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Abstract

In this manuscript, we consider a finite multivariate nonparametric mixture model where
the dependence between the marginal densities is modeled using the copula device. Pseudo
EM stochastic algorithms were recently proposed to estimate all of the components of this
model under a location-scale constraint on the marginals. Here, we introduce a deterministic
algorithm that seeks to maximize a smoothed semiparametric likelihood. No location-scale
assumption is made about the marginals. The algorithm is monotonic in one special case,
and, in another, leads to “approximate monotonicity”—whereby the difference between suc-
cessive values of the objective function becomes non-negative up to an additive term that
becomes negligible after a sufficiently large number of iterations. The behavior of this algo-
rithm is illustrated on several simulated datasets. The results suggest that, under suitable
conditions, the proposed algorithm may indeed be monotonic in general. A discussion of
the results and some possible future research directions round out our presentation.

1 Introduction

Let

g(x) = g(x1, . . . , xd) =

K∑
k=1

πkfk(x1, . . . , xd)(1)

be a multivariate mixture model with K components (or clusters—we shall use these two words
interchangeably). We view the model (1) as a nonparametric mixture model where individual
components fk are not defined as belonging to any specific parametric family. The research on
selecting the number of components for non- and semiparametric density mixtures is currently at
a very early stage; some developments in this area can be found in e.g. [5] and [6]. Due to this,
we assume that the number of components K is fixed and known in our model. In general, most
of the work on nonparametric mixture modeling so far assumed that the marginal distributions
fk1, . . . , fkd of each component are conditionally independent. Such an assumption implies that,
conditional on knowing which component a particular observation has been generated from, its
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distribution is equal to the product of its marginals. More formally, this means that

g(x) =

K∑
k=1

πk

d∏
j=1

fkj(xj).

The conditions sufficient to ensure identifiability for the conditionally independent model are
known [1]. There are also a number of approaches to estimating their parameters [15], both
iterative [2, 7] and closed form solutions [3]. However, the assumption of conditional independence
is not always a realistic one. For example, it is unlikely to be true when dealing with RNA-seq
data [13]. Thus, it seems desirable to relax this assumption while retaining the generality of the
nonparametric approach.

To the best of our knowledge, the only known results on estimation of nonparametric mixture
models with conditionally non-independent components are [8, 9]. They consider a special case
of the general nonparametric mixture model, allowing for a non-trivial dependence structure
where the marginals are assumed to belong to a location-scale family. Stochastic algorithms
were proposed to estimate the copula parameter and the nonparametric marginals. The esti-
mation algorithms, while performing well in practice, do not optimize any particular objective
function. Because of this, their convergence analysis will necessarily be a difficult one. In this
manuscript, our goal is to suggest a deterministic algorithm capable of estimating the compo-
nents of a nonparametric mixture model with conditionally non-independent components without
a location-scale assumption for the marginals, since such an assumption is far from commonly
satisfied in applications.

In order to continue, we are going to fix the notation first. It is well-known that, due to Sklar’s
theorem [11] p. 18, every d− dimensional multivariate cumulative distribution function can be
represented as a copula of the corresponding marginal cumulative distribution functions. Indeed,
let Fk1(x1), . . . , Fkd(xd) be the marginal cumulative distribution functions of the cumulative
distribution function Fk(x1, . . . , xd) that corresponds to the density fk(x1, . . . , xd). Then, there
exists a d− copula Ck, which is a function Ck : [0, 1]d → [0, 1], such that

Fk(x1, . . . , xd) = Ck(Fk1(x1), . . . , Fkd(xd)),

see [11] pp. 46. If the marginal cumulative distribution functions are continuous, then the copula
is unique. The copula Ck can be viewed as a d-dimensional cumulative distribution function
with uniform marginal distributions. Taking the derivative of order d, one immediately obtains
the representation

fk(x1, . . . , xd) = ck(Fk1(x1), . . . , Fkd(xd))

d∏
j=1

fkj(xj)

where ck is the density of the copula Ck. We assume that each copula density ck belongs to some
parametric family of copula densities indexed by a parameter θk. Denoting by ϕ the set of all
marginal densities {fkj}, and denoting by π = (π1, . . . , πK)

′
and θ = (θ1, . . . , θK)

