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The provision of ecosystem services (ESs) is driven by land use and biophysical

conditions and is thus intrinsically linked to space. Large-scale ES models,

developed to inform policy makers on ES drivers, do not usually consider spatial

autocorrelation that could be inherent to the distribution of these ESs or to the

modeling process. The objective of this study is to estimate the drivers of

ecosystem services in France using statistical models and show how taking into

account spatial autocorrelation improves the predictive quality of thesemodels.

We study six regulating ESs (habitat quality index, water retention index, topsoil

organic matter, carbon storage, soil erosion control, and nitrogen oxide

deposition velocity) and three provisioning ESs (crop production, grazing

livestock density, and timber removal). For each of these ESs, we estimated

and compared five spatial statistical models to investigate the best specification

(using statistical tests and goodness-of-fit metrics). Our results show that (1)

taking into account spatial autocorrelation improves the predictive accuracy of

all ES models (ΔR2 ranging from 0.13 to 0.58); (2) land use and biophysical

variables (weather and soil texture) are significant drivers of most ESs; (3) forest

was the most balanced land use for provision of a diversity of ESs compared to

other land uses (agriculture, pasture, urban, and others); (4) Urban area is the

worst land use for provision of most ESs. Our findings imply that further studies

need to consider spatial autocorrelation of ESs in land use change and

optimization scenario simulations.

KEYWORDS
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1 Introduction

Land use and land cover are identified as being among the main factors driving the

provision of ecosystem services (ESs) (Haines-Young et al., 2012; Lawler et al., 2014), i.e.,

the benefits that humans obtain from nature and ecosystems (Costanza et al., 2014). In

recent decades, the main drivers of ES losses were land use change (Meyfroidt et al., 2022),

agricultural and urban expansion into forests and other land uses (Benayas and Bullock,

2012; Zhang et al., 2018), and landscape fragmentation (Braat and De Groot, 2012).
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However, it is increasingly recognized that the design and

implementation of well-informed land-use policies can

promote ESs (Bennett et al., 2015), i.e., smoothen the trade-

offs between regulating and maintaining ESs with provisioning

ESs (e.g., biomass production for food, fuel, and fiber) (Fisher

et al., 2009). These trade-offs are often very pronounced when it

comes to mitigating and adapting to climate change and

conserving biodiversity while achieving food security.

Modeling is a useful support for policy and decision-making

as it can simulate the provision of ESs as a consequence of land

use change, especially on a large scale (Accatino et al., 2019).

Some studies focus on using mathematical equations to model

the linkages between drivers and ES provision. We consider that

drivers are those factors that affect the provision of ESs, e.g., land

cover and land use (Bennett et al., 2009; Burkhard et al., 2012)

These models, which are referred to as ecological production

functions (Tallis et al., 2011), can be mechanistic or statistical.

Mechanistic models translate into mathematical equations the

chain of cause–effect relationships linking drivers to ES

provision. An example of this type is the InVEST model (see

Posner et al. (2016)), examples of whose applications can be

found in Babbar et al. (2021); Daneshi et al. (2021). Statistical

models are based on equations which do not necessarily have a

biophysical meaning and whose parameters are estimated with

data. Specifically, in the case of large-scale (single country to

European scale) ES modeling, parameter estimations are

performed using maps of drivers and ESs (Cord et al., 2017;

Teillard et al., 2017; Accatino et al., 2019; Shi et al., 2021). With

relationships (mechanistic or statistical) linking drivers to ESs, it

is possible to run scenarios to explore what consequences

changes in drivers have for ES provision (Seppelt et al., 2013;

Kindu et al., 2018) or optimization scenarios to investigate the

combinations of drivers that lead to maximization of one or more

ESs (Pohjanmies et al., 2017; Accatino et al., 2019; Shi et al.,

2021).

When it comes to modeling ES provision at large scales and

with relatively coarse resolution, mechanistic models are often

difficult to apply as they are often conceived for higher

resolutions. Simple approaches at those scales can be based on

matrices linking land use information to an expert-based score of

ES provision (Burkhard et al., 2012). Other studies focus on

multiple ESs at the same time, using statistical approaches for

some and simple mechanistic models for others (Qiao et al.,

2019). In contrast, statistical models of ESs can be built on the

information provided in European-scale ES mapping projects

(see Maes et al. (2011)). While the information provided by maps

is static, it can be used for estimating statistical models in such a

way that models can predict new map configurations in the case

of future land use changes or in optimization exercises. When

assessments are made with multiple ESs, it is advantageous to

have a common spatial resolution and a common set of drivers

being considered, with each ES having its own specific set of

parameter values. However, although other studies already built

statistical models at large scales from country (Teillard et al.,

2017; Accatino et al., 2019; Shi et al., 2021) to global scale (Heck

et al., 2018)) or focus on spatially explicit optimization (Wang

et al., 2018), the spatial autocorrelation remains poorly taken into

account in statistical ES models. In other words, the information

about an ES in a certain spatial pixel might not be independent of

the value of the same ES in neighboring pixels. There are different

reasons for considering spatial autocorrelation. First, while

multiple ESs are modeled together using the same spatial

resolution, they are often based on data of different

resolutions and different mapping techniques (Zulian et al.,

2018). Considering spatial autocorrelation could serve to

correct any bias that might come from bringing all data layers

to a common resolution. Second, more and more studies

advocate the need for a multiscale approach when making

assessments involving multiple ecosystem services.

