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Abstract

In this manuscript, we consider a finite multivariate nonparametric mixture
model where the dependence between the marginal densities is modeled using
the copula device. Pseudo EM (Expectation-Maximization) stochastic algorithms
were recently proposed to estimate all of the components of this model under
a location-scale constraint on the marginals. Here, we introduce a determin-
istic algorithm that seeks to maximize a smoothed semiparametric likelihood.
No location-scale assumption is made about the marginals. The algorithm
is monotonic in one special case, and, in another, leads to “approximate
monotonicity”—whereby the difference between successive values of the objective
function becomes non-negative up to an additive term that becomes negligible
after a sufficiently large number of iterations. The behavior of this algorithm is
illustrated on several simulated and real datasets. The results suggest that, under
suitable conditions, the proposed algorithm may indeed be monotonic in general.
A discussion of the results and some possible future research directions round out
our presentation.
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1 Introduction

Let

g(x) = g(x1, . . . , xd) =

K∑
k=1

πkfk(x1, . . . , xd) (1)

be a multivariate mixture model with K components (or clusters—we shall use these

two words interchangeably). We view the model (1) as a nonparametric mixture model

where individual components fk are not defined as belonging to any specific parametric

family. The research on selecting the number of components for non- and semipara-

metric density mixtures is currently at a very early stage; some developments in this

area can be found in e.g. Kasahara and Shimotsu (2014) and Kwon and Mbakop

(2021). Due to this, we assume that the number of components K is fixed and known

in our model. In general, most of the work on nonparametric mixture modeling so

far assumed that the marginal distributions fk1, . . . , fkd of each component are condi-

tionally independent. Such an assumption implies that, conditional on knowing which

component a particular observation has been generated from, its distribution is equal

to the product of its marginals. More formally, this means that

g(x) =

K∑
k=1

πk

d∏
j=1

fkj(xj).

This model has been introduced for the first time in Hall and Zhou (2003). The

conditions sufficient to ensure identifiability for the conditionally independent model

are known Allman et al (2009). There are also a number of approaches to estimating

their parameters Xiang et al (2019), both iterative Benaglia et al (2009); Levine et al

(2011) and closed form solutions Bonhomme et al (2016). However, the assumption of

conditional independence is not always a realistic one. For example, it is unlikely to
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be true when dealing with RNA-seq data Rau et al (2015). Thus, it seems desirable to

relax this assumption while retaining the generality of the nonparametric approach.

To the best of our knowledge, the only known results on estimation of nonpara-

metric mixture models with conditionally non-independent components are Mazo

(2017); Mazo and Averyanov (2019). A somewhat related model was also considered

in Vrac et al (2012). There, however, the authors model not the distribution of obser-

vations, but rather the distribution of a number of cumulative distribution curves

assumed to represent observations. Thus, they assume that, at any moment in time,

one can observe an entire cumulative distribution curve F (x) for any of the K possible

distributions comprising the overall mixture. This is not at all possible in our setting.

Mazo (2017) and Mazo and Averyanov (2019) consider a special case of the general

nonparametric mixture model, allowing for a non-trivial dependence structure where

the marginals are assumed to belong to a location-scale family. Stochastic algorithms

were proposed to estimate the copula parameter and the nonparametric marginals.

The estimation algorithms, while performing well in practice, do not optimize any par-

ticular objective function. Because of this, their convergence analysis will necessarily

be a difficult one. In this manuscript, our goal is to suggest a deterministic algorithm

capable of estimating the components of a nonparametric mixture model with con-

ditionally non-independent components without a location-scale assumption for the

marginals, since such an assumption is far from commonly satisfied in applications.

In order to continue, we are going to fix the notation first. It is well-known

that, due to Sklar’s theorem Nelsen (2007) p. 18, every d− dimensional multivariate

cumulative distribution function can be represented as a copula of the correspond-

ing marginal cumulative distribution functions. Indeed, let Fk1(x1), . . . , Fkd(xd) be

the marginal cumulative distribution functions of the cumulative distribution function

Fk(x1, . . . , xd) that corresponds to the density fk(x1, . . . , xd). Then, there exists a d−
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copula Ck, which is a function Ck : [0, 1]d → [0, 1], such that

Fk(x1, . . . , xd) = Ck(Fk1(x1), . . . , Fkd(xd)),

see Nelsen (2007) pp. 46. If the marginal cumulative distribution functions are con-

tinuous, then the copula is unique. The copula Ck can be viewed as a d-dimensional

cumulative distribution function with uniform marginal distributions. Taking the

derivative of order d, one immediately obtains the representation

fk(x1, . . . , xd) = ck(Fk1(x1), . . . , Fkd(xd))

d∏
j=1

fkj(xj)

where ck is the density of the copula Ck. We assume that each copula density ck

belongs to some parametric family of copula densities indexed by a parameter θk.

