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ABSTRACT 12 

Visible and near-infrared (Vis-NIR, 350-2500 nm) laboratory spectroscopy has been proven 13 

to provide soil properties estimations, such as clay or organic carbon (OC). However, the 14 

performances of such estimations may be dependent on pedological and spectral similarities 15 

between calibration and validation datasets. The objective of this study was to analyse how 16 

the soil order knowledge can be used to increase regression models performance for soil 17 

properties estimation. For this purpose, Random Forest regression models were calibrated 18 

and validated from both regional database (called regional models) and subsets stratified by 19 

soil order from the regional database (called soil-order models). The regional database 20 

contained 482 soil samples belonging to four soil orders (Alfisols, Vertisols, Inceptisols and 21 

Entisols) and associated with Vis-NIR laboratory spectra and six soil properties:  OC, sand, 22 

silt, clay, cation exchange capacity (CEC) and pH.  First, regional models provided i) high 23 

accuracy of some soil properties estimations when considering the regional strategy in the 24 

validation step (e.g., R
2

val of 0.74, 0.76 and 0.74 for clay, CEC and sand, respectively) but ii) 25 

modest accuracy of these same soil properties when considering subsets stratified by soil 26 

order from the regional database in validation step (e.g., R
2

val of 0.48, 0.58 and 0.38 over 27 

Vertisol for clay, CEC and sand, respectively). So the estimation accuracy appreciation is 28 

highly depending on the validation database as there is a risk of over-appreciated prediction 29 
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accuracies at the soil-order scale when figures of merit are based on a regional validation 30 

dataset. Second, this work highlighted that the benefit of a soil-order model compared to a 31 

regional model for calibration depends on both soil property and soil order. So no 32 

recommendations for choosing between both models for calibration may be given. Finally, 33 

while Vis-NIR laboratory spectroscopy is becoming a popular way to estimate soil 34 

physicochemical properties worldwide, this work highlights that this technique may be used 35 

discreetly depending on the targeted scale and targeted soil type. 36 

 37 

Key words: Visible Near-infrared, regional model, soil-order model, random forest, soil 38 

variability, prediction accuracy 39 

 40 

 41 

1. Introduction 42 

Visible and near-infrared (Vis-NIR, 350–2500 nm) laboratory spectroscopy provides a 43 

complementary method to wet chemistry methods for estimating soil properties (e.g., 44 

Viscarra Rossel et al., 2006; Demattê et al., 2004; Stenberg et al., 2010; McBride et al., 2022) 45 

and is non-destructive, rapid, low-cost, efficient, repeatable and reproducible with an 46 

acceptable degree of accuracy. Soil reflectance in the 350–2500 nm spectral region is the 47 

result of soil physical, chemical, and mineralogical properties and their compositions (Ben-48 

Dor, 2002; Stenberg et al., 2010) as the soil spectrum is composed of absorption features of 49 

chemical constituents (e.g., absorption of OH of water molecules) and overall spectral shape 50 

of the physical properties (e.g., texture) (Ben-Dor and Banin, 1995a, 1995b).  As explained 51 

by Chabrillat et al. (2019) a targeted soil property can be estimated accurately from Vis-NIR 52 

data if this targeted property follows the following rules: ‘Rule (1.1) the soil property Si has a 53 

specific spectral signature due to a chemical or physical structure (e.g., OH- ion for clay) or 54 
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Rule (1.2) the soil property Si is correlated with a soil property Sj having a specific spectral 55 

signature due to an associated chemical or physical structure  (e.g., cation exchange capacity 56 

–CEC- correlated with clay content) (Ben-Dor et al., 2002); and additionally, Rule (1.3) the 57 

soil property Si has to have a quite high amount of variability (Gomez et al., 2012a, b)’. 58 

 Soil properties are estimated from laboratory Vis-NIR spectroscopy using regression 59 

models, such as stepwise multilinear regression (Leone et al., 2012), multivariate adaptive 60 

regression splines (Bilgili et al., 2010), memory-based learning (Jaconi et al., 2019; Ng et al., 61 

2022 ), Partial Least Square Regression (PLSR, Viscarra Rossel and Behrens, 2009; Gupta et 62 

al., 2018; Davari et al., 2021), cubist (Viscarra Rossel et al., 2016) and support vector 63 

machine (SVM, Stevens et al., 2010; Naibo et al., 2022) and random forest (RF, Hobley and 64 

Prater, 2019; Bao et al., 2020; Dharumarajan et al., 2022). Nawar and Mouazen (2019) used 65 

the RF model to compare the efficacy of in situ and field Vis-NIR spectroscopy on the 66 

estimation of soil properties and confirmed that the RF model could capture maximum 67 

variability (R
2
=0.65-0.75) under both conditions. Morellos et al. (2016) reported that machine 68 

learning techniques, such as RF, are capable of making spectral variable selections more 69 

efficiently compared with PLSR. Ghasemi and Tavakoli (2013) studied the performance of 70 

the RF algorithm on Vis-NIR spectroscopy with PLSR and nonlinear SVM and concluded 71 

that RF performed well and has the potential for modelling linear and nonlinear multivariate 72 

calibrations. 73 

 For more than two decades, Vis-NIR laboratory spectroscopy has been extensively 74 

explored in various pedological contexts and based on these regression models to estimate 75 

various soil properties, such as pH (e.g., Shepherd and Walsh, 2002), soil organic carbon 76 