′
the vectors of

all weights and copula parameters, respectively, we have

fk(x; θ, ϕ) = fk(x1, . . . , xd; θ, ϕ) = c(Fk1(x1), . . . , Fkd(xd); θk)

d∏
j=1

fkj(xj),(2)

so that (1) and (2) define a class of mixture densities that can be stated as g(·;π, θ, ϕ).
The rest of this manuscript is structured as follows. Section 2 introduces a general algorithm

that can be used to estimate finite mixtures of multivariate densities with a dependence structure
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defined through the use of copulas. Section 3 provides some results about the monotonicity
property of two simplified versions of this algorithm. Section 4 illustrates the performance of our
algorithm with a simulation study. Section 5 discusses the results obtained and suggests possible
directions for future research.

2 Algorithm

The goal of our manuscript is to estimate the components and weights of the model (1)-(2). The
definition of such an algorithm starts with an objective function that we are going to introduce
next. First, let K(·) be a proper univariate density function that can be used for kernel density
estimation and Kh(·) := 1

hK
( ·
h

)
its rescaled version where h > 0 is a bandwidth. Next, for a

generic function f, we define

(3) Nhf(x) := exp

(∫
Kh(x− u) log f(u) du

)
which is a nonlinear smoother of the function f. Note that, even if f is a density, N f is not, in
general a density due to Jensen’s inequality. Now, we define the operator O by Ofk(x; θ, ϕ) =

c(Fk1(x1), . . . , Fkd(xd); θk)
∏d
j=1N fkj(xj). This definition allows different bandwidths for differ-

ent dimensions and clusters, if needed. Finally, let us denote ǧ(x;π, θ, ϕ) =
∑K
k=1 πkOfk(x; θ, ϕ).

The objective function we seek to maximize is the population version of the smoothed semi-
parametric log-likelihood, given by

`(π, θ, ϕ) =

∫
g(x) log

ǧ(x;π, θ, ϕ)

g(x)
dx,(4)

over all (π, θ, ϕ); here g(x) is the target density. If the marginal distributions are conditionally
independent then c(u1, . . . , ud; θk) ≡ 1 for every θk and k, and hence (4) reduces to the smoothed
semiparametric log-likelihood considered in [7].

Lemma 1. For any choice of parameters π̃, θ̃, ϕ̃, the smoothed loglikelihood difference is bounded
as

`(π, θ, ϕ)− `(π̃, θ̃, ϕ̃) ≤
K∑
k=1

− log
π̃k
πk

∫
g(x)wk(x;π, θ, ϕ)dx

−
∫
g(x)

K∑
k=1

wk(x;π, θ, ϕ) log

∏d
j=1N f̃kj(xj)∏d
j=1N fkj(xj)

dx

−
∫
g(x)

K∑
k=1

wk(x;π, θ, ϕ) log
c(F̃k1(x1), . . . , F̃kd(xd); θ̃k)

c(Fk1(x1), . . . , Fkd(xd); θk)
dx

:=Ψ1(π̃|π, θ, ϕ) + Ψ2(ϕ̃|π, θ, ϕ) + Ψ3(θ̃, ϕ̃|π, θ, ϕ),

where the distribution functions F̃kj are those associated with {f̃kj} = ϕ̃ and

(5) wk(x;π, θ, ϕ) = πkOfk(x; θ, ϕ)/ǧ(x;π, θ, ϕ),

k = 1, . . . ,K.
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Proof of Lemma 1. By definition, the difference of smoothed log-likelihoods can be written down
as

`(π, θ, ϕ)− `(π̃, θ̃, ϕ̃) = −
∫
g(x) log

∑K
k=1 π̃kOfk(x; θ̃, ϕ̃)∑K
k=1 πkOfk(x; θ, ϕ)

dx

= −
∫
g(x) log

K∑
k=1

wk(x;π, θ, ϕ)
π̃kOfk(x; θ̃, ϕ̃)

πkOfk(x; θ, ϕ)
dx

At this point, it remains only to apply Jensen’s inequality to a convex combination on the
right-hand side whose coefficients are wk(x; θ, ϕ).