Due to this, from now on we will use the index k as a subscript for θk only but will

drop this subscript for ck. Denoting by ϕ the set of all marginal densities {fkj}, and

denoting by π = (π1, . . . , πK)
′

and θ = (θ1, . . . , θK)
′

the vectors of all weights and

copula parameters, respectively, we have

fk(x; θ, ϕ) = fk(x1, . . . , xd; θ, ϕ) = c(Fk1(x1), . . . , Fkd(xd); θk)

d∏
j=1

fkj(xj), (2)

so that (1) and (2) define a class of mixture densities that can be stated as g(·;π, θ, ϕ).

To the best of our knowledge, no identifiability results are available concerning this

model.

The rest of this manuscript is structured as follows. Section 2 introduces a general

algorithm that can be used to estimate finite mixtures of multivariate densities with

a dependence structure defined through the use of copulas. Section 3 provides some

results about the monotonicity property of two simplified versions of this algorithm.
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Section 4 details the implementation of the algorithm. Section 5 analyses the perfor-

mance of our algorithm with several simulation studies. Section 6 presents applications

to two real datasets. Finally, the conclusion section discusses the results obtained and

suggests possible directions for future research.

2 Algorithm

The goal of our manuscript is to estimate the components and weights of the model

(1)-(2). The definition of such an algorithm starts with an objective function that we

are going to introduce next. First, let K(·) be a proper univariate density function that

can be used for kernel density estimation and Kh(·) := 1
hK

( ·
h

)
its rescaled version

where h > 0 is a bandwidth. Next, for a generic function f, we define

Nhf(x) := exp

(∫
Kh(x− u) log f(u) du

)
(3)

which is a nonlinear smoother of the function f. Note that, even if f is a density, N f

is not, in general a density due to Jensen’s inequality. Now, we define the operator

O by Ofk(x; θ, ϕ) = c(Fk1(x1), . . . , Fkd(xd); θk)
∏d
j=1N fkj(xj). This definition allows

different bandwidths for different dimensions and clusters, if needed. Finally, let us

denote ǧ(x;π, θ, ϕ) =
∑K

k=1 πkOfk(x; θ, ϕ).

The objective function we seek to maximize is the population version of the

smoothed semiparametric log-likelihood, given by

`(π, θ, ϕ) =

∫
g(x) log

ǧ(x;π, θ, ϕ)

g(x)
dx, (4)

over all (π, θ, ϕ); here g(x) is the target density. If the marginal distributions are con-

ditionally independent then c(u1, . . . , ud; θk) ≡ 1 for every θk and k, and hence (4)
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reduces to the smoothed semiparametric log-likelihood considered in Levine et al

(2011).

Lemma 1. For any choice of parameters π̃, θ̃, ϕ̃, the smoothed loglikelihood difference

is bounded as

`(π, θ, ϕ)− `(π̃, θ̃, ϕ̃) ≤
K∑
k=1

− log
π̃k
πk

∫
g(x)wk(x;π, θ, ϕ)dx

−
∫
g(x)

K∑
k=1

wk(x;π, θ, ϕ) log

∏d
j=1N f̃kj(xj)∏d
j=1N fkj(xj)

dx

−
∫
g(x)

K∑
k=1

wk(x;π, θ, ϕ) log
c(F̃k1(x1), . . . , F̃kd(xd); θ̃k)

c(Fk1(x1), . . . , Fkd(xd); θk)
dx

:=Ψ1(π̃|π, θ, ϕ) + Ψ2(ϕ̃|π, θ, ϕ) + Ψ3(θ̃, ϕ̃|π, θ, ϕ),

where the cumulative distribution functions F̃kj are those associated with {f̃kj} = ϕ̃

and

wk(x;π, θ, ϕ) = πkOfk(x; θ, ϕ)/ǧ(x;π, θ, ϕ), (5)

k = 1, . . . ,K.

Proof of Lemma 1.. By definition, the difference of smoothed log-likelihoods can be

written down as

`(π, θ, ϕ)− `(π̃, θ̃, ϕ̃) = −
∫
g(x) log

∑K
k=1 π̃kOfk(x; θ̃, ϕ̃)∑K
k=1 πkOfk(x; θ, ϕ)

dx

= −
∫
g(x) log

K∑
k=1

wk(x;π, θ, ϕ)
π̃kOfk(x; θ̃, ϕ̃)

πkOfk(x; θ, ϕ)
dx

At this point, it remains only to apply Jensen’s inequality to a convex combination

on the right-hand side whose coefficients are wk(x; θ, ϕ).