(SOC) (e.g., Bellon-Maurel et al., 2011; Hedley et al., 2015), texture or particle size fractions 77 

(e.g., Gomez et al., 2008), CEC (e.g., Shepherd and Walsh, 2002), exchangeable bases (e.g., 78 
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Pinheiro et al., 2017), available nutrients (e.g., Cozzolino and Moron, 2003; Terra et al., 79 

2015) and soil salinity (e.g., Farifteh et al., 2008). 80 

 Based on the high potential of this technique, Vis-NIR soil spectral libraries covering 81 

different extent (local, regional, country, continental, and global extents) have been 82 

developed these later years (Shepherd and Walsh, 2006; Vasques et al., 2008; Stevens et al., 83 

2013; Viscarra Rossel et al., 2016). Large soil spectral libraries contain information from a 84 

wide variety of soils and benefit from a large range of contents for the targeted soil 85 

properties and correlations between soil properties, but they rarely reflect local specificities 86 

(Stevens et al., 2013; Gogé et al., 2014) unless they include a high density of spatial 87 

sampling (Viscarra Rossel et al., 2016). Numerous studies showed that estimations of soil 88 

properties over local areas using a large library can be improved by selecting an appropriate 89 

“local” subset from the large library to be used in the calibration step (Zeng et al., 2016). 90 

Several ways have been developed to build an “appropriate local subset” based on large 91 

libraries and calibrate regression models, such as considering calibration datasets constituted 92 

a subset of the large libraries based on i) the geographical locations which have to be close 93 

to the validation subset (e.g., Guerrero et al., 2010; Shi et al., 2015), ii) their spectral 94 

similarity with the local spectra (e.g., Wetterlind and Stenberg, 2010, Gogé et al., 2012; 95 

Nocita et al., 2014) or iii) environmental covariates similar to one of the local targeted 96 

samples, such as parent material (e.g., Peng et al., 2013; Xu et al., 2016) and land use type 97 

(e.g., Zeng et al., 2016). An additional procedure, called “spiking”, considered calibration 98 

datasets constituted by both the large library and a subset of local samples (e.g., Brown, 99 

2007; Sankey et al., 2008; Nawar and Mouazen, 2017).  100 

While some studies have highlighted that local models (e.g., based on land use, parent 101 

material or soil groups) may outperform regional models (e.g., Vasques et al., 2010; Liu et 102 

al., 2018), the literature also contains studies showing that local models may not exhibit any 103 
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advantages over regional models (e.g., Madari et al., 2005; McDowell et al., 2012). For 104 

example, Zeng et al. (2016) obtained better soil organic matter predictions for uplands based 105 

on local models (using calibration data restricted to land use types or spectral similarity) in 106 

comparison with regional models (using calibration data from a regional spectral library); 107 

inversely, they obtained better performances for paddy lands based on “regional” models 108 

compared to local models. Gomez and Coulouma (2018) showed that prediction models built 109 

at a regional database yielded good performances when they were validated at the same 110 

regional extent but poor to good performances when they were validated at a local extent 111 

(within-field in their case), depending on the model robustness. 112 

In this context, the objective of this study was to analyze how the soil order 113 

knowledge can be used to increase regression models performance for soil properties 114 

estimation. Models were calibrated and validated from both regional database (regional 115 

model) and subsets stratified by soil order from the regional database (soil-order model). This 116 

work used a soil spectral library composed of 482 soil samples collected from the northern 117 

Karnataka Plateau in India, which is characterized by four soil orders. 118 

 119 

 120 

2. Materials and methods 121 

2.1. Study area 122 

The study area extends across seven sub-watersheds belonging to five districts of Karnataka 123 

(Gulbarga, Koppal, Yadgir, Bidar and Gadag, Table 1) representing the northern Karnataka 124 

Plateau region (Fig. 1). These sub-watersheds cover an area from 1603 ha to 68131 ha. They 125 

experience semiarid climatic conditions with average annual rainfall and temperature of 633-126 

866 mm and 22-33º C, respectively and is considered drought-prone. With the exception of 127 

August and September, the potential evapotranspiration exceeds the rainfall occurrence 128 
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throughout the year. Predominantly, the seven sub-watersheds have the geology of the 129 

peninsular gneiss, basalt and schists. The length of the growing period across the studied area 130 

varied from <90 days for the Koppal district to 120-150 days for the Yadgir, Kalburgi, and 131 

Gadag districts. The major crops grown in the area are sorghum (Sorghum bicolor), maize 132 

(Zea mays L), cotton (Gossypium sp.), sunflower (Helianthus annuus), groundnut (Arachis 133 

hypogaea), red gram (Cajanus cajan), mango (Mangifera indica), pomegranate (Punica 134 

granatum), marigold (Tagetes sp.) and sapota (Manilkara zapota) under rainfed conditions. 135 

The sequence of dominant soil orders in the northern Karnataka Plateau is Alfisols, 136 

Inceptisols, Vertisols and Entisols (NBSS&LUP, 1998), based on the USDA classification 137 

system. 138 

 139 

 140 

Table. 1. Description of the seven sub-watersheds 141 

District name 

Sub-

watershed 

name 

Location Area (ha) 

