∼1 day (40), IgE bound to FcεR1, due to the
slow off rate of this interaction (KD of 10−9 M), remains on the
cell surface for several weeks (41). The function of FcεR1 has been
extensively studied on rat basophilic leukemia (RBL) cells using
the 2H3 clone (34) and on human basophils (42, 43). Using a
monoclonal IgE, crosslinking as few as 100 FcεR1-IgE complexes
leads to measurable cell activation and 50% cell activation was
seen with crosslinking of 300-2000 FcεR1-IgE complexes (42, 44).
Whereas, the number of FcεR1 on the RBL-2H3 cells is stable,
the expression of FcεR1 on human basophils is upregulated by
the concentration of circulating IgE so that naturally occurring
basophils can have from 5 X 104 to 5 X 106 receptors per cell (42).
Of note, in addition to their capacity to up-regulate FcεR1 levels
on the cell surface, IgE antibodies also enhance mast cell survival
and expansion (45). The density of FcεR1 on the cell surface is
thus important in assessing the allergen concentration capable to
trigger mast cell degranulation.

An interesting caveat that has been recognized for some time
is that some patients may produce IgE that has an increased
propensity to be cross-linked but the molecular basis of this
finding was not understood (46). Recently, characterization by
mass spectrometry of serum IgE glycosylation revealed that tIgE
from peanut-allergic patients have increased terminal sialylation
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compared to tIgE from non-atopic controls. Of note, IgE
sialylation did not impact the binding of IgE to FcǫRI but was
found tomodulate the signaling downstream of the receptor (47).
The general impact of this observation has not been established.

NOT ALL ALLERGENS THAT BIND IgE
HAVE SIMILAR EFFECTOR ACTIVITY

Levels of sIgE can be evaluated through different approaches and
assays such as immunoblots, ELISA and competitive inhibition
of IgE-binding. However, IgE-binding does not necessarily
correlate with relevant clinical activity. To date, 17 peanut
proteins have been reported as allergenic by the WHO/IUIS
Allergen Nomenclature Sub-Committee. Among them, four
peanut allergens, Ara h 1, Ara h 2, Ara h 3 and Ara h 6 bind
large amounts of IgE on immunoblots which is is true for the
majority of patients (48, 49). However, when studied in functional
assays, it was found that Ara h 2 and Ara h 6 account for 70–
90% of the allergic effector activity of peanuts (50). In addition,
desensitization with only a combination of Ara h 2 and Ara h 6
protected peanut allergic mice from anaphylaxis elicited by whole
peanut extract (29). Moreover, although co-sensitization to both
Ara h 2 and Ara h 6 generally occurs in patients, IgE cross-
reactivity can lead to a high level of IgE-sensitization to both
allergens, as determined by ELISA, whereas for some patients,
only one of the two 2S-albumins can effectively trigger mast cell
degranulation in vitro (51).

THE CONTRIBUTION OF PHYSICAL
STABILITY AND STRUCTURE TO
EFFECTOR FUNCTION

Inhalant allergens have immediate interactions with the
respiratory mucosa and do not have to be particularly stable
(12). For example, the PR-10 allergens are generally sensitive
to heat and to digestion. Consequently, they often can elicit
allergic reactions at mucosal surfaces of the respiratory tract
but not of the digestive tract (52). On the other hand, food
allergens must be stable enough to withstand the environment of
the digestive tract. Moreover, to enter the systemic circulation,
soluble allergens are more efficiently transferred across the
intestinal epithelial barrier, through transcytosis, than particulate
allergens, which are processed through Peyer’s patches (53).
Therefore, soluble allergens are more potent in triggering
anaphylactic reaction while particulate allergens, like aggregates
resulting from heat-treatment, food processing or gastric acidity,
could be more potent in inducing IgE sensitization (53). For
these reasons, physical stability and structural elements such as
size, oligomerization, aggregation or formation of micelles are
important attributes of food allergens that, when studied, can
greatly affect their effector function (6).