Instead of minimizing `(π, θ, ϕ) − `(π̃, θ̃, ϕ̃) with respect to (π̃, θ̃, ϕ̃) directly, we

seek to minimize the upper bound proposed by Lemma 1. This approach is in the
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spirit of MM (Minimization-Majorization) algorithms; see e.g. Wu and Lange (2010)

for the detailed discussion. To do this, our heuristic is to minimize each of the three

terms Ψ1(π̃|π, θ, ϕ), Ψ2(ϕ̃|π, θ, ϕ), Ψ3(θ̃, ϕ̃|π, θ, ϕ) separately. This is sometimes called

“minimization by part”. To minimize the first term Ψ1(π̃|π, θ, ϕ), we have to choose

π̂ = π̂ where π̂k =
∫
g(x)wk(x;π, θ, ϕ) dx, k = 1, . . . ,K. This is the result that can be

obtained using standard constrained optimization techniques. Note that the resulting

minimum must be non-positive since the first term can be made zero by choosing

π̃ = π. To minimize the second term Ψ2(ϕ̃|π, θ, ϕ), define, as a first step,

f̂kj(uj) = αkj

∫
g(x)wk(x;π, θ, ϕ)Khkj

(xj − uj) dx,

for any k = 1, . . . ,K and j = 1, . . . , d, where αkj is the normalizing constant ensuring

that the newly defined f̂kj is, indeed, a proper density function. Then, we have

−
∫
g(x)wk(x;π, θ, ϕ) logN f̃kj(xj) dx

= −
∫
g(x)wk(x;π, θ, ϕ)

(∫
Khkj

(xj − uj) log f̃kj(uj) duj

)
dx

= −
∫

log f̃kj(uj)f̂kj(uj) duj .

The same argument as in Levine et al (2011) applies: the quantity above is minimized

if we select f̃kj(u) = f̂kj(u). The resulting minimum will also be less than or equal to

zero because Ψ2(ϕ̃|π, θ, ϕ) = 0 when ϕ̃ = ϕ.

Now, we can propose the following general algorithm for estimation of (π, θ, ϕ).

A1 Choose initial values π0, ϕ0, θ0

A2 Compute the initial set of weights

wk(x;π0, θ0, ϕ0) = π0
kOfk(x; θ0, ϕ0)/ǧ(x;π0, θ0, ϕ0).
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A3 At any step of iteration t = 1, 2, . . . select

πtk =

∫
g(x)wk(x;πt−1, θt−1, ϕt−1) dx,

k = 1, . . . ,K.

A4 Select as the next value of the density function vector ϕt = {f tkj} where

f tkj(uj) = αkj

∫
g(x)wk(x;πt−1, θt−1, ϕt−1)Khkj

(xj − uj) dx

where αkj is the normalizing constant ensuring that the newly defined function is,

indeed, a density function. As a part of this step, also compute updated cumulative

distribution functions F tkj(uj) =
∫ uj

−∞ f tkj(y) dy.

A5 Choose the value

θt = arg min
θ

Ψ3(θ, ϕt|πt−1, θt−1, ϕt−1).

A6 Redefine weights

wk(x;πt, θt, ϕt) = πtkOfk(x; θt, ϕt)/ǧ(x;πt, θt, ϕt).

and return to step A3.

At each step of the algorithm defined above, the marginals are updated first and

independently of the copula parameter. This strategy was used in Mazo (2017); Mazo

and Averyanov (2019).

Remark 1. In practice, one implements the empirical version of the algorithm. Every

integral of the form
∫
g(x)ζ(x) dx, where ζ is some arbitrary function, is replaced by

1
n

∑n
i=1 ζ(Xi), where Xi = (Xi1, . . . , Xid), i = 1, . . . , n, are observations from the

target density g. The objective function to be maximized is then the empirical version

of the smoothed log-likelihood, given by 1
n

∑n
i=1 log ǧ(Xi;π, θ, ϕ) (up to an additive
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constant). Here the bandwidths of the nonlinear smoothers are allowed to depend on

the data.

3 Studying the algorithm

Whether the algorithm proposed in Section 2 is monotonic with respect to the objective

functional (4) is an open question. In some special cases, the answer is positive. One

such case that we identified is when probabilities πk and the marginal densities fkj

are known beforehand. In such a case, the simplified algorithm is as follows.

B1 Choose initial value of the copula parameter θ0.

B2 Compute the initial set of weights

wk(x;π, θ0, ϕ) = πkOfk(x; θ0, ϕ)/ǧ(x;π, θ0, ϕ).

B3 For any t = 1, 2, . . . choose the value

θt = arg min
θ

Ψ3(θ, ϕ|π, θt−1, ϕ).

B4 Redefine weights

wk(x;π, θt, ϕ) = πkOfk(x; θt, ϕ)/ǧ(x;π, θt, ϕ).

and return to step B3.

Proposition 1. The algorithm defined in B1–B4 is monotonic with respect to θ, that

is, `(π, θt−1, ϕ)− `(π, θt, ϕ) ≤ 0 for every t = 1, 2, . . .
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Proof. The smoothed likelihood difference is bounded from above as

`(π, θ, ϕ)− `(π, θ̃, ϕ) ≤ Ψ3(θ̃, ϕ|π, θ, ϕ)

= −
∫
g(x)

K∑
k=1

wk(x;π, θ, ϕ) log
c(Fk1(x1), . . . , Fkd(xd); θ̃k)

c(Fk1(x1), . . . , Fkd(xd); θk)
dx.