Considering multiple scales is important because different ESs

are based on phenomena involving different spatial ranges

(Raudsepp-Hearne and Peterson, 2016; Wei et al., 2017), and

spatial autocorrelation provides the possibility of considering

wider spatial information. Third, as pointed out by Meyfroidt

et al. (2022), certain land covers and uses might have spillovers,

meaning that they influence land covers and uses and ES

provision to a greater extent than their precise location. For

example, it is recognized that urban land use might cause wider-

scale negative effects on ES provision (Xu et al., 2017). Other

studies already considered spatial autocorrelation using Moran’s

I (Moran, 1950), but this was performed on some specific

problems (not systematically on many ESs), such as the

spatial autocorrelation related to urbanization (Zhang et al.,

2018) or among ESs (Xu et al., 2017) (not between drivers

and ESs).

In this study, we aim to estimate the drivers of ESs in France

using spatial statistical models and explore the influence of

spatial autocorrelation on the predictive accuracy of these

models. We considered several spatial statistical specifications

in which spatial autocorrelation was included in different ways.

We then compared, via metrics, the performance of each model

and identified the best performing model. Results of our analysis

show that taking into account spatial autocorrelation increases

the predictive accuracy of ES models. This can provide insights

into the importance of the spatial information for each different

ESs, and the estimated models could be used to simulate future

scenarios.

2 Materials and methods

2.1 Data

We considered data layers for different ESs and driver sources

available on a large (French to European) scale. As most of the data

related to the whole of Europe, we considered only that part related
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to France. All the data layers were brought to a common resolution

of 8 km × 8 km (see below for the respective resolutions of the data

layers), with a total of 9571 spatial units in France1. Some data were

expressed in quantitative values (for example, soil organic carbon

stocks), meaning that each spatial cell was assigned a continuous

value. Other variables were expressed in classes: for example, the soil

texture was divided into coarse, medium, medium-fine, and fine;

land use is divided into several classes, such as permanent grassland

and arable. For quantitative variables (ESs, temperature,

precipitation, and slope), the up- or down-scaling process

consisted of first intersecting the common resolution grid with

that of the variable in question and then averaging the values per

common grid cell. For categorical variables, we aggregated the areas

per class, expressing, for each spatial unit, the proportion occupied

by each class.

2.1.1 Ecosystem service data
ESs data were elaborated starting from the layers at 10 km2

resolution provided by the Joint Research Center (see Maes et al.

(2011) for a detailed description of the methodology and sources

for each dataset). We considered six regulating ESs (habitat

quality, water retention, topsoil organic matter concentration,

carbon storage, soil erosion control, and NOx deposition) and

three provisioning ESs (crop production, grazing livestock

density, and timber removal). All the ES data were expressed

in quantitative values (Table 1).

The habitat quality index (HQI) denotes the richness in

common bird species. It is dimensionless and represents the

ratio between local common bird species richness and average

species richness within a 500-km radius. This proxy is developed

from the results of the species distribution model based on

maximum entropy (Phillips et al., 2006) from the European

Bird Census Council’s Atlas of European Breeding Birds data.

The water retention index (WRI) represents the capacity of the

ground to capture water and reduce runoff. This composite

indicator is dimensionless and ranges from 0 (complete

incapacity to retain water) to 10 (maximum soil retention

capacity). It accounts for the presence of vegetation (for

interception), the soil type and the presence of bedrock (for

water-holding capacity and percolation), soil sealing, and

topographic gradient. The topsoil organic matter content

indicator (SOM) represents the concentration of organic

matter in the upper 15 cm of the soil and is expressed as a

percentage [%] of the dry fine earth fraction. The soil carbon

storage indicator (CS) represents the capacity of ecosystems to

contribute to climate change mitigation [100 tonC.ha−1. Year−1].

This indicator is based on the IPCC GPG Tier 1 approach which

assigns default coefficients to different vegetation cover types

regarding above-ground and below-ground biomass. The

vegetation cover layer is based on the Global Land Cover

2000 project, which uses SPOT-VEGETATION satellite

imagery for the year 2000. The NOx deposition velocity

indicator (NOX) represents the capacity of the vegetation

layer to capture and remove air pollutants. This proxy takes

into account the presence of pollutants (estimated with an air

quality model) and the presence of vegetation, for which default

deposition velocity parameters are given by Pistocchi (2008). The

soil erosion control indicator (SEC) measures the capacity of the

soil to limit erosion. This composite indicator ranges from 0 to 1

(1 meaning that the soil has a high capacity to control erosion)

and considers rainfall intensity, soil type, slope, and vegetation

type (forests and grasslands are the most efficient).

The crop production indicator (CROP) corresponds to the

annual production of harvested crops [103 tons. km−2. year−1 of

dry matter]. This indicator is an output of the CAPRI model using

input data from 2010 (Maes et al., 2015). The timber removal

indicator (TIMB) is the quantity of timber removed from forests

[103 m3 km−2. year−1]. The indicator is derived Eurostat and data

collected in 2010 (Maes et al., 2015). The grazing livestock density

indicator (GLD) corresponds to the number of grazing animals

(cattle, sheep, goats, etc.) in 2010 [103 head. km−2 of permanent

grassland]. This indicator is an output of the CAPRI model using

input data from 2010 (Maes et al., 2015).