Instead of minimizing `(π, θ, ϕ)− `(π̃, θ̃, ϕ̃) with respect to (π̃, θ̃, ϕ̃) directly, we seek to mini-
mize the upper bound proposed by Lemma 1. This approach is in the spirit of MM (Minimization-
Majorization) algorithms; see e.g. [14] for the detailed discussion. To do this, our heuristic is to

minimize each of the three terms Ψ1(π̃|π, θ, ϕ), Ψ2(ϕ̃|π, θ, ϕ), Ψ3(θ̃, ϕ̃|π, θ, ϕ) separately. This
is sometimes called “minimization by part”. To minimize the first term Ψ1(π̃|π, θ, ϕ), we have
to choose π̂ = π̂ where π̂k =

∫
g(x)wk(x;π, θ, ϕ) dx, k = 1, . . . ,K. This is the result that can be

obtained using standard constrained optimization techniques. Note that the resulting minimum
must be non-positive since the first term can be made zero by choosing π̃ = π. To minimize the
second term Ψ2(ϕ̃|π, θ, ϕ), define, as a first step,

f̂kj(uj) = αkj

∫
g(x)wk(x;π, θ, ϕ)Khkj

(xj − uj) dx,

for any k = 1, . . . ,K and j = 1, . . . , d, where αkj is the normalizing constant ensuring that the

newly defined f̂kj is, indeed, a proper density function. Then, we have

−
∫
g(x)wk(x;π, θ, ϕ) logN f̃kj(xj) dx

= −
∫
g(x)wk(x;π, θ, ϕ)

(∫
Khkj

(xj − uj) log f̃kj(uj) duj

)
dx

= −
∫

log f̃kj(uj)f̂kj(uj) duj .

The same argument as in [7] applies: the quantity above is minimized if we select f̃kj(u) = f̂kj(u).
The resulting minimum will also be less than or equal to zero because Ψ2(ϕ̃|π, θ, ϕ) = 0 when
ϕ̃ = ϕ.

Now, we can propose the following general algorithm for estimation of (π, θ, ϕ).

A1 Choose initial values π0, ϕ0, θ0

A2 Compute the initial set of weights

wk(x;π0, θ0, ϕ0) = π0
kOfk(x; θ0, ϕ0)/ǧ(x;π0, θ0, ϕ0).

A3 At any step of iteration t = 1, 2, . . . select

πtk =

∫
g(x)wk(x;πt−1, θt−1, ϕt−1) dx,

k = 1, . . . ,K.
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A4 Select as the next value of the density function vector ϕt = {f tkj} where

f tkj(uj) = αkj

∫
g(x)wk(x;πt−1, θt−1, ϕt−1)Khkj

(xj − uj) dx

where αkj is the normalizing constant ensuring that the newly defined function is, indeed,
a density function. As a part of this step, also compute updated cumulative distribution
functions F tkj(uj) =

∫ uj

−∞ f tkj(y) dy.

A5 Choose the value
θt = arg min

θ
Ψ3(θ, ϕt|πt−1, θt−1, ϕt−1).

A6 Redefine weights

wk(x;πt, θt, ϕt) = πtkOfk(x; θt, ϕt)/ǧ(x;πt, θt, ϕt).

and return to step A3.

At each step of the algorithm defined above, the marginals are updated first and independently
of the copula parameter. This strategy was used in [8, 9].

Remark 1. In practice, one implements the empirical version of the algorithm. Every integral of
the form

∫
g(x)ζ(x) dx, where ζ is some arbitrary function, is replaced by 1

n

∑n
i=1 ζ(Xi), where

Xi = (Xi1, . . . , Xid), i = 1, . . . , n, are observations from the target density g. The objective
function to be maximized is then the empirical version of the smoothed log-likelihood, given by
1
n

∑n
i=1 log ǧ(Xi;π, θ, ϕ) (up to an additive constant). Here the bandwidths of the nonlinear

smoothers are allowed to depend on the data.

3 Studying the algorithm

Whether the algorithm proposed in Section 2 is monotonic with respect to the objective functional
(4) is an open question. In some special cases, the answer is positive. One such case that we
identified is when probabilities πk and the marginal densities fkj are known beforehand. In such
a case, the simplified algorithm is as follows.

B1 Choose initial value of the copula parameter θ0.

B2 Compute the initial set of weights

wk(x;π, θ0, ϕ) = πkOfk(x; θ0, ϕ)/ǧ(x;π, θ0, ϕ).

B3 For any t = 1, 2, . . . choose the value

θt = arg min
θ

Ψ3(θ, ϕ|π, θt−1, ϕ).