Number 

of 

profiles 

Gadag 

 

Belhatti 
75.63° E    15.31° N 

75.58° E   15.24° N                                              
1603 9 

Nilogal 
75.69° E   15.13° N 

75.58° E   15.02° N 
10744 27 

Koppal 
Kavalur & 

Gudigere 

76.34° E   15.49° N 

75.87° E   15.16° N 
68131 40 

Yadgir Kilankeri 
77.48° E   16.80° N 

77.15° E   16.48° N 
60106 16 

Bidar Raipalli 
77.27° E   17.69° N 

77.20° E   17.62° N 
3059 31 

Gulburga 

Sonath 
77.10° E   17.67° N 

77.02° E   17.59° N 
3875 12 

Padsavali 
76.49° E   17.62° N 

76.42° E   17.57° N 
2873 4 

 142 



7 
 

 143 

Fig. 1. Location of a) the Karnataka state in India, b) the seven sub-watersheds (black 144 

rectangles) over the state of Karnataka and c) the soil profile (green points) over each seven 145 

sub-watershed. 146 

  147 
 148 

2.2 Datasets 149 

Soil profiles collected under the Sujala III project (Hegde et al., 2018) were used for the 150 

present study. A total of 139 soil profiles were selected and dug until the hard rock was 151 

reached or up to 2 m, whichever occurred first based on the landform, slope and land use 152 

variability (Fig. 1b and c). The Belhatti, Nilogal, Kavalur & Gudigere, Kilankeri, Raipalli, 153 

Sonath, Padsavali sub-watersheds contain 9, 27, 40, 16, 31, 12, 4 soil profiles, respectively 154 

(Table 1) and the number of profiles depends on soil variability in the sub-watershed. 155 
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Horizon-wise soil samples (a total of 482 samples) were collected, air-dried, sieved through a 156 

2 mm sieve and analyzed for soil properties. The studied soils were taxonomically grouped 157 

into soil orders, namely, Vertisols (20 profiles, 82 samples), Alfisols (59 profiles, 217 158 

samples), Inceptisols (44 profiles, 152 samples) and Entisols (16 profiles, 31 samples), based 159 

on their morphological characteristics (Soil survey staff, 2014). Dominant soil characteristics 160 

of different soil orders are presented in supplementary information 1. 161 

 The samples were analyzed for particle-size distribution by the International Pipette 162 

method (Richards, 1954), and OC was estimated by the Walkley and Black (1934) method. 163 

Soil pH in 1:2.5 soil : water suspension and cation exchange capacity (CEC) were determined 164 

as described by Jackson (1973). The 482 samples constituted the regional dataset, while the 165 

samples stratified by soil order constituted four subsets (one subset per soil order). The 166 

correlation between soil properties were analysed using Pearson correlation coefficient. 167 

 168 

2.3 Spectral data acquisition 169 

An ASD pro-FR Portable Spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, 170 

USA) was used to measure the Vis-NIR spectral data of the soils under laboratory conditions. 171 

The processed soil samples (sieved and dried) were illuminated with four tungsten quartz 172 

halogen lamps that were fixed at an angle of 36°. The soil spectral reflectance was recorded 173 

with a field of view of 8° using a pistol grip. Between 350 and 1000 nm, the spectral 174 

sampling interval of the ASD spectrometer was originally 1.4 nm for a spectral resolution of 175 

3 nm, while from 1000 to 2500 nm, the spectral sampling interval was originally 2 nm for a 176 

spectral resolution of 10 nm. The reflectance was oversampled by the ASD software to 1 nm 177 

in both spectral ranges, leading to a total number of spectral bands of 2151. White reference 178 

spectra were measured with a Spectralon® standard white panel after every 5 samples. A 179 
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representative spectrum for each soil sample was obtained by the mean of measurements of 180 

the individual samples in triplicate. 181 

2.4. Preprocessing of spectral data 182 

Spectral data were pre-processed to correct for background effects and light scattering and to 183 

omit nonlinearities in the spectra (e.g., Nocita et al., 2013; Babaeian et al., 2015). The 184 

spectral absorbance obtained at ranges of 350-400 nm and 2450-2500 nm were removed to 185 

eliminate noises. All spectral data were first transformed into pseudo absorbance (log 186 

[1/reflectance]) values to achieve linearization between the spectra and soil properties by 187 

highlighting the edges of absorption (Stenberg et al., 2010). Then, the Savitzky–Golay filter 188 

was applied to eliminate high-frequency noise and pass low-frequency signals to achieve 189 

smooth soil spectra (Delwiche, 2010). This filter fits successive subsets (windows) of 190 

adjacent data points (7 nm) with a low-degree polynomial through the use of linear least 191 

squares. 192 

 193 

2.5 Spectroscopic modelling 194 

Random forest regression (RF) was used for soil property predictions from Vis-NIR spectra. 195 

The RF regression works on the principle of assemblages of a number of decision trees where 196 

random vectors are independently selected and equally distributed among all the trees 197 