2.1.2 Ecosystem service driver data
The drivers of ESs that we considered included land use and as

biophysical (soil texture and slope) and weather (precipitation and

temperature) variables (Table 1). The variables we considered were

already used in other studies in the literature that estimate statistical

models at the same scale (Accatino et al., 2019; Shi et al., 2021). Land

use and land cover variables are, in particular, considered

fundamental for ES prediction (Burkhard et al., 2012). While

precipitation, temperature, and slope were expressed

quantitatively, land use and soil texture were expressed

qualitatively in terms of classes. Land cover data are obtained

from the Corine Land Cover (CLC) dataset (EEA, 2019), at

100 m × 100 m resolution for the year 2012. Within each

8 km × 8 km square of the common resolution, we calculated

the proportion (dimensionless, ranging from 0 to 1) of the surface

area occupied by each class, namely, arable land (Ara), permanent

grassland (PermGra), forest (For), urban areas (Urb), and other land

use classes (e.g., wetlands, water bodies) (Oth). Correspondences

between the classes used in this study and the CLC classes are

provided in the Supplementary Material. Soil texture data were

provided by the JRC (Panagos et al. (2012) – European soil database)

at a resolution of 1 km × 1 km. Within each 8 km × 8 km square of

the common resolution, we calculated the proportion

(dimensionless, ranging from 0 to 1) of the surface area occupied

by each soil texture class, namely, coarse (SoilTXT.C), medium

(SoilTXT.M), medium-fine (SoilTXT.MF), and fine (SoilTXT.F).

Slope (S) data were obtained from the GTOPO30 dataset, a

1 This 8-km resolution grid corresponds to the regular grid used in the
SAFRAN model. For more information see https://www.umr-cnrm.fr/
spip.php?article788&lang=en
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Digital Elevation Model with a 30-arc-second resolution

(approximately 1 km). In the model, we did not consider altitude

because slope and altitude are highly correlated, and the slope was a

better fit for the model. Temperature (T [°C]) and precipitation (P

[mm]) data are obtained the E-OBS dataset managed by the

Copernicus Climate Change Service at the 0.1° regular grid

resolution (approximately 10 km). They correspond to the daily

average values between 2015 and 2017.

2.1.3 Correlations between variables
Before proceeding to the modeling of the links between

ESs and their divers, we constructed a correlation matrix

between all the variables (ESs and drivers) using the

Spearman correlation index ρ, which ranges from 1 (perfect

negative correlation) to +1 (perfect positive correlation). In

this study, correlations with an absolute value greater than

0.8 were considered strong (Figure 1).

TABLE 1 Description and summary statistics of driver and ecosystem service variables.

Abbreviation Name Definition Unit Data
year

Mean SD Min Max

Regulating ecosystem services

HQI Habitat Quality Index Capacity of ecosystems to be inhabited Dimensionless 2010 0.32 0.1 0 0.65

by birds (biodiversity)

WRI Water Retention Index Landscape’s capacity to capture water, Dimensionless 2010 0.5 0.11 0 0.89

thus reducing runoff

SOM Topsoil organic matter Estimation of the total organic matter % 2004 0.05 0.04 0 0.4

concentration content as a percentage of dry fine earth

fraction in each horizon

CS Carbon storage Capacity of ecosystems to contribute 100 tonC ha−1 2000 0.2 0.14 0 0.54

to climate change mitigation

NOX Deposition velocity Nox Capacity of vegetation to capture m year−1 2000 0.18 0.14 0 0.68

and remove air pollutants

SEC Soil erosion control Capacity of ecosystems Dimensionless 2010 0.85 0.13 0 1

to limit soil erosion

Provisioning ESs

CROP Crop production Annual production of harvested crops 103tons.km−2.year−1 2010 0.79 0.51 0 2.25

TIMB Timber removal Quantity of timber removed from forests 102 m3 km−2.year−1 2010 0.15 0.12 0 0.98

GLD Grazing livestock Capacity of permanent grassland to
support

103head.km−2 2010 0.03 0.03 0 0.22

Density grazing livestock (cattle, sheep, and
goats)

- - - - - -

Land use

Ara Arable land area proportion - Dimensionless 2012 0.44 0.28 0 1

For Forest area proportion - Dimensionless 2012 0.27 0.22 0 1

Oth Other land use area proportion - Dimensionless 2012 0.08 0.17 0 1

PermGra Permanent grassland area
proportion

- Dimensionless 2012 0.16 0.18 0 1

Urb Urban area proportion - Dimensionless 2012 0.05 0.09 0 0.99

Biophysical

S Slope Average relief slope % - 4.35 6.18 0 47.72

T Temperature Daily average temperature °C 2015-2017 11.38 1.85 0.11 16.62

P Precipitation Daily average precipitation mm 2015-2017 1.94 0.35 0.18 4.96

SoilTXT Soil texture area proportion - Dimensionless N.A. - - - -

SoilTXT.C Coarse - - - 0.12 0.33 0 1

SoilTXT.M Medium - - - 0.5 0.5 0 1

SoilTXT.MF Medium fine - - - 0.32 0.47 0 1

SoilTXT.F Fine - - - 0.06 0.24 0 1
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These correlations provide useful information for the rest of the

analysis, particularly on the following points: first, it allows checking

carefully that the ESs considered are not highly correlated and that

they do not capture the same phenomenon. We found that, with a

few exceptions (e.g. TIMB and NOx, which are highly positively

correlated), the correlations between ESs were low. Second, these

correlationsmake it possible to verify the level of correlation between

the drivers and thus avoidmulticollinearity.Multicollinearity has the

consequence of increasing the variance of the estimated parameters,

so certain parameters may be insignificant even when a significant

relationship exists between the variable to be explained and this

driving variable. Moreover, parameters associated with two highly

correlated driving variables can also have the wrong indication. In

our case, we found fairly low levels of correlation between the driving

variables. Finally, this matrix provides a preliminary idea of the links

between the ESs and drivers. For example, forest land (respectively

urban areas) is positively (negatively) correlated with the majority of

ESs, as we showed in the models estimated in this study.