B4 Redefine weights
wk(x;π, θt, ϕ) = πkOfk(x; θt, ϕ)/ǧ(x;π, θt, ϕ).

and return to step B3.

Proposition 1. The algorithm defined in B1–B4 is monotonic with respect to θ, that is, `(π, θt−1, ϕ)−
`(π, θt, ϕ) ≤ 0 for every t = 1, 2, . . .
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Proof. The smoothed likelihood difference is bounded from above as

`(π, θ, ϕ)− `(π, θ̃, ϕ) ≤ Ψ3(θ̃, ϕ|π, θ, ϕ)

= −
∫
g(x)

K∑
k=1

wk(x;π, θ, ϕ) log
c(Fk1(x1), . . . , Fkd(xd); θ̃k)

c(Fk1(x1), . . . , Fkd(xd); θk)
dx.

Choosing θ∗ = arg minθ̃ Ψ3(θ̃, ϕ|π, θ, ϕ) produces

`(π, θ, ϕ)− `(π, θ∗, ϕ) ≤ Ψ3(θ∗, ϕ|π, θ, ϕ) = min
θ̃

Ψ3(θ̃, ϕ|π, θ, ϕ);

since there exists a value θ̃ = θ such that Ψ3(θ, ϕ|π, θ, ϕ) ≡ 0, the minimal value of Ψ3(θ̃, ϕ|π, θ, ϕ)
will be less than or equal to zero.

Another interesting special case results when one assumes that both component weights πk
and copula parameters θk are known while the marginal densities fkj are unknown. In this case,
the simplified algorithm will be as follows.

C1 Choose initial values ϕ0

C2 Compute the initial set of weights

wk(x;π, θ, ϕ0) = πkOfk(x; θ, ϕ0)/ǧ(x;π, θ, ϕ0).

C3 For t = 1, 2, . . . select as the next value of the density function vector ϕt = {f tkj} where

f tkj(uj) = αkj
∫
g(x)wk(x;π, θ, ϕt−1)Khkj

(xj − uj) dx. Here, αkj is a normalizing con-
stant, ensuring that the newly defined function is, indeed, a density function. As a part of
this step, also compute updated cumulative distribution functions F tkj(uj) =

∫ uj

−∞ f tkj(y) dy.

C4 Redefine weights
wk(x;π, θ, ϕt) = πkOfk(x; θ, ϕt)/ǧ(x;π, θ, ϕt).

and return to step C3.

The special case of the general algorithm defined above possesses an “approximate monotonicity”
property in the following sense.

Proposition 2. We assume that the target density g(x) has a compact support Ω. We also
assume that none of the known weights πk is equal to zero. Suppose that the kernel function K(·)
is a proper density function defined on [−1, 1], bounded away from zero by K∗ > 0, and Lipschitz
continuous with a positive Lipschitz constant L. We assume that the copula density function
c(u1, . . . , ud; θ) is also Lipschitz continuous on [0, 1]d and bounded away from zero. Then, there
exists a subsequence ϕtl = (f tlkj , k = 1, . . . ,K, j = 1, . . . , d), l = 1, 2, . . . , such that the the
algorithm C1–C4 is “approximately monotonically ascending” along this subsequence:

`(π, θ, ϕtl−1)− `(π, θ, ϕtl) ≤ o(1)

as l→∞.

Remark 2. It follows directly from the definition that K∗ ≤ K(·) ≤ K∗ where both K∗ and K∗

are positive. The assumptions of Lipschitz continuity and boundedness away from zero for the
kernel function K(·) do not represent a practical problem since they are not concerned with the
actual data—rather, K(·) is a tool used to analyze the data. Our simulation results suggest that
they also may not be necessary.
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Remark 3. The assumption of compact support for the target density g(x) and, by extension,
for all of the marginal densities fkj does not represent a problem from the practical viewpoint.
From the theoretical viewpoint, a result analogous to Proposition 2 can be proved if one assumes
that all of the marginal densities decay to zero sufficiently fast at infinity and using the Fréchet-
Kolmogorov theorem instead of the Arzelà-Ascoli theorem [4] p. 126.