(Breiman, 2001; Zeraatpisheh et al., 2021). The number of trees (ntree), minimum number of 198 

samples at the terminal node nmin and the number of predictors used for fitting the tree (Mtry) 199 

are the three parameters that decide the fitting of RF. A Random Forest 4.6 package in an R 200 

environment was used for the estimation of soil properties. The RF parameters were 201 

optimised using the tune function, and the parameters used for running the model are 202 

presented in Supplementary Information 2. The accuracy of the model is set by the mean 203 
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square error (MSEOOB) of the aggregated out-of-bag (OOB) predictions generated from the 204 

bootstrap subset and is calculated as follows: 205 

                  
     

 

   
  (1) 206 

 where n is the number of observations, zi is the average prediction of the i
th

  207 

observation and    
   

is the average prediction for the i
th

 observation from all trees for which 208 

the observation was OOB. 209 

 210 

2.6 Bootstrap procedure  211 

A bootstrap procedure was applied to each dataset (the entire dataset and the four subsets 212 

stratified by soil order) to define N sets of calibration and validation subsets, where N is equal 213 

to 50 (Efron and Tibshirani, 1993). Bootstrapping involved repeated random sampling for 214 

calibration and validation data. Each subset stratified by soil order was divided randomly into 215 

thirds; two third of the subset was used for calibration (providing four calibration subsets 216 

called BD_cal_Ver, BD_cal_Alf, BD_cal_Inc and BD_cal_Ent) and one third of the subset 217 

was used for validation (providing four validation subsets called BD_val_Ver, BD_val_Alf, 218 

BD_val_Inc and BD_val_Ent) (Fig. 2). Then, these four calibration subsets and four 219 

validation subsets were aggregated to constitute the BD_Cal_Regional dataset containing 328 220 

samples and the BD_Val_Regional dataset containing 154 samples, respectively (Fig. 2). 221 

For each bootstrap iteration, a regional RF model was fitted for predicting each soil 222 

property, based on the BD_Cal_Regional and validated using the BD_Val_Regional dataset 223 

and the four validation subsets stratified by soil order (BD_val_Ver, BD_val_Alf, BD_val_Inc 224 

and BD_val_Ent). As well, for each bootstrap iteration, a soil-order RF model for each soil 225 

property was built based on each calibration subset stratified by soil order (BD_cal_Ver, 226 

BD_cal_Alf, BD_cal_Inc and BD_cal_Ent) and validated on the validation data of the same 227 

order. 228 
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 229 

 230 

 231 

2.7 Model evaluation 232 

The performance of the RF models was evaluated based on the 50 iterations for each 233 

validation dataset using four accuracy estimates (Bellon-Maurel et al., 2010), the coefficient 234 

of determination (R
2

val), root mean square error (RMSEval), mean error (MEval), and ratio of 235 

performance to interquartile distance (RPIQval), based on the following equations: 236 

    
    

        
  

   

        
  

   

 (2) 237 

      
 

 
        

 
     (3) 238 

         
 

 
         

 
    (4) 239 

where    and    are the predicted and observed values, respectively and    is the means of the 240 

observed values. 241 

RPIQ val =
  

       
  (5) 242 

where IQ is the difference between the third quartile Q3 and the first quartile Q1. A larger 243 

RPIQ value indicates improved model performance. The reliability of the prediction was 244 

evaluated based on the RPIQ, for which a RPIQ lower than  1.5 may be consider as a poor 245 

performance, RPIQ from 1.5 to 3.0 may be consider as a acceptable performance, and RPIQ 246 

up to 3.0 may be consider as a good performance (Veum et al., 2015). 247 
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 248 

 249 

 250 

Fig. 2. Construction of calibration and validation datasets for regional and soil-order models (number of samples in parentheses) 251 

 252 
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3. Results 253 

3.1 Preliminary analysis of soil properties and spectra 254 

3.1.1 Based on the entire dataset 255 

The clay, sand and silt of the entire soil dataset (482 samples) ranged from 1.2 to 77.2%, 2.7 256 

to 93.4% and 2.4 to 39.4%, respectively, with means of 42.8, 40.8 and 16.3%, respectively 257 

(Table 2). The soil pH ranged from 4.7 to 11.2 with mean of 8.0. The SOC content ranged 258 

from 0.03 to 1.6% with a mean of 0.6%. The mean CEC of the northern Karnataka Plateau 259 

soils was 29.5 cmol (+) kg
-1,

 with a 66.4% coefficient of variation.  260 

Based on the entire soil dataset, clay had a high negative correlation with sand (r = -261 

0.95), a high positive correlation with CEC (r = 0.71) and a modest correlation with silt (r = 262 

0.42) (Supplementary Information 3). Sand had a high negative correlation with silt (r = -263 

0.68). CEC had a positive correlation with silt (r = 0.64) and a negative correlation with sand 264 

(r = -0.79). Finally, no correlations existed between the other properties of the overall soil 265 

dataset. The sand content was positively correlated with the average reflectance along the 266 

Vis-NIR spectral range, while the clay content was negatively correlated with the average 267 

reflectance along the Vis-NIR spectral range (Fig. 3). The CEC and silt content also followed 268 

correlation patterns similar to clay along the Vis-NIR spectral range. Finally, there was no 269 

significant correlation between pH and OC with the average reflectance. 270 

 271 

 272 

 273 

 274 

 275 

 276 
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Table 2. Statistical summary of soil properties for the entire dataset and each subset stratified 277 

per soil order. 278 

 sand  (%) silt (%) clay (%) pH SOC (%) CEC 

(cmol (+) 

kg
-1

) 