2.2 Statistical models and materials

2.2.1 Non-spatial statistical model
To be able to observe the effect of spatial autocorrelation on

the modeling of ESs, we first proposed a non-spatial model that

links ESs to drivers without considering spatial interactions

FIGURE 1
Correlation matrix between ecosystem services, biophysical variables, and land use area proportions at the scale of France using the Spearman
method and with a significance level of 0.05. CROP stands for crop production; CS for carbon storage; HQI for habitat quality index; GLD for grazing
livestock density; NOX for deposition velocity of nitrous oxide; SOM for topsoil organic matter concentration; SEC for soil erosion control; TIMB for
timber removal; WRI for water retention index; S for slope; T for temperature; P for precipitation; Ara for arable land; For forest;Oth for wetlands
andwater bodies; PermGra for permanent grassland; Urb for urban areas; SoilTXT.C for the proportion of the area with coarse soil texture; SoilTXT.M
for the proportion of the area with medium soil texture; SoilTXT.MF for the proportion of the area with medium fine soil texture; SoilTXT.F for the
proportion of the area with fine soil texture.
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among cells. This first model was called OLS, and the value ESij of

the ES j (j = HQI,WRI, SOM, NOX, SEC, CROP, TIMB, GLD) in

the cell i (i = 1 . . . , N) was modeled as follows:

log ESij( ) � βLULUi + βCLCLi + βSOSOi + εij, (1)

where LUi � (Arai, PermGrai, Fori, Urbi, Othi)T,CLi �
(Ti, Pi)T and SOi = (Txtci, SoilTXT.Mi,

SoilTXT.MFi, SoilTXT.Fi)T are vectors of land use

proportions, weather, and soil variables, respectively, in each

spatial unit i. βLU, βCL, and βSO are unknown vectors of

parameters to be estimated, and εij are error terms identically

and independently distributed. This model assumes that ESs are

randomly distributed in space.

2.2.2 Spatial statistical models
The model in Eq. 1 assumes that the values of ESs are

spatially independent across space, which is unlikely given the

nature of the data. Omitting spatial dependence from a spatial

data generating process could adversely affect the estimated

model. It could suffer from bias in the regression coefficients,

inconsistency, inefficiency, masking effects of spillovers, and

prediction bias (Anselin, 1988).

2.2.2.1 Spatial autocorrelation

Relaxing the conventional assumption of independent

observations in a cross-sectional setting requires that we

provide a parsimonious way to specify structure for the spatial

autocorrelation between the observations. In linear models,

autocorrelation could be handled by inclusion of spatially

lagged variables, which are weighted averages of the

observations of “neighbors” of a given location. These spatially

lagged variables could be dependent variables (spatial auto-

regressive SAR models), driving variables (spatial cross-

regressive SLX models), or error terms (SEM) or any

combination of these options, which results in a range of

spatial models (Elhorst, 2014). For example, the spatial Durbin

model (SDM) is a combination of SAR and SLX and can be

reduced to SEM (Lesage and Pace, 2009), while the spatial Durbin

error model (SDEM) integrates all the elements of the SLX and the

SEM. Finally, the general nesting spatial (GNS) model combines

the SEM, SAR, and SLX models. Most empirical spatial

econometrics studies in the literature focused mainly on two

specifications: SAR and SEM, until the early 2000s (Elhorst, 2014).

There are many likely causes for the existence of spatial

autocorrelation. For example, in the case of spatially correlated

error terms (SEM), the source of spatial autocorrelation could be a

data measurement problem; for instance, it can emerge from data

measurement errors involving the spatial limits of the phenomena

that differ from the boundaries used for the measurement. Another

cause might be spatially correlated omitted variables. For example,

LeSage and Pace (2009) provided motivation for regression models

that include spatial autoregressive processes. This applies to our data,

where the use of artificially constructed grids and differing scales

could explain the existence of spatial autocorrelation (Anselin,

1988). In this study, we estimate five different spatial model

specifications (Table 2).

2.2.2.2 Weight matrix

Another central element of spatial analysis is the choice of the

weight matrixW, which is the mathematical object that defines the

assumed neighborhood structure to be used in this model. The

weight matrixW is defined as a square matrix of order N, where N

corresponds to the total number of grid cells. In thismatrix, the term

wmn is equal to 1 if cellsm and n are neighbors, and it is equal to

0 otherwise (Anselin, 1988). By convention, the diagonal elements of

matrix W are zero (meaning that each cell is considered not to have

TABLE 2 Summary of the estimated spatialmodel specifications.W is theweightmatrix, β are the estimated parameter vectors, LU are the proportions
of land use area, CL are the weather variables, SO are the proportions of soil texture area, and  are the error terms.

Model Model presentation Interpretation

SAR log (ES) = ρWlog (ES) + βLULU + βCLCL + βSOSO + ε ES for one location is determined

— jointly with that of neighboring locations

— ρ is the spatial coefficient

— —

SLX log (ES) = βLULU + βCLCL + βSOSO + ESs for one location is also determined by

WγLULU + ε LU of neighboring locations

SEM log (ES) = βLULU + βCLCL + βSOSO + ε Unobserved omitted variables follow

ε = λWε + u a spatial pattern, data measurement errors

— λ is the spatial coefficient

SDM log (ES) = ρWlog (ES) + βLULU + βCLCL + βSOSO + A combination of SLX and SAR

— WγLULU + ε γLU is the coefficient of LU associated with neighbors

SDEM log (ES) = βLULU + βCLCL + βSOSO + A combination of SEM and SLX

WγLULU + ε λ is the spatial coefficient

ε = λWε + u —
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spatial interaction with itself), and the rows are standardized such

that their sum equals 1. A range of measures have been used in the

literature to define such neighbor relationships, including contiguity

(sharing a common geographical border) and distance criteria

(distance bands or k − nearest neighbors) (Anselin, 1988). In this

study, we considered different weight matrices (contiguity, distance

bands, and k − nearest neighbors) in order to test the robustness of

the results to the specification of the neighborhood definition. The

estimation results were robust to the weight matrix specification;

therefore, the study only presents the results of the queen contiguity-

based spatial weight matrix (all cells surrounding a cell are

considered neighbours, i.e., corners and edges).