Choosing θ∗ = arg minθ̃ Ψ3(θ̃, ϕ|π, θ, ϕ) produces

`(π, θ, ϕ)− `(π, θ∗, ϕ) ≤ Ψ3(θ∗, ϕ|π, θ, ϕ) = min
θ̃

Ψ3(θ̃, ϕ|π, θ, ϕ);

since there exists a value θ̃ = θ such that Ψ3(θ, ϕ|π, θ, ϕ) ≡ 0, the minimal value of

Ψ3(θ̃, ϕ|π, θ, ϕ) will be less than or equal to zero.

Another interesting special case results when one assumes that both component

weights πk and copula parameters θk are known while the marginal densities fkj are

unknown. In this case, the simplified algorithm will be as follows.

C1 Choose initial values ϕ0

C2 Compute the initial set of weights

wk(x;π, θ, ϕ0) = πkOfk(x; θ, ϕ0)/ǧ(x;π, θ, ϕ0).

C3 For t = 1, 2, . . . select as the next value of the density function vector ϕt = {f tkj}

where f tkj(uj) = αkj
∫
g(x)wk(x;π, θ, ϕt−1)Khkj

(xj − uj) dx. Here, αkj is a nor-

malizing constant, ensuring that the newly defined function is, indeed, a density

function. As a part of this step, also compute updated cumulative distribution

functions F tkj(uj) =
∫ uj

−∞ f tkj(y) dy.
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C4 Redefine weights

wk(x;π, θ, ϕt) = πkOfk(x; θ, ϕt)/ǧ(x;π, θ, ϕt).

and return to step C3.

The special case of the general algorithm defined above possesses an “approximate

monotonicity” property in the following sense.

Proposition 2. We assume that the target density g(x) has a compact support Ω.

We also assume that none of the known weights πk is equal to zero. Suppose that

the kernel function K(·) is a proper density function defined on [−1, 1], bounded

away from zero by K∗ > 0, and Lipschitz continuous with a positive Lipschitz con-

stant L. We assume that the copula density function c(u1, . . . , ud; θ) is also Lipschitz

continuous on [0, 1]d and bounded away from zero. Then, there exists a subsequence

ϕtl = (f tlkj , k = 1, . . . ,K, j = 1, . . . , d), l = 1, 2, . . . , such that the the algorithm C1–C4

is “approximately monotonically ascending” along this subsequence:

`(π, θ, ϕtl−1)− `(π, θ, ϕtl) ≤ o(1)

as l→∞.

Remark 2. It follows directly from the definition that K∗ ≤ K(·) ≤ K∗ where both

K∗ and K∗ are positive. The assumptions of Lipschitz continuity and boundedness

away from zero for the kernel function K(·) do not represent a practical problem since

they are not concerned with the actual data—rather, K(·) is a tool used to analyze the

data. Our simulation results suggest that they also may not be necessary.

Remark 3. The assumption of compact support for the target density g(x) and, by

extension, for all of the marginal densities fkj does not represent a problem from the

practical viewpoint. From the theoretical viewpoint, a result analogous to Proposition 2
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can be proved if one assumes that all of the marginal densities decay to zero sufficiently

fast at infinity and using the Fréchet-Kolmogorov theorem instead of the Arzelà-Ascoli

theorem Brezis (2011) p. 126.

Remark 4. As an example of copulas satisfying conditions of Proposition 2 we can

point out Farlie-Gumbel-Morgenstern (FGM) copulas as well as so-called copulas with

cubic sections (that are direct generalizations of FGM copulas) Nelsen (2007) pp.

77− 84.

Proof. The difference in log-likelihoods can be bounded as

`(π, θ, ϕtl−1)− `(π, θ, ϕtl) ≤ Ψ2(ϕtl |π, θ, ϕtl−1) + Ψ3(θ, ϕtl |π, θ, ϕtl−1)

= −
∫
g(x)

K∑
k=1

wk(x;π, θ, ϕtl−1) log

∏d
j=1N f

tl
kj(xj)∏d

j=1N f
tl−1

kj (xj)
dx

−
∫
g(x)

K∑
k=1

wk(x;π, θ, ϕtl−1) log
c(F tlk1(x1), . . . , F tlkd(xd); θk)

c(F
tl−1

k1 (x1), . . . , F
tl−1

kd (xd); θk)
dx.

Recall that minimization of Ψ2(ϕtl |π, θ, ϕtl−1) always results in Ψ2(ϕtl |π, θ, ϕtl−1) ≤ 0

since the choice f tlkj = f
tl−1

kj for all k = 1, . . . ,K and j = 1, . . . , d makes this term

equal to zero. Therefore, it remains to show that Ψ3(θ, ϕtl |π, θ, ϕtl−1)→ 0 as l →∞.

To do this, let us introduce a lemma.

Lemma 2. For each k = 1, . . . ,K and j = 1, . . . , d, the sequence f tkj, t = 1, 2, . . . has

a uniformly converging subsequence f tlkj, l = 1, 2, . . . .