For example, Ara h 2 and Ara h 6 are much more resistant
to gastric acid and digestive enzymes than are Ara h 1 and
Ara h 3. This resistance likely enhances their effector activity
(54–60). Furthermore, digestion products of peanut 2S albumins
yield a large and a small subunit (5 and 9 kDa) that remain

associated by disulfide bridges so that the resulting heterodimer is
as immunoreactive as the intact protein. Hence, immunoreactive
Ara h 2 and Ara h 6 can be still detected and quantified in the
bloodstream and in breast milk of non-peanut allergic human
volunteers after peanut consumption or in the blood of peanut
allergic patients after oral food challenge (61). These proteins
have been shown to bind IgE and to be active in functional
assays with RBL SX-38 cells (60, 62–66). On the other hand,
the primary allergen in wheat induced anaphylaxis, ω-gliadin,
although stable to digestion, is a larger 30–50 kDa protein (67, 68)
that requires cofactors that either augment gut permeability or
cell responsiveness to cause anaphylaxis (69–71).

IgE-EPITOPE INTERACTIONS

In addition to the number of allergen-specific IgE molecules, the
affinity of binding is important (34). The complex relationship
between the IgE repertoire and IgE affinity has been recently
explored (38, 72, 73) underscoring the importance of tIgE, sIgE,
IgE binding affinity and the diversity of the epitopes that bind
IgE (72–74). The extent of effector cell activation is also linked to
an allergen’s oligomeric state, and the valency, spacing/proximity
and flexibility of the IgE-binding epitopes (75, 76).

Identification of the IgE-binding epitopes has typically
focused on linear sequences as they can be exhaustively and
easily characterized by using overlapping peptide libraries
and high-throughput technologies (77, 78). Recent diagnostic
developments have successfully used peptide microarrays and
bead-based epitope assays for profiling epitope-specific IgE
repertoire in the context of peanut allergy (79–82). However,
conformational epitopes (formed by 3D-folding of the primary
amino acid sequences of a protein) are now thought to be critical
for high affinity IgE binding to a number of important allergens,
including Ara h 1 (83, 84), Ara h 2 (85–87), Ara h 6 (85–87) and
others (88–92). The importance of conformational epitopes has
been clearly shown by disrupting the disulfide bonds that play an
important role in maintaining the structure of the 2S albumins.
Chemical reduction and alkylation of these disulfide bonds lead
to a loss of secondary, tertiary and quaternary structures with
concomitant changes in biochemical as well as immunological
characteristics (77, 93, 94).

The importance of conformational structure for Ara h 2 and
Ara h 6 was best demonstrated with several reports showing the
loss of IgE binding and mast cell activation following reduction
and alkylation (77, 94–97). For Ara h 6, IgE-binding was shown
to be critically dependent upon conformational epitopes (87, 98).
For Ara h 2, around three quarters of 48 peanut allergic patients
recognized conformational epitopes to a similar or greater extent
than linear ones (99). That said, the contribution of linear vs.
conformational epitopes in the overall IgE-binding capacity of
Ara h 2 is highly variable among patients (98).

Indeed, the IgE-binding capacity of the entire allergen could
be recapitulated by combining a synthetic peptide containing the
immunodominant linear epitope plus a mutant of Ara h 2 in
which this immunodominant linear epitope had been deleted.
That peptide, which is found within an unstructured surface
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TABLE 1 | Determinants of the effector function of allergens.