2.2.2.3 Direct, indirect, and total impacts

Unlike classical linear models, the interpretation of spatial

models requires the calculation of impact matrices because of the

spillover effects on the driving variables (Elhorst, 2014). We give

a brief definition of the elements present in each impact; see

(LeSage and Pace, 2009) for details.

• Direct impact assesses the average change of an ES in cell i

of a unit increase in the driving variable X. Therefore, it is

similar to an estimated coefficient in simple linear

regression.

• Indirect impact measures the average impact of an ES in

cell i, if all observations except i have a unit increase in the

driver variable X. In our case, the indirect impacts are the

spatial spillovers from spatially lagged land use proportion

variables.

• The total impact is the sum of both impacts.

2.2.3 Statistical spatial tests
Ignoring spatial effects in amodelwhen they are present can have

negative impacts on the estimators and their asymptotic properties.

For example, if the data generation process is SAR and the lagged

endogenous variable is ignored in the model specification, the OLS

estimators will be biased and non-convergent. In the case of the SEM

model, erroneously omitting a spatial autocorrelation error produces

unbiased but inefficient estimators, and the statistical inference based

on OLS is biased. Specification tests are important in this respect as

they allow detecting the presence of spatial autocorrelation and

choose the best model specification. There are different statistical

tests in the literature, and here we present the Moran test and the

Lagrange multiplier tests.

TABLE 3 Statistical tests (likelihood ratio (LR) and Lagrange Multiplier (LM)) between models (rows) per ecosystem service (column). We considered a
non-spatial model (OLS), the spatial auto-regressive model (SAR), the spatial cross-regressive model (SLX), the spatial error model (SEM), the
spatial Durbin model (SDM), and the spatial Durbin error model (SDEM). CROP stands for crop production; CS for carbon storage; HQI for habitat
quality index; GLD for grazing livestock density; NOX for deposition velocity of nitrous oxide; SOM for topsoil organic matter concentration; SEC for
soil erosion control; TIMB for timber removal; WRI for water retention index. It should be noted that the hypothesisH0 depends onwhichmodels
are compared. Each value of the statistical tests cannot be interpreted as such; only the significance of the statistical tests can be so interpreted.

Test CROP CS HQI GLD NOX SOM SEC TIMB WRI

OLS vs SLX (H0: θ = 0)

LR test 868.29*** 1367.35*** 1011.35*** 517.01*** 1613.59*** 173.62*** 90.33*** 2434.83*** 137.55***

OLS vs SAR (H0: ρ = 0)

LM lag 5857.21*** 11502.11*** 6288.58*** 19015.22*** 7459.3*** 12454.86*** 3243.57*** 9392.55*** 5194.46***

Robust LM lag 819.54*** 1301.67*** 1121.16*** 634.49*** 1450.15*** 618.25*** 234.43*** 2173.92*** 214.48***

OLS vs SEM (H0: λ = 0)

LM error 5749.64*** 12353.34*** 5319.75*** 19305.71*** 6346.65*** 12417.88*** 3016.79*** 8070.56*** 5013.3***

Robust LM error 711.98*** 2152.9*** 152.34*** 924.98*** 337.5*** 581.27*** 7.66** 851.93*** 33.32***

SLX vs SDM (H0: ρ = 0)

LM lag 6297.22*** 14801.48*** 6038.71*** 20465.71*** 6985.07*** 13240.36*** 3234.1*** 9964.97*** 5273.28***

Robust LM lag 10.28** 0.12 129.61*** 227.52*** 105.83*** 530.12*** 225.44*** 142.08*** 84.5***

SLX vs SDEM (H0: λ = 0)

LM error 6636.38*** 16112.28*** 5959.57*** 20528.88*** 7051.27*** 12823.39*** 3085.45*** 10321.28*** 5197.91***

Robust LM error 349.43*** 1310.92*** 50.47*** 290.68*** 172.03*** 113.15*** 76.79*** 498.4*** 9.14**

SEM vs SDEM (H0: θ = 0)

LR test 393.87*** 1039.55*** 418.08*** 210.08*** 627.06*** 167.22*** 103.5*** 928.49*** 152.86***

SEM vs SDM (H0: θ = −ρβ)

LR test 188.21*** 177.71*** 215.61*** 91.79*** 570.16*** 279.03*** 151.15*** 614.55*** 111.93***

SAR vs SDM (H0: θ = 0)

LR test 31.4*** 59.41*** 11.77* 29.57*** 36.68*** 63.52*** 27.73*** 3.19 39.7***

***p-value < 0.001,**p-value < 0.01, and*p-value < 0.05
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2.2.3.1 Moran Test

There are several procedures that can be used to

statistically test the presence of spatial dependence against

the null hypothesis (H0) of spatial independence (Anselin,

1988). The most commonly used measure of spatial

autocorrelation is Moran’s I (Moran, 1950) statistic, which

indicates the degree of spatial association reflected in the data.

When Moran’s test shows the existence of spatial

autocorrelation, it can be taken into account in the

statistical model in various ways by including spatially

lagged variables, i.e., weighted averages of values of the

“neighbors” of a given value (Anselin, 1988).

2.2.3.2 Lagrange Multiplier tests

Unlike Moran’s test, which detects a mis-specification

problem but does not specify the form of the omitted

autocorrelation, the Lagrange Multiplier (LM) tests can be

used to choose the best spatial specification (Anselin, 1988)

Robust forms are necessary (asymptotic adjustment) when

both LM-Error and LM-Lag reject the hypothesis H0 (Anselin

et al., 1996).