Entire samples 

(N=482) 

Min 2.7 2.4 1.2 4.7 0.03 1.7 

Max 93.4 39.4 77.2 11.2 1.60 80.9 

Mean 40.8 16.3 42.8 8.0 0.58 29.5 

SD 23.4 7.9 19.0 1.1 0.27 19.6 

CV (%) 57.4 48.5 44.4 13.8 47.5 66.4 

Vertisols 

(N=82) 

Min 2.7 10.5 37.7 6.7 0.16 10.2 

Max 51.8 36.5 77.2 9.5 1.29 80.9 

Mean 15.5 22.1 62.4 8.5 0.59 51.5 

SD 10.6 5.2 8.75 0.6 0.25 17.9 

CV (%) 68.4 23.4 14.0 6.6 43.1 34.8 

Alfisols 

(N=217) 

Min 6.3 2.4 2.3 4.7 0.12 1.7 

Max 93.4 34.5 76.1 9.9 1.55 54.0 

Mean 49.3 12.0 38.6 7.5 0.56 18.1 

SD 19.3 6.2 17.7 1.1 0.26 9.8 

CV (%) 39.2 51.6 45.9 14.7 46.2 54.1 

Inceptisols 

(N=152) 

Min 3.2 3.8 4.6 5.4 0.08 3.4 

Max 88.4 37.9 73.3 11.2 1.26 80.4 

Mean 39.8 19.2 41.1 8.6 0.55 35.4 

SD 22.5 7.2 18.0 1.0 0.28 18.8 

CV (%) 56.5 37.5 43.8 11.6 51.0 53.1 

Entisols 

(N=31) 

Min 9.97 2.6 1.2 6.0 0.03 2.03 

Max 94.0 39.4 58.3 8.7 1.60 51.9 

Mean 53.2 17.6 29.1 7.6 0.61 21.5 

SD 28.0 10.6 18.3 0.8 0.33 16.7 

CV (%) 52.8 60.2 62.9 10.7 52.4 77.7 

 279 

 280 

 281 

 282 

 283 

 284 
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 285 

Fig. 3. Correlation coefficient (r) between soil properties and mean reflectance at each 286 

wavelength based on the entire dataset. 287 

 288 

 289 

3.1.2 Based on subsets stratified per soil order 290 

The Vertisols and Inceptisols were characterized by a higher content of clay (mean > 40%), 291 

CEC (mean > 35 cmol (+) kg
-1

) and pH (mean > 8.5) than Alfisols and Entisols (Table 2). 292 

The high CEC in Vertisols and Inceptisols may be due to the presence of highly weatherable 293 

minerals derived from basaltic parent materials and these soils have abundant 2:1 type clay 294 

minerals. The Alfisols and Entisols were characterized by high contents of sand (mean > 295 

49%) and CEC (mean of 18.1 and 21.5 cmol (+) kg
-1

, respectively). The SOC range and 296 

distribution were similar from one soil order to another (Table 2).  297 
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Regardless of the soil order, clay had a high negative correlation (r < -0.87) with sand 298 

(Supplementary Information 4 to 7). Clay and CEC had a high positive correlation in 299 

Inceptisols and Entisols (r > 0.89) and a modest correlation in Alfisols and Vertisols (r from 300 

0.43 to 0.46). Clay and silt were highly correlated in Entisols (r = 0.85), slightly correlated in 301 

Inceptisols (r = 0.50), and had no correlation in either of the other soil orders. OC and pH had 302 

a modest negative correlation in Vertisols and Inceptisols (r of -0.57 and -0.56, respectively) 303 

and poor correlations in the other soil orders. 304 

3.1.3 Vis-NIR spectra per soil order 305 

The mean spectra measured for Entisols and Alfisols presented the highest absorption band 306 

centred at 2207 nm (Fig. 4), which corresponds to the combination of OH stretching and OH-307 

Al bending modes observed in clay (Chabrillat et al., 2002). Vertisols recorded relatively 308 

poor reflectance irrespective of the bandwidth, which might be due to the presence of 309 

smectite clay minerals in Vertisols and high moisture-holding capacities (Baumgardner et al., 310 

1985; Demattê et al., 2017). The higher reflectance of Entisols and Alfisols might be 311 

attributed to the predominance of highly weatherable minerals (Poppiel et al., 2018) and sand 312 

contents (Viscarra Rossel et al., 2006) which may have increased their albedo. Alfisols and 313 

Entisols had broad absorption features between 850-1100 nm related to the specific 314 

absorption shoulder of goethite and haematite (Srivastava et al., 2004). These particular iron 315 

oxide absorption bands were not observed in the reflectance spectra of other soil orders 316 

because iron oxides are underdeveloped in Inceptisols and Vertisols (Poppiel et al., 2018). 317 

 318 

 319 

 320 
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 321 
Fig. 4. Mean spectral reflectance of soil samples stratified per soil order. 322 