The proof of Lemma 2 is similar to the proof of Lemma A2 in Levine et al

(2011) and is not given. Denote by f∗kj the limit of f tlkj as l → ∞. Denote by ϕ∗

the collection of all such limits. Since Ω is compact, it follows in a straightforward

manner from Lemma 2 that each subsequence F tlkj(u) converges uniformly to F ∗kj(u) :=∫ u
−∞ f∗kj(x) dx. To show that Ψ3(θ, ϕtl |π, θ, ϕtl−1) goes to zero as l goes to infinity, we
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proceed as follows. We have

|Ψ3(θ, ϕtl |π, θ, ϕtl−1)|

≤
K∑
k=1

∣∣∣∣∣
∫
g(x)wk(x;π, θ, ϕtl−1) log

c(F tlk1(x1), . . . , F tlkd(xd); θk)

c(F
tl−1

k1 (x1), . . . , F
tl−1

kd (xd); θk)
dx

∣∣∣∣∣ .
Each summand is bounded as

∣∣∣∣∣
∫
g(x)wk(x;π, θ, ϕ∗) log

c(F tlk1(x1), . . . , F tlkd(xd); θk)

c(F
tl−1

k1 (x1), . . . , F
tl−1

kd (xd); θk)
dx

∣∣∣∣∣+∣∣∣∣∣
∫
g(x)(wk(x;π, θ, ϕtl−1)− wk(x;π, θ, ϕtl)) log

c(F tlk1(x1), . . . , F tlkd(xd); θk)

c(F
tl−1

k1 (x1), . . . , F
tl−1

kd (xd); θk)
dx

∣∣∣∣∣ .
(6)

Since the copula density is bounded from above and below, the second term is less

than or equal to a constant times
∫
g(x)|wk(x;π, θ, ϕtl−1)−wk(x;π, θ, ϕtl)|dx. But, by

the dominated convergence theorem, this integral vanishes because the kernel K and

the copula density are bounded from above and below, the copula density is Lipschitz

continuous and, from Levine et al (2011),N f tlkj converges uniformly toN f∗kj as l→∞.

The first term in (6) is bounded by

∣∣∣∣∫ g(x)wk(x;π, θ, ϕ∗) log
c(F tlk1(x1), . . . , F tlkd(xd); θk)

c(F ∗k1(x1), . . . , F ∗kd(xd); θk)
dx

∣∣∣∣
+

∣∣∣∣∣
∫
g(x)wk(x;π, θ, ϕ∗) log

c(F ∗k1(x1), . . . , F ∗kd(xd); θk)

c(F
tl−1

k1 (x1), . . . , F
tl−1

kd (xd); θk)
dx

∣∣∣∣∣ .
But again this bound goes to zero by similar arguments. This finishes the proof.

4 Implementation

Details about the implementation of the algorithm of Section 2 are given below.
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Initialization. For initialization, the data are partitioned into K groups by a k-means

algorithm. The initial weights π0 are set equal to proportions of observations belonging

to each group. The marginal densities ϕ0 are initialized by standard kernel density

estimation methods. The marginal density of the kth group in the jth dimension is

set to its kernel density estimate calculated from the projection of the data belonging

to the kth group into the jth dimension. The bandwidths are specified by standard

bandwidth selection methods (Silverman, 1998, p. 47–48). A value for the bandwidth

of the marginal of the kth group in the jth dimension hkj is selected by applying

a bandwidth selection method to the projection of the data belonging to the kth

group into the jth dimension. The bandwidth selection method used consists of taking

hkj = 1.06Akjn
−1/5
kj , where Akj is the minimum between the standard deviation of

the data and, the interquartile range divided by 1.34 (Scott, 2015). The initial copula

parameters θ0 are set to the value corresponding to the independence copula.

Choice of the kernel. It is well known in kernel density estimation that the choice of

the kernel has little impact on the estimates (Silverman, 1998). Therefore, the Gaussian

kernel was chosen for convenience.

Bandwidth selection. Once the bandwidths have been initialized, they can be kept

fixed or be updated from one iteration to another. In the latter, each observation

xi is assigned the cluster that maximizes the current value of wk(xi;π, θ, ϕ) over

k = 1, . . . ,K and the same bandwidth selection method as in the initialization step is

applied.

Numerical evaluation of the integral (3). A bottleneck of the algorithm is the numer-

ical evaluation of the integral in (3). Indeed, the quantity log f(u) might be close or

even equal to −∞ in some regions of the integration domain. Moreover, if the values

of Kh(x − u) are zero or close to zero, this may create numerical issues of the kind

“0 ×∞”. To avoid those issues, two remedies are implemented. First, we substitute

max{f(u), ε} for f(u) where ε is some tolerance threshold. We arbitrarily set ε = 10−5.
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Second, we truncate the domain of integration. After thresholding and a change of

variables, the integral to evaluate becomes
∫∞
−∞Kh(u) log[max{f(x − u), ε}] du. We

evaluate the integral on (0±1.96h) instead of the whole real line, retaining about 95%

of the mass of the kernel.