2.2.3.3 Likelihood Ratio Tests

They are designed for nested models (constrained and

non-constrained models) estimated by the maximum

likelihood method. The constrained model is estimated

under the constraint H0 (here the hypothesis to test), and

the unconstrained model is estimated without assuming H0. If

the hypothesis H0 is rejected, this means that the

unconstrained model is preferred. For more information,

see Buse (1982).

2.2.4 Comparison of spatial models’
performances

For each ES, all the models (OLS, SAR, SEM, SLX, SDM, and

SDEM) were estimated and their performance compared. The

choice of the best performing model was based on three criteria:

goodness-of-fit (R2), quality of prediction (RMSE), and statistical

tests (Likelihood Ratio (LR) and Lagrange Multiplier (LM) tests

proposed by Anselin (1988)). As there is no equivalent of R2 for

spatial models, in order to assess the goodness of fit of alternative

spatial model specifications, we provided a pseudo-R2 metric

based on Nagelkerke (1991). We recall the classical definition of

R2 (see Nagelkerke (1991) for pseudo-R2) and RMSE

R2 � 1 − SSres
SStot

, and RMSE �
������
1
N
SSres

√
(2)

with SSres the sum of squares of residuals, SStot the total sum of

squares, and N the sample size. The closer R2 (or pseudo R2) to 1,

the more variability the model explains; the closer to 0 the RMSE,

the better. RMSE gives an aggregated assessment of residuals (see

Supplementary Figure S1). We also calculated the indirect and

total impacts to take into account spatial spillover from spatially

lagged land use proportion variables (LeSage and Pace, 2009).

3 Results

3.1 Spatial statistical tests

For the OLS model, we found the Moran’s I score significant

for all ESs, meaning that the hypothesis H0 of no spatial

autocorrelation is rejected for all ESs (Table 3). In other

TABLE 4 Goodness-of-fit (R2) and prediction quality (RMSE) of the models (columns) per ecosystem service (rows). The models shown are a non-
spatial model (OLS), the spatial error model (SEM), and the spatial Durbin error model (SDEM) as they showed the best performances with the
Lagrange Multiplier test. We also show the difference in goodness-of-fit and prediction quality between the OLS model and spatial models (ΔR2 and
ΔRMSE). CROP stands for crop production; CS for carbon storage; HQI for habitat quality index; GLD for grazing livestock density; NOX for deposition
velocity of nitrous oxide; SOM for topsoil organic matter concentration; SEC for soil erosion control; TIMB for timber removal; WRI for water
retention index. We found that compared to OLS, R2, and RMSE improved for all the spatial models.

Ecosystem
service

OLS SEM SEM vs OLS SDEM SDEM vs OLS

R2 RMSE R2 RMSE ΔR2 Δ
RMSE

R2 RMSE ΔR2 Δ
RMSE

CROP 0.68 0.72 0.81 0.51 0.13 −0.21 0.81 0.52 0.13 −0.20

CS 0.61 0.43 0.86 0.23 0.25 −0.20 0.88 0.22 0.27 −0.21

HQI 0.40 0.41 0.64 0.29 0.24 −0.12 0.65 0.29 0.25 −0.12

GLD 0.26 1.06 0.83 0.45 0.57 −0.61 0.84 0.45 0.58 −0.61

NOX 0.50 0.82 0.71 0.57 0.21 −0.25 0.73 0.57 0.23 −0.25

SOM 0.55 0.40 0.83 0.22 0.28 −0.18 0.83 0.22 0.28 −0.18

SEC 0.14 0.31 0.31 0.27 0.17 −0.04 0.32 0.27 0.18 −0.04

TIMB 0.60 0.76 0.83 0.45 0.23 −0.31 0.85 0.43 0.25 −0.33

WRI 0.18 0.34 0.42 0.27 0.24 −0.07 0.43 0.27 0.25 −0.07
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FIGURE 2
Spatial distributions of ecosystem services from observations (OBS) and from the spatial Durbin error model (SDEM). The color scale is unique
for each ecosystem service. CROP stands for crop production; CS for carbon storage; HQI for habitat quality index; GLD for grazing livestock density;
NOX for deposition velocity of nitrous oxide; SOM for topsoil organic matter concentration; SEC for soil erosion control; TIMB for timber removal;
WRI for water retention index.
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words, for all the ESs, the value in a cell is dependent to some

extent on the information from other spatially interacting cells.

We found that both hypotheses of no spatially lagged dependent

variable and no spatially autocorrelated error term are rejected at

1% significance for all models. The robust LM test results showed

that both SAR and SEM specifications are not as relevant as the

SDEM or SDM specifications for all ESs.

3.2 Best performing model

Compared to the non-spatial model, taking into account

spatial autocorrelation increases the R2 criterion, i.e., the

goodness-of-fit (see Table 4). The increases in R2 were not the

same for all the ESs. The highest gain in R2 was observed for GLD,

which went from a relatively poor explained variance (R2 = 0.26)

to a relatively high explained variance (R2 = 0.84). For other ESs,

the explained variance increased, with ΔR2 ranging from 0.23

(NOX) to 0.27-0.28 (SOM and CS). We remark that, after

including spatial autocorrelation, among the ESs strictly

related to the presence of forest (CS, NOX, SOM, SEC, and

TIMB), SEC had the lowest explained variance. SEC and WRI

had low explained variance both for the OLS and SDEM models,

although the performance improved with spatial autocorrelation

included (R2 < 0.50). The two ESs with the lowest gain in

explained variance between OLS and SDEM were SEC and

CROP, with the difference that CROP was already performing

well with the OLS model, while SEC did not perform well with

the SDEM model either. Both SEM and SDEM models gave very

similar results in terms of prediction quality and goodness of fit,

but results from SDEM models were slightly better for most ESs.