 323 

 324 

3.2 Prediction performance of regional models 325 

3.2.1. Analysis based on the entire database 326 

Fifty regional models were built from a BD_Cal_Regional dataset for each soil property and 327 

validated using a BD_Val_Regional dataset. The RF regional models for CEC estimates 328 

provided good performances, with R
2

val and RPIQval values of 0.76 and 3.00, respectively 329 

(Fig. 5c), as the RF regional models for clay and sand which provided good performances 330 

with R
2

val values of 0.74 and RPIQval values of 3.17 and 3.14, respectively (Fig. 5a and b). 331 

The RF regional models for silt and pH estimates provided modest performances, with R
2

val 332 

and RPIQval values above 0.5 and 1.5, respectively (Fig. 5d and e). Finally, the regional 333 

models for SOC estimates yielded poor performances, with R
2

val value lower than 0.5 (Fig. 334 

5f). The variations in performances based on 50 iterations (standard deviation) were modest, 335 

regardless of the studied soil property (Supplementary Information 8). 336 
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 338 

Fig. 5. Scatter plots of predicted versus observed soil properties obtained for the  339 

BD_Val_Regional datasets. 340 

 341 
3.2.2. Analysis based on the soil order subsets 342 

The 50 regional models built from the samples of BD_Cal_Regional for each soil property 343 

were then tested on samples of specific soil orders: BD_val_Ver, BD_val_Alf, BD_val_Inc, 344 

BD_val_Ent. While the regional models for clay and sand prediction provided good 345 

performances over the entire dataset (Fig. 5a and b), both models yielded acceptable (R
2

val > 346 



19 
 

0.50, RPIQval > 1.50) to good (R
2

val > 0.70, RPIQval > 3.00) performances for soil samples 347 

belonging to Alfisols, Inceptisols and Entisols (Table 3, Fig. 5a and b) and poor performances 348 

for Vertisols (R
2

val < 0.50, Table 3, purple points on Fig. 5a and b), which were characterized 349 

by the smallest clay and sand ranges among the four soil orders (SD of 8.75% and 10.6%, 350 

respectively, Table 2). Additionally, while the regional models for CEC prediction provided 351 

good performances over the entire dataset (Fig. 5c), it yielded acceptable (R
2

val > 0.50, 352 

RPIQval > 1.50) performances for Vertisols (Table 3, purple points on Fig. 5c), good 353 

performances (R
2

val > 0.70, RPIQval > 3.00) for Inceptisols and Entisols (Table 3, green and 354 

blue points in Fig. 5c) and poor performances for Alfisols (Table 3, red points on Fig. 5c). 355 

 The regional models for silt prediction yielded acceptable (R
2

val > 0.50, 356 

RPIQval>1.50) to good (R
2

val > 0.70, RPIQval > 3.00) performances for soil samples belonging 357 

to Inceptisols and Entisols (Table 3, Fig. 5d), but performed poorly over Vertisols and 358 

Alfisols (Table 3, Fig. 5d) where the silt range was small (SD of 5.2 and 6.2%, respectively, 359 

Table 2). Finally, the regional models for the prediction of pH and SOC yielded poor 360 

performances regardless of the soil order (Table 3, Fig. 5e and f). Therefore, although the 361 

regional models for pH prediction provided acceptable performances over the entire dataset 362 

(Fig. 5e), it did not provide accurate predictions at the soil-order level (Table 3). 363 

 364 

3.3 Prediction performance of soil-order model  365 

Fifty  soil-order models were built from calibration samples of each soil order (BD_Cal_Ver, 366 

BD_Cal_Alf, BD_Cal_Inc and BD_Cal_Ent, Fig. 2) for each soil property and validated 367 

using validation samples for each soil order (BD_Val_Ver, BD_Val_Alf, BD_Val_Inc and 368 

BD_Val_Ent, Fig. 2). The soil-order models for clay and CEC estimates built from Vertisols 369 

and Alfisols and tested on the same soil order yielded acceptable predictions (R
2

val > 0.50, 370 
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RPIQval > 1.50), while the soil-order models built from Inceptisols and Entisols for clay and 371 

CEC resulted in good predictions (R
2

val > 0.70, RPIQval > 3.00) (Table 3).  372 

The soil-order models for sand estimation built from Alfisols and tested on the same 373 

soil order yielded acceptable predictions (R
2

val > 0.50, RPIQval > 1.50), while those built from 374 

Inceptisols and Entisols and tested on these same two soil orders yielded good predictions 375 

(R
2

val > 0.70, RPIQval > 3.00) (Table 3). For Vertisol, the soil-order models for sand 376 

estimation and tested on this same soil order yielded poor predictions (R
2

val < 0.50, RPIQval < 377 

1.50) (Table 3). The soil-order models built from Entisols predicted silt content with 378 

acceptable accuracy (R
2

val > 0.50, RPIQval > 1.50), and the three other soil-order models built 379 

for silt estimation provided poor performances (Table 3). Regardless of the soil order, the 380 

soil-order models for SOC yielded poor predictions (R
2

val < 0.50, RPIQval < 1.50) (Table 3). 381 

In accordance with the R
2

val and RMSEval values, these models calibrated from subsets 382 

stratified by soil orders for clay prediction outperformed the regional model when applied to 383 

each validation dataset of the corresponding soil order (Table 3). Similarly, the soil-order 384 

models for Vertisols, Alfisols and Inceptisols performed better than the regional models for 385 

the prediction of CEC. Although both regional and soil-order models performed well for the 386 

prediction of the sand contents of Alfisols, Inceptisols and Entisols, with respect to RPIQ, the 387 

soil-order model (RPIQval of 2.12) slightly outperformed the regional model (RPIQval of 2.04) 388 

for Alfisols (Table 3). In addition, the regional models outperformed the soil-order models in 389 

all other situations. 390 
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Table 3. Performance of regional and soil-order models  (50 iterations) for the prediction of soil properties of different orders (standard deviation in parenthesis). (Models 391 
that yielded R