Factors Features

Total and specific IgE Concentration of sIgE Ratio of sIgE to tIgE Clonality sIgE repertoire

Cross-reactivity

Affinity/avidity of sIgE

Effector cells and Fc R1 Mast cells Basophils Homogenous cell lines vs

heterogenous fresh cells

FcεRI density on cell surface IgE sialylation

Biochemical (and biological)

properties of allergens

Stability Resistance to

digestion

Size globular vs unstructured or

disordered

Monomeric vs multimeric (Sensitizing vs eliciting)

Epitopes Diversity Conformational vs. linear Post-translational modifications

(hydroxyproline, disulfide bridges)

Spacing Clustering Orientation

IgG Concentration of sIgG1 Activation of inhibitory receptors Blocking of IgE binding Affinity/avidity for allergen

loop of Ara h 2, contains the repeated linear motifs DPYSPOHS,
for which IgE-binding is highly dependent upon the presence
of hydroxyproline, a post translational modification that occurs
commonly in nature (98). On average, IgE-binding to this linear
motif account for half of the total IgE-binding capacity of Ara h 2.
The remaining IgE binding activity is to conformational epitopes
(51, 98).

High-affinity IgE antibodies may appear as a prerequisite
because sIgE is 105 times less prevalent than IgG. These IgE
antibodies must compete with lower affinity sIgG to bind allergen
and initiate the allergic response. Thus, it has been shown that
basophil degranulation is enhanced when the allergen is first
anchored at the surface of the effector cell by high-affinity IgE
bound to the FcεR1. Low-affinity IgE may then contribute almost
as efficiently as high-affinity IgE to cell activation when cross-
linking occurs with the second IgE (100). Another example
is found with the IgE binding to the unstructured region of
Ara h 2 that is discussed above. Here, IgE-binding to free
peptides found in this region occurs without the large loss of
affinity usually observed with free peptide compared to the full
allergen (100). This is probably due to an increased avidity
caused by the repetition of the motif DPYSPOHS two- and three-
times in the isoforms Ara h 2.01 and Ara h 2.02, respectively.
Accordingly, the free peptide containing three DPYSPOHS motifs
displayed a higher capacity to inhibit IgE-binding to nAra h
2 and a higher potency in mast cell degranulation than the
one with a lower valency (98). Of note, the two motifs in
the shorter peptide are separated by only one residue. In this
regard, the influence of spacing between IgE epitopes was also
investigated by using rigidly spaced bi- and trivalent haptens
or artificial multivalent allergens (33, 36). In the latter case, a
non-allergenic myoglobulin, in which 4 repetitions of the same
IgE-reactive peptide were grafted and separated by a linker of
6 Gly residues, triggered RBL degranulation more efficiently
than derivatives carrying only 2 repetitions or more distant IgE
epitopes (76). In these settings, multivalency of allergens, spatial
clustering of IgE epitopes on a particular segment of the allergen
and high-avidity interactions can overcome the need for high-
affinity interactions to trigger cell degranulation, thus offering an
explanation for clinical reactivity induced by unexpected low-
affinity IgE cross-reactivity among different allergens (75, 101,
102).

IgG REGULATION OF EFFECTOR
FUNCTION

IgG to allergens occur naturally and can be further induced by
specific immunotherapy. This has been best studied in the field
of food allergy. IgG induced by oral immunotherapy for food
allergy can bind to allergen and either block binding of IgE
and/or activate low affinity IgG receptors (FcγR2 in humans and
FcγR2b in mice) that activate intracellular inhibitory pathways
(79, 103, 104). So, the effector function of an allergen is affected
not only by the amount and affinity of sIgE, but also by the
presence of specific IgG that may bind to the same epitope as the
IgE (blocking IgG) and IgG that may bind to different parts of the
allergen and activate inhibitory pathways (104).

CONCLUSION

The determinants of the effector function of an allergen are
complex and are affected by multiple components (Table 1).
These include binding characteristics such as the amount and
affinity of the IgE that binds to the allergen, and the presence
of either non-specific IgE or IgE of other specificities that may
effectively dilute out the allergen-specific IgE. The intrinsic
properties of the allergen such as its stability and surface
structure (number, spacing and spatial relationships of IgE
binding epitopes) also play a vital role. Other contributing
factors include the presence of IgG that may either compete
with the IgE for specific epitopes or may bind to other epitopes
and activate inhibitory receptors. Cellular features such as the
numbers of high affinity receptors for IgE may render the same
IgE-allergen interaction more clinically severe in one patient
compared to another.
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