To conclude, according to the criteria (R2 and RMSE), the best

specification for all ESs was the SDEM model (see the spatial

distributions of ESs with this model compared to observations in

Figure 2).

3.3 Significance of the impact of drivers

We showed that not all the drivers had the same impact on ES

provision (see Figure 3 and Supplementary Table S2). Land use

variables had significant impacts (positive or negative) on all ESs,

with the exception of permanent grassland, for which the

significance was weaker for GLD, SOM, SEC, and WRI

(Figure 3). We found that forest was the land use that had the

highest positive impacts on all ESs, except on CROP. On the

contrary, urban land had the lowest negative impacts on all ESs,

except on CROP. For CROP, arable land had the highest positive

impact, while other land uses had the lowest negative impact.

Permanent grassland showed non-significant impacts on GLD,

WRI, and SOM. We also found that for arable land, other land

uses, and urban land, all indirect impacts on ESs were significant,

except with CROP (Supplementary Table S2). On the contrary,

all other land uses had significant negative impacts on ESs related

to forest (CS, NOX, SOM, SEC, and TIMB).

We showed that weather drivers had significant impacts on

all ESs, and the impact of precipitation was more significant on

ESs than that of temperature. The impact of soil texture was also

significant for most of the ESs, only slightly significant for HQI

and GLD and not significant for SOM and TIMB. The soil-

related driver that tended to show less significant impacts was

SoilTXT.F. Slope has a significant impact on only some ESs, with

for example, a negative impact on CROP and a positive impact

on CS.

4 Discussion and conclusion

This study contributes to the large body of material

empirically assessing relationships between land use and ESs

on a large scale (see e.g., Burkhard et al. (2012); Accatino et al.

(2019); Qiao et al. (2019); Shi et al. (2021)), with the specificity of

taking into account spatial autocorrelation. We showed that

taking into account spatial autocorrelation in large-scale ES

statistical models allows us to significantly improve model fit

and prediction accuracy (for example, we observed ΔR2 ranging

from 0.13 to 0.58). This is in agreement with other studies, stating

that including spatial autocorrelation improves model fit and

prediction accuracy (Record et al., 2013), while ignoring it can

lead to inaccurate results (Kuhn, 2007). Importantly, the

improvement in model prediction thanks to the inclusion of

spatial autocorrelation was not the same for all the ESs. We also

considered a set of drivers in addition to land use proportion

variables, namely, weather (rainfall and temperature), soil

texture, and topographical (slope) drivers. We found that in

addition to land use, both weather variables had strong impacts

on ES provision.

4.1 The importance of spatial
autocorrelation in Statistical ecosystem
services models

We demonstrated that including spatial autocorrelation is of

fundamental importance for large-scale ES statistical models.

Indeed, for all ESs, the Moran’s I measure of spatial

autocorrelation was significant, and the performance, in terms

of explained variance, was better with models, including spatial

autocorrelation (especially the SDEMmodel, the best performing

among all the models explored) than with the non-spatial model.

However, the improvements in explained variance obtained with

the inclusion of spatial autocorrelation were different among ESs.

The importance of considering spatial autocorrelation, as well as

the differences observed across different ESs, finds confirmation

in other studies that implemented Moran’s I (Xu et al., 2017;

Zhang et al., 2018; Zheng et al., 2020). Some ESs already
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performed well without spatial autocorrelation included, while

other ESs did not achieve satisfactory performances even with

spatial autocorrelation included.

Grazing livestock density showed the highest increase in

explained variance with the inclusion of spatial

autocorrelation (R2 = 0.26 in the OLS model and R2 = 0.84 in

the SDEM model). This means that a single cell with a high

percentage of permanent grassland in a cell group does not imply

only extensive ruminant (grazing) livestock in that cell. However,

a cell group with several cells with a high percentage of

permanent grassland indicates a region of predominantly

extensive ruminant (grazing) livestock. Similarly, for habitat

quality index, a high percentage of forest in one cell does not

necessarily imply a high value, while a high percentage of forest in

several cells in a group does, showing the importance of resource

continuity (see Schellhorn et al. (2015)). For permanent

grasslands and for forests, spatial continuity on the scale of

several hundred km2 respectively better explains ruminant

density and habitat quality for common birds. For the habitat

quality index, the inclusion of spatial autocorrelation improved

the predictive capacity of the model, and this is widely

acknowledged in biodiversity statistical modeling (Dormann

FIGURE 3
Total impacts of driving variables on ecosystem services with the spatial Durbin error model (SDEM). The total impact is the sum of direct and
indirect impacts, and it corresponds to the relative variation (in %) of the ecosystem service in question when increasing the land use areapercentage
(to the detriment of forest), the percentage of the soil texture area (to the detriment of the coarse soil texture), or the other biophysical variables by
1%. When the error bar (95% confidence interval of a normal distribution calculated from the estimated parameters and their standard
deviations) overlaps the horizontal zero line, the impact of a driving variable on the ecosystem service is not statistically significant. CROP stands for
crop production; CS for carbon storage; HQI for habitat quality index; GLD for grazing livestock density; NOX for deposition velocity of nitrous oxide;
SOM for topsoil organic matter concentration; SEC for soil erosion control; TIMB for timber removal; WRI for water retention index.
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et al., 2007). Thus, including spatial characteristics in the

statistical model referring to this ES certainly provides more

information necessary for prediction of the ES.