2
val values from 0.50 to 0.70 are highlighted in bold. Models that yielded R

2
val values above 0.70 are highlighted in bold and underlined). 392 

  Validation Dataset 

Properties Model BD_val_Ver(26) BD_val_Alf(72) BD_val_Inc(48) BD_val_Ent(8) 

  
R

2
val 

RMSE 

val 

bias 

val 

RPIQ 

val 
R

2
val 

RMSE 

val 

bias 

val 

RPIQ 

val 
R

2
val 

RMSE 

val 

bias 

val 

RPIQ 

val 
R

2
val 

RMSE 

val 

bias 

val 

RPIQ 

val 

clay (%) 

regional 

models 

0.48 

(0.10) 

9.09 

(1.48) 

-5.21 

(1.41) 

1.25 

(0.26) 
0.63 

(0.06) 

10.65 

(0.91) 

-0.49 

(1.26) 

1.95 

(0.17) 

0.78 

(0.05) 

8.52 

(0.92) 

1.25 

(0.86) 

3.24 

(0.37) 

0.84 

(0.06) 

8.85 

(2.12) 

4.77 

(2.18) 

3.43 

(1.29) 

soil-

order 

models 
0.54 

(0.11) 

6.17 

(0.93) 

0.40 

(1.15) 

1.83 

(0.31) 

0.64 

(0.06) 

10.47 

(0.71) 

-0.54 

(1.39) 

1.98 

(0.14) 

0.79 

(0.04) 

8.42 

(0.88) 

-0.43 

(1.18) 

3.28 

(0.37) 

0.80 

(0.08) 

8.43 

(1.98) 

-0.13 

(2.80) 

3.63 

(1.47) 

CEC 

(cmol (+) 

kg
-1

) 

regional 

models 
0.58 

(0.14) 

12.69 

(1.66) 

-4.46 

(1.64) 

1.90 

(0.29) 

0.46 

(0.09) 

8.96 

(1.42) 

2.78 

(1.08) 

1.17 

(0.18) 
0.82 

(0.04) 

8.31 

(0.77) 

-1.45 

(0.89) 

3.88 

(0.37) 

0.72 

(0.21) 

9.88 

(4.20) 

3.12 

(2.64) 

3.04 

(1.61) 

soil-

order 

models 
0.51 

(0.14) 

12.90 

(1.58) 

0.24 

(2.08) 

1.86 

(0.21) 

0.61 

(0.05) 

6.21 

(0.69) 

-0.01 

(0.73) 

1.67 

(0.19) 

0.83 

(0.04) 

7.94 

(0.83) 

0.11 

(1.23) 

4.07 

(0.47) 

0.68 

(0.14) 

9.45 

(2.02) 

-0.10 

(2.69) 

2.85 

(0.94) 

sand (%) 

regional 

models 

0.38 

(0.13) 

11.61 

(2.25) 

6.46 

(1.98) 

0.99 

(0.30) 
0.59 

(0.06) 

12.78 

(1.00) 

-1.21 

(1.33) 

2.04 

(0.15) 

0.79 

(0.05) 

10.32 

(1.08) 

-0.42 

(1.28) 

3.48 

(0.38) 

0.87 

(0.06) 

10.78 

(2.01) 

-3.42 

(2.44) 

4.31 

(1.44) 

soil-

order 

models 

0.45 

(0.13) 

8.25 

(1.52) 

0.13 

(1.97) 

1.39 

(0.32) 
0.60 

(0.06) 

12.29 

(0.76) 

0.28 

(1.32) 

2.12 

(0.14) 

0.76 

(0.05) 

11.18 

(1.07) 

0.07 

(0.14) 

3.21 

(0.34) 

0.75 

(0.08) 

14.05 

(2.60) 

0.37 

(4.45) 

3.26 

(0.97) 

pH 

regional 

models 

0.43 

(0.11) 

0.53 

(0.07) 

-0.22 

(0.08) 

1.44 

(0.23) 

0.41 

(0.08) 

0.85 

(0.06) 

0.13 

(0.07) 

2.00 

(0.13) 

0.50 

(0.08) 

0.69 

(0.07) 

-0.09 

(0.08) 

1.47 

(0.17) 

0.30 

(0.21) 

0.76 

(0.14) 

0.15 

(0.19) 

1.93 

(0.49) 

soil-

order 

models 

0.45 

(0.11) 

0.45 

(0.06) 

0.00 

(0.08) 

1.69 

(0.27) 

0.39 

(0.08) 

0.86 

(0.07) 

-0.01 

(0.07) 

1.99 

(0.15) 

0.41 

(0.08) 

0.76 

(0.07) 