Remark 4. As an example of copulas satisfying conditions of Proposition 2 we can point out
Farlie-Gumbel-Morgenstern (FGM) copulas as well as so-called copulas with cubic sections (that
are direct generalizations of FGM copulas) [11] pp. 77− 84.

Proof. The difference in log-likelihoods can be bounded as

`(π, θ, ϕtl−1)− `(π, θ, ϕtl) ≤ Ψ2(ϕtl |π, θ, ϕtl−1) + Ψ3(θ, ϕtl |π, θ, ϕtl−1)

= −
∫
g(x)

K∑
k=1

wk(x;π, θ, ϕtl−1) log

∏d
j=1N f

tl
kj(xj)∏d

j=1N f
tl−1

kj (xj)
dx

−
∫
g(x)

K∑
k=1

wk(x;π, θ, ϕtl−1) log
c(F tlk1(x1), . . . , F tlkd(xd); θk)

c(F
tl−1

k1 (x1), . . . , F
tl−1

kd (xd); θk)
dx.

Recall that minimization of Ψ2(ϕtl |π, θ, ϕtl−1) always results in Ψ2(ϕtl |π, θ, ϕtl−1) ≤ 0 since the

choice f tlkj = f
tl−1

kj for all k = 1, . . . ,K and j = 1, . . . , d makes this term equal to zero. Therefore,

it remains to show that Ψ3(θ, ϕtl |π, θ, ϕtl−1)→ 0 as l→∞. To do this, let us introduce a lemma.

Lemma 2. For each k = 1, . . . ,K and j = 1, . . . , d, the sequence f tkj, t = 1, 2, . . . has a uniformly

converging subsequence f tlkj, l = 1, 2, . . . .

The proof of Lemma 2 is similar to the proof of Lemma A2 in [7] and is not given. Denote by
f∗kj the limit of f tlkj as l→∞. Denote by ϕ∗ the collection of all such limits. Since Ω is compact,

it follows in a straightforward manner from Lemma 2 that each subsequence F tlkj(u) converges

uniformly to F ∗kj(u) :=
∫ u
−∞ f∗kj(x) dx. To show that Ψ3(θ, ϕtl |π, θ, ϕtl−1) goes to zero as l goes

to infinity, we proceed as follows. We have

|Ψ3(θ, ϕtl |π, θ, ϕtl−1)|

≤
K∑
k=1

∣∣∣∣∣
∫
g(x)wk(x;π, θ, ϕtl−1) log

c(F tlk1(x1), . . . , c(F tlkd(xd); θk)

c(F
tl−1

k1 (x1), . . . , c(F
tl−1

kd (xd); θk)
dx

∣∣∣∣∣ .
Each summand is bounded as∣∣∣∣∣

∫
g(x)wk(x;π, θ, ϕ∗) log

c(F tlk1(x1), . . . , c(F tlkd(xd); θk)

c(F
tl−1

k1 (x1), . . . , c(F
tl−1

kd (xd); θk)
dx

∣∣∣∣∣+∣∣∣∣∣
∫
g(x)(wk(x;π, θ, ϕtl−1)− wk(x;π, θ, ϕtl)) log

c(F tlk1(x1), . . . , c(F tlkd(xd); θk)

c(F
tl−1

k1 (x1), . . . , c(F
tl−1

kd (xd); θk)
dx

∣∣∣∣∣ .(6)

Since the copula density is bounded from above and below, the second term is less than or
equal to a constant times

∫
g(x)|wk(x;π, θ, ϕtl−1) − wk(x;π, θ, ϕtl)|dx. But, by the dominated

convergence theorem, this integral vanishes because the kernel K and the copula density are
bounded from above and below, the copula density is Lipschitz continuous and, from [7], N f tlkj
converges uniformly to N f∗kj as l→∞.
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The first term in (6) is bounded by∣∣∣∣∫ g(x)wk(x;π, θ, ϕ∗) log
c(F tlk1(x1), . . . , c(F tlkd(xd); θk)

c(F ∗k1(x1), . . . , c(F ∗kd(xd); θk)
dx

∣∣∣∣
+

∣∣∣∣∣
∫
g(x)wk(x;π, θ, ϕ∗) log

c(F ∗k1(x1), . . . , c(F ∗kd(xd); θk)

c(F
tl−1

k1 (x1), . . . , c(F
tl−1

kd (xd); θk)
dx

∣∣∣∣∣ .
But again this bound goes to zero by similar arguments. This finishes the proof.