Stopping criterion. To terminate the algorithm, we may let the algorithm run an

arbitrary number of steps and, in retrospect, visually check the convergence of the

sequence of the objective function values, or we may stop the algorithm once some

criterion has been reached. One possible stopping criterion is the relative increase

of the objective function. That is, if ¯̀t =
∫
g(x) log ǧ(x;πt, θt, ϕt) dx denotes the

objective function to be maximized at step t of the algorithm, then the algorithm may

be stopped as soon as the inequality |¯̀t+1 − ¯̀t| < ε|¯̀t| occurs k times in a row. In

practice, we arbitrarily set ε = 10−2 and k = 3.

Choice of the number of clusters. To estimate the number of mixture components K

in the mixture model (1–2), the algorithm of Section 2 is run with with several values

of K. To select the “best” model, we use the pseudo-AIC criterion introduced in Mazo

(2017), namely “maximum smoothed semiparametric log-likelihood times sample size

minus number of copula parameters”. Note that in the definition above we need to

multiply by the sample size because the smoothed semiparametric log-likelihood in (4)

is defined as an expectation and hence, contrarily to Mazo (2017), the sample version

is a sample average.

5 Simulation studies

5.1 A first study

Five hundred replications of four independent artificial datasets of sizes n =

300, 500, 700, 900 were generated from the mixture model (1)–(2) with K = 3 clusters

of equal proportions, FGM copulas with parameters −0.5, 0.5, 0 and marginals as in

Table 1, where N(µ, σ2) and L(µ, σ2) refer to the normal and Laplace distributions
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with mean µ and standard deviation σ, respectively. (The density of a L(µ, σ2) distri-

bution is then given by f(x) = e−
√
2|x−µ|/σ/(

√
2σ) for any real x.) The algorithm of

Section 2 was run with K = 3 to estimate the cluster proportions, the copula parame-

ters and the marginal densities. Initialization was carried out as described in Section 4.

The bandwidths were kept fixed after initialization. The algorithm was stopped after

50 iterations.

cluster 1 cluster 2 cluster 3
dim 1 N(−3, 22) N(0, 0.72) N(3, 1.42)
dim 2 L(0, 0.72) L(3, 1.42) L(0, 2.82)

Table 1: Marginals used for the numer-
ical experiment of Section 5.1.

Figure 1 shows the values of the empirical smoothed log-likelihood (4) at each

step of the algorithm for the first ten replications in the case n = 300 and n = 900.

All of the trajectories look monotonic. It was numerically calculated that, out of the

N = 500 trajectories, only 17 were non-monotonic for n = 300 at the 10−5 precision.

This number goes down to 1 for n = 500, and zero for n = 700 and n = 900. This

suggests that the algorithm of Section 2 may indeed be monotonic for the copula and

marginal families chosen above.

Figure 2 shows the sum of the estimated squared biases and variances for the

copula parameter vector. The variance is at least 10 times higher than the squared

bias for all values of n = 300. The variance decreases with n at a rate about that of

the “parametric” rate 1/n: the variance at n = 900 is between 2.18 and 3.02 times

smaller than the variance at n = 300.

Figure 3 shows the marginal density estimates at the last step of the algorithm

for n = 900, for the last replication. The estimates agree well with the true marginal

densities. We noticed, however, that they were similar to the initial estimates.
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Fig. 1: Values of the empirical smoothed log-likelihood at each step of the algorithm,
for the first ten replications. Black plain lines: n = 900. Blue dotted lines: n = 300.

5.2 Sensitivity to initialization

To assess the impact of initialization on the results of the algorithm of Section 2,

the last dataset generated in the simulation experiment of Section 5.1 with n = 900

was reused. Initialization of the algorithm was changed to a fit of a Gaussian mixture

model with independent components in lieu of the k-means algorithm. In other words,

in step A1 of the algorithm in Section 2, the marginals ϕ0 were set to Gaussian

marginals with means and variances estimated by the Gaussian mixture model. The

values of π0 were also obtained from the Gaussian mixture model. The other tuning

and initialization parameters of the algorithm were left unchanged. The number of

iterations was arbitrarily set to 30.

The estimated marginal densities at initialization and at the last iteration are

shown in Figure 4. On the top row, we see that estimates at initialization are as

expected: they correctly capture the salient features of the true marginals, although

they are not able to reproduce non-Gaussian shapes (top row, right, compare with

Figure 3). Intriguingly, the estimates have deteriorated at the last iteration of the
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for various sample sizes at the last step of the algorithm. Dashed blue lines repre-
sent 95% confidence bands (aka simultaneous confidence intervals) obtained from an
application of the multivariate central limit theorem to the five hundred replications.

algorithm—compare the bottom row of Figure 4 with the top row of Figure 3. This

is in sharp contrast with the bottom row of Figure 3, where the estimates were good.