Some ESs already performed well when spatial

autocorrelation was not considered. This was the case when

the provision of an ES is not subject to spatially explicit

interactions, and it is strongly dependent on one land use.

Among those investigated, the ESs with these characteristics

are crop production (related to agricultural land) as well as

carbon storage, topsoil organic matter, and timber removal

(related to forest). Among the ESs related to forest, carbon

storage and topsoil organic matter gained more explained

variance than timber removal when moving from the OLS to

the SDEM model. This might be due to the different data sets

used (carbon storage and topsoil organic matter rely on older

data) and from the fact that carbon storage and soil organic

matter also rely, albeit to a lesser extent, on other land cover types

and not only on forest land use. Following the expert-based

assessment matrix proposed by Burkhard et al. (2012), crop

production is indeed strongly dependent on agricultural land,

timber removal is strongly dependent on forest, while carbon

storage and topsoil organic matter are dependent on a wider

spectrum of land use types.

Water retention index and soil erosion control showed the

worst performance with both the OLS and SDEM models.

Following Maes et al. (2011), the indicators used to represent

these two ESs are based on cross-referencing between (at least)

two layers. For example, the map of the water retention index ES

is obtained via a model that takes into account much information

(Pistocchi, 2008). The concept of cross-referencing data layers is

not captured in the statistical models in our study. The same logic

is also present for nitrogen oxide deposition: the map of this ES is

obtained by cross-referencing the presence of forest with air

pollution (calculated using a model). The factors determining air

pollution are not included in our statistical models.

Improvements to the prediction of these ESs can be obtained

by including interrelations among drivers and by using machine

learning techniques (see e.g., Willcock et al. (2018)).

To sum up, analysis of and comparison between different ESs

made it possible to understand why including spatial

autocorrelation is important in large-scale ES models. Our

analysis suggests some possible reasons for this. First, the ES

itself (or its index) might be based on some spatially explicit

processes, i.e., the process leading to ES provision might involve

spatially explicit dynamics (Pan et al., 2019) or it requires a

certain degree of resource continuity (Schellhorn et al., 2015).

Second, the indicator used for representing the ES might include

spatial information. This is the case for grazing livestock density

and habitat quality, whose performances improve when moving

fromOLS to SDEM. There are also other ESs, not included in this

study, based on marked spatial processes, for example,

pollination is based on the proximity between pollinator

habitat and pollination-dependent crops (Zulian et al., 2013).

Third, including spatial autocorrelation can serve to correct some

distortions intrinsic to the data. This is why crop production

improves its performance when spatial characteristics are

included, even though the process is not spatially explicit. It is

important to note that in analyses (see Shi et al. (2021)) that bring

together data from different sources, resolutions, methods, and

years, it is important to come to a common resolution for all the

ESs and the drivers. Another source of distortion might arise

from the resolution in itself, as argued by Grêt-Regamey et al.

(2015): the choice of resolution might lead to biased estimations.

Specifically, it is difficult to capture ESs having a non-clustered

and scattered resolution if the resolution is too coarse.

Distortions created by the choice of spatial resolution can at

least be mitigated with the inclusion of spatial autocorrelation.

4.2 Considering non-land-use-related
drivers

Our analysis confirmed the importance of considering land use

variables as main drivers of the large-scale provision of ESs. This was

also recognized in other studies (Tallis et al., 2011; Burkhard et al.,

2012; Accatino et al., 2019). Our results find coherence with other

studies (see e.g., Burkhard et al. (2012)), and we also found that

urban land use has a negative impact on all ESs, as confirmed by

other studies (Montoya-Tangarife et al., 2017; Xu et al., 2017).

However, we also showed that weather, soil, and topographic drivers

have their importance and should be considered in ESs modeling.

Weather variables were found to have strongly significant impacts

on all the ESs and soil variables on most of them. Indeed, these

variables contribute to ESs either directly or indirectly, acting as

drivers for the land uses providing the ESs. Soil texture was not

found significant for grazing livestock density and habitat quality, as

neither ES is directly related to soil properties, while it was found

strongly significant for water retention and soil erosion control

(except for SoilTXT.F), both strongly related to soil structure. Soil

texture also played a role in crop production, as identified by

previous research (Zwetsloot et al., 2021).

4.3 Limits

For a comprehensive assessment of the links between ESs and

land use in France, several other drivers should also be taken into

consideration. For example, the type of cropping system (organic

farming vs. conventional farming, for example) on arable land

since it determines, for example, productivity or the stock of

organic matter in the soil (Marriott and Wander, 2006). Taking

such a determinant into account would undoubtedly help

improve the statistical quality of different models. Different

possible land uses within arable land could also be detailed,

e.g., heterogeneous agricultural practices and crop diversification

that could have a higher stock of organic matter in the soil, better
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provision of ESs, for the same level of productivity than

permanent crops or annual crops (Beillouin et al., 2021). In

both cases, the refinement would require more data.

4.4 Perspectives

Our framework could be applied in different contexts, and

several remaining questions could be considered in future work.

First, simulations could be performed to study the impacts on ESs

of changes in drivers. Indeed, our statistical models allow the

estimation of how ESs will be modified when one or many drivers

change. This could, for example, be used to estimate the impact

of climate change on ESs using future climate scenarios to

provide the value of weather variables included in our models.

Second, a possible application is to simulate the impacts of

public policies such as a tax on deforestation or a subsidy to

maintain forests. To perform this, we need to develop a land use

model that will link land uses to their drivers, such as the

economic rents associated with each use (Chakir and

Lungarska, 2017; Lungarska and Chakir, 2018). Our analysis

is a first step for further research that sheds new light on the

important question of ES preservation and enhancement in a

context of growing tensions between social, environmental, and

economic challenges.
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