4 Numerical Study

Five hundred replications of four independent artificial datasets of sizes n = 300, 500, 700, 900
were generated from the mixture model (1)–(2) with 3 clusters of equal proportions, FGM copulas
with parameters −0.5, 0.5, 0 and marginals as in Table 1, where N(µ, σ2) and L(µ, σ2) refer
to the normal and Laplace distributions with mean µ and standard deviation σ, respectively.

(The density of a L(µ, σ2) distribution is then given by f(x) = e−
√
2|x−µ|/σ/(

√
2σ) for any

real x.) The algorithm of Section 2 was implemented to estimate the cluster proportions, the
copula parameters and the marginal densities. The kernel K was the Gaussian kernel. The
number of iterations was arbitrarily fixed to fifty. A bottleneck of the algorithm is the numerical
evaluation of the integral (3). It was found empirically that, instead of (3), evaluating the integral∫ 1.96h

−1.96hKh(u) log max{f(x−u), 10−5} du gave more stable results more rapidly. The integrate

function of R with the default parameters was used.
For initialization, a k-means algorithm was performed. The marginal densities were initial-

ized by standard kernel density estimation using the split returned by the k-means algorithm.
For each cluster and dimension, a bandwidth was selected and standard kernel density estima-
tion performed using only the data assigned to the given cluster. The bandwidths were kept
fixed throughout the algorithm. The copula parameters were initialized to zero. The cluster
proportions were initialized to the cluster proportions found by the k-means algorithm.

cluster 1 cluster 2 cluster 3
dim 1 N(−3, 22) N(0, 0.72) N(3, 1.42)
dim 2 L(0, 0.72) L(3, 1.42) L(0, 2.82)

Table 1: Marginals used for the numerical experiment.

Figure 1 shows the values of the empirical smoothed log-likelihood (4) at each step of the
algorithm for the first ten replications in the case n = 300 and n = 900. All of the trajectories
look monotonic. It was numerically calculated that, out of the N = 500 trajectories, only 17
were non-monotonic for n = 300 at the 10−5 precision. This number goes down to 1 for n = 500,
and zero for n = 700 and n = 900. This suggests that the algorithm of Section 2 may indeed be
monotonic for the copula and marginal families chosen above.

Figure 2 shows the sum of the estimated squared biases and variances for the copula parameter
vector. The variance is 3 times higher than the squared bias for n = 300, and only 1.6 times
higher for n = 900. While the bias remains stable, the variance decreases with n, but at a
slower rate than the “parametric” rate 1/n. While n = 900 is 3 times larger than n = 300, the
variance at n = 900 is only 1.5 times smaller than the variance at n = 300. The mean absolute
bias is about

√
0.5/3 ≈ 0.4, while the mean standard errors at n = 300 and n = 900 are about√

1.2/3 ≈ 0.63 and
√

0.8/3 ≈ 0.52, respectively.
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Figure 3 shows the marginal density estimates at the last step of the algorithm for n = 900,
for the last replication. The estimates agree well with the true marginal densities. We noticed,
however, that they were similar to the initial estimates.

5 Conclusion

An algorithm was designed and implemented to estimate the parameters of copula-based semi-
parametric mixture models. The model considered is a very general one since it does not assume
any specific structure (such as the location-scale assumption) on marginal densities. The algo-
rithm is deterministic, and hence always returns the same result if fed with the same initial point.
Good performance was obtained in an illustrative numerical example, which suggests that the
algorithm may indeed be monotonic under appropriate conditions.

However, its theoretical analysis proved to be challenging and only partial results were ob-
tained for versions of the algorithm where either the copula parameter or the marginals were
fixed. A future avenue of research may consist of rejecting those updates where the smoothed
log-likelihood does not increase and investigate whether convergence results of [10, 16] could be
applied. To simplify, the full parametric case may first be considered. To improve the numerical
implementation of the algorithm, the integral (3) may be computed with other methods, such
as [12]. The sensitivity of the algorithm with respect to initialization may be investigated further,
however.
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Figure 3: True and estimated marginal densities of the three clusters and the two dimensions
for n = 900 (last replication). The top row contains the true marginals and the column on the
left contains the first dimension. The marginal estimates are those found at the last step of the
algorithm.
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