It seems that initialization plays a key role in the final performance of the algorithm.

This is confirmed by comparing the values of the three components of the estimated

copula parameter vector across iterations, depicted in Figure 5. We see in Figure 5(a)

that one of the sequence of estimates seems to have not converged, while the oth-

ers have their values stuck at −1 and 1, which is in general not an indication that

estimation was performed correctly. By contrast, Figure 5(b) depicts stable and rea-

sonable estimates. In sum, a Gaussian mixture modeling step during initialization of

the algorithm produced poor estimates.

5.3 Estimation of the number of mixture components K

A numerical experiment was carried out to see whether the pseudo-AIC criterion

described in Section 4 is able to select the correct number of components. A number
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of 500 synthetic datasets of size 300 were generated from a mixture model with three

components of equal weights. The components are bivariate normal distributions with

means (0,3), (3,0), (-3,0), standard deviations (
√

2, 1/
√

2), (
√

2, 1/
√

2), (
√

2, 1/
√

2) and

correlations 0.5, 0.5, 0.5. Gaussian copulas were assumed for all components. For

each dataset, the mixture model (1–2) was fitted with the algorithm of Section 2 for

K = 2, . . . , 5, where K denotes the number of components of the mixture model, and

the pseudo-AIC criterion of Section 4 was computed to select the number of clusters.

Initialization was carried out as described in Section 4. The bandwidths were updated

at each step of the algorithm. The stopping criterion described in Section 4 was used

to terminate the algorithm.

The results are reported in Figure 6. Among the 500 estimates, 402 (standard error

9) were correct, and 98 were incorrect (standard errors 7 and 6 for K = 4 and K = 5,

respectively). The chart suggests that the pseudo-AIC criterion is reasonable. This is

consistent with the findings in Mazo (2017).

6 Real data analysis

6.1 The iris dataset

The iris dataset has n = 150 observations of d = 4 variables (sepal and petal length

and width) belonging to three groups (“setosa”, “versicolor”, “virginica”). For sim-

plicity and illustrative purposes, only two variables were considered (sepal and petal

length). The algorithm of Section 2 was run with Gaussian copulas. Initialization was

carried out as described in Section 4. The stopping criterion was used to terminate

the algorithm. For bandwidth selection, the two strategies described in Section 4 were

tested: the first consists of keeping the bandwidth fixed after initialization and the

second consists of updating the bandwidth at each step of the algorithm. For the first
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strategy, the algorithm was successfully run with K = 2, . . . , 6 clusters. With 7 clus-

ters, one of the clusters became empty and the algorithm was stopped. For the second

strategy, the algorithm was successfully run with K = 2, 3, 4 clusters.

The values of the pseudo-AIC criterion are depicted in Figure 7. In Figure 7(a), the

values increase and stabilize at K = 4. In Figure 7(b), the presence of a plateau is less

clear. The pseudo-AIC increases as K increases, and hence a reasonable choice would

also be K = 4. The obtained classification results are reported in Figure 8. We see

a clear difference between the two bandwidth selection strategies. The classification

results for the case K = 3 are reported in Figure 9. Here, the results of the two band-

width selection strategies are similar (top row) and better reflect the true partitioning

of the data than the results of the Gaussian mixture model fitted with 3 clusters (bot-

tom row). For the Gaussian mixture model, the optimal number of clusters according

to the BIC criterion is two.

6.2 The wine dataset

To illustrate the practical performance of our method, we will apply it to the analysis

of the wine dataset that has been analyzed earlier in Bouveyron et al (2019) pp. 60−65.

This dataset contains 27 physical and chemical measurements on 178 wine samples of

three types—Barolo, Grignolino, and Barbera. The dataset is publicly available as a

part of the pgmm R package (McNicholas, 2016). Bouveyron et al (2019) conducted

a preliminary principal components analysis and selected 5 variables with the highest

loadings on each of the first five principal components. Moreover, they noted that just

two variables—Flavonoids and Color Intensity—seem to give a strong visual suggestion

of clustering, based on the pairs plot. Their analysis is based on the use of multivariate

Gaussian density mixtures with various covariance matrix structures.

We conduct our analysis of this dataset based on these two variables. As a tool for

selection of the number of clusters, we use the pseudo-AIC criterion introduced earlier
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in Section 4. To do so, we select a range of the possible number of clusters from 2 to 8

and compute the value of pseudo-AIC for each of these choices. Gaussian copula was

used to model the dependence between the two variables. Initialization was carried

out as described in Section 4. The bandwidths were updated at each iteration of the

algorithm. The stopping criterion described in Section 4 was used to terminate the

algorithm. The result is illustrated in Figure 10.

The result suggests the choice of either K = 5 or K = 8 as a possible number

of clusters. Since the choice of five clusters produces an obviously more parsimonious

model, we proceed with it. (Note that, when using BIC as a model selection criterion,

Bouveyron et al (2019) also comes up with two possible models based on either 3 or

7 clusters with different respective covariance matrix structure.) At first sight, the

choice of 5 clusters does not seem to be a very reasonable one since there are only three

types of wine described by this dataset. However, we will see later that, nevertheless,

this solution describes the true classification quite well. The resulting classification is

illustrated in Figure 11.

Note that the red group (Grignolino) has about 9 observations separated from

the main cluster. These observations, that were the source of confusion for Gaussian

density mixture based solutions of Bouveyron et al (2019), also present some difficulties

for our approach as well. Most of these observations have been separated into a separate

(green) cluster. Moreover, observations with large values of the Flavonoids indicator

have become, apparently, a reason for creation of yet another (blue) cluster.

At the same time, the confusion matrix of our classification that compares it with

the partition into three wine types suggests that our classification is not widely off

the mark. Indeed, consider the confusion matrix given in Table 2. Note that Barbero

samples are split between Clusters 1 and 4 while Barolo samples are split (with the

exception of just one sample) between Clusters 3 and 5.
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Barolo Grignolino Barbero
Cluster 1 0 0 28
Cluster 2 1 60 0
Cluster 3 29 7 0
Cluster 4 0 2 20
Cluster 5 29 2 0

Table 2: Confusion matrix of the 5-
clusters solution

If Clusters 1 and 4, on one hand, and Clusters 3 and 5, on the other hand, are

merged, one ends up with a 3-clusters solution whose misclassification rate is only 12
178 .

For comparison purposes, when Bouveyron et al (2019) merge the necessary clusters

of their 7-clusters solution, the resulting misclassification rate is 11
178 . Even if such a

merger is not contemplated, the misclassification rate of our 5-clusters solution is 61
178

which is less then 52% misclassification rate of the 7-clusters solution of Bouveyron

et al (2019). Thus, we believe that our approach provides an adequate clustering and

classification analysis of the wine dataset.

7 Conclusion

An algorithm was designed and implemented to estimate the parameters of copula-

based semiparametric mixture models. The model considered is a very general one

since it does not impose any specific structure (such as the location-scale assumption)

on marginal densities. The algorithm is deterministic, and hence always returns the

same result if fed with the same initial point. Good performance was obtained in

illustrative numerical examples, which suggests that the algorithm may indeed be

monotonic under appropriate conditions.

However, its theoretical analysis proved to be challenging and only partial results

were obtained for versions of the algorithm where either the copula parameter or

the marginals were fixed. A future avenue of research may consist of rejecting those

updates where the smoothed log-likelihood does not increase and investigate whether

convergence results of Meyer (1976); Zangwill (1969) could be applied. To simplify, the
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full parametric case may first be considered. To improve the numerical implementation

of the algorithm, the integral (3) may be computed using other methods, such as Qiang

(2010).
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Fig. 3: True and estimated marginal densities of the three clusters and the two dimen-
sions for n = 900 (last replication). The top row contains the true marginals and
the column on the left contains the first dimension. The marginal estimates are those
found at the last step of the algorithm.
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Fig. 4: Estimated marginal densities of the three clusters and the two dimensions for
the last dataset generated in Section 5.1 with n = 900 and initialization by fitting
a Gaussian mixture model. The top and bottom rows contain the results after the
initialization step and at the last iteration of the algorithm, respectively. The column
on the left and on the right contain the first and the second dimensions, respectively.
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Fig. 5: Values of the three components of the estimated copula parameter vector across
iterations for the last dataset generated in Section 5.1 with n = 900 and initialization
by fitting (a) a Gaussian mixture model and (b) a k-means algorithm.
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Fig. 6: Frequency of the various values for the estimated number of components.
The frequency for K = 2 is zero. The vertical bars correspond to the Monte Carlo
asymptotic confidence intervals of level 95%.
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Fig. 7: The value of pseudo-AIC model selection criterion for several values of the
cluster number (iris dataset). Left: the bandwidth is kept fixed after initialization.
Right: the bandwidth is updated at every step of the algorithm.
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Fig. 8: Iris data: classification based on the choice of 4 clusters. Top left: algorithm
of Section 2 with the bandwidths kept fixed after initialization. Top right: with the
bandwidths updated at every step. Bottom left: results for the Gaussian mixture model
with 4 clusters. Bottom right: true classification.
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Fig. 9: Iris data: classification based on the choice of 3 clusters. Top left: algorithm
of Section 2 with the the bandwidths kept fixed after initialization. Top right: with
the bandwidths updated at every step. Bottom left: results for the Gaussian mixture
model with 3 clusters. Bottom right: true classification.

31



2 3 4 5 6 7 8
−

57
0

−
55

0
−

53
0

Number of components

P
se

ud
o−

A
IC

Fig. 10: The value of pseudo-AIC model selection criterion for several values of the
number of mixture components K.
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Fig. 11: Wine data: true classification (left) and classification based on the choice of
5 clusters (right). The measurements shown are Flavonoids and Color Intensity.
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