0.02 

(0.10) 

1.34 

(0.15) 

0.12 

(0.14) 

0.79 

(0.09) 

-0.03 

(0.13) 

1.74 

(0.26) 

SOC (%) 

regional 

models 

0.32 

(0.11) 

0.21 

(0.02) 

0.01 

(0.03) 

1.34 

(0.17) 

0.16 

(0.06) 

0.24 

(0.02) 

0.01 

(0.02) 

1.52 

(0.11) 

0.30 

(0.07) 

0.24 

(0.02) 

-0.02 

(0.02) 

1.83 

(0.17) 

0.44 

(0.30) 

0.26 

(0.14) 

-0.05 

(0.07) 

1.56 

(0.77) 

soil-

order 

models 

0.34 

(0.10) 

0.21 

(0.02) 

0.00 

(0.03) 

1.38 

(0.17) 

0.14 

(0.06) 

0.24 

(0.02) 

0.00 

(0.02) 

1.50 

(0.12) 

0.28 

(0.08) 

0.24 

(0.02) 

0.00 

(0.03) 

1.81 

(0.17) 

0.40 

(0.28) 

0.28 

(0.10) 

0.00 

(0.10) 

1.27 

(0.48) 

silt (%) 

regional 

models 

0.19 

(0.12) 

4.97 

(0.66) 

-1.18 

(0.53) 

1.50 

(0.21) 

0.31 

(0.10) 

5.44 

(0.53) 

1.30 

(0.50) 

1.20 

(0.10) 
0.50 

(0.08) 

5.29 

(0.46) 

-0.89 

(0.56) 

1.77 

(0.18) 

0.86 

(0.07) 

5.11 

(1.02) 

-1.78 

(1.02) 

3.35 

(0.90) 

soil-

order 

models 

0.27 

(0.13) 

4.53 

(0.63) 

0.15 

(0.69) 

1.65 

(0.24) 

0.30 

(0.13) 

5.25 

(0.55) 

-0.24 

(0.41) 

1.25 

(0.14) 

0.41 

(0.08) 

5.62 

(0.46) 

0.00 

(0.78) 

1.67 

(0.16) 
0.53 

(0.17) 

7.84 

(1.79) 

0.48 

(2.31) 

2.24 

(0.93) 
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4. Discussion 393 

4.1. Predictions at the regional scale based on regional models 394 

The soil properties which were successfully predicted based on regional models, were 395 

characterized by i) a high variability (e.g., clay contents from 1.2 to 77.2% with a SD of 19%; 396 

Table 2) and ii) either a spectral response due to physicochemical responses (e.g., clay which 397 

is characterized by a absorption band at 2208 nm corresponding to the combination of OH 398 

stretch and OH-Al bending modes, Chabrillat et al., 2019) or a correlation to one property 399 

which was successfully predicted (e.g., sand which was correlated to clay, Supplementary 400 

Information 3). These results are in accordance with the three rules defined by Ben-Dor et al. 401 

(2002) and then Gomez et al. (2012a, b), presented in Chabrillat et al. (2019) and recalled in 402 

our Introduction section. Conversely, soil properties characterized by a short variability of 403 

values (e.g., SOC with a mean of 0.6% and SD of 1.1%, Table 2) were poorly predicted at the 404 

regional scale by the regional models (Fig. 5f).   405 

 The accurate clay estimations might be due to the use of wavelengths in RF models 406 

related to clay including the bands around 2208 nm corresponding to the combination of OH 407 

stretch and OH-Al bending modes (Chabrillat et al., 2002). The accurate predictions of CEC 408 

might be attributed to the correlation between CEC and clay and the large range of CEC 409 

values at the regional scale (Table 2), as CEC does not have a primary response to spectral 410 

reflectance (Leone et al., 2012; Xu et al., 2018). Similar levels of performance were observed 411 

for the various models for the prediction of clay, sand and CEC in the literature. Ahmadi et 412 

al. (2021) stated that the mean coefficients of determination (R
2
) for various Vis-NIR 413 

prediction studies for sand and clay were 0.76 and 0.70, respectively. Terra et al. (2015) 414 

emphasised that the promising results of models for the prediction of sand (R
2

cal from 0.85 to 415 

0.90) and clay contents (R
2

cal from 0.85 to 0.88) may effectively replace the analysis of soil 416 

particle size by conventional methods.  417 
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Silt content was predicted with reliable accuracy (R
2

val=0.55, RPIQval=2.21 and 418 

RMSEval= 5.32%), which was in agreement with Viscarra Rossel et al. (2006). Additionally, 419 

pH was predicted with reliable accuracy (R
2

val=0.54, RPIQval=1.98 and RMSEval= 0.75), 420 

which is difficult to explain because pH does not have any spectral response or correlation to 421 

a property having a spectral response due to physical or chemical structures (Supplementary 422 

Information 3). The low range for SOC content might be the cause of the poor prediction of 423 

SOC (Dalal and Henry, 1986), which was confirmed with Fig. 4, where no significant 424 

absorption was observed near 500 and 800 nm (Latz et al., 1984).  425 

 426 

4.2. Predictions at the soil order scale based on regional models 427 

Based on regional models, the prediction performances obtained over each subset stratified 428 

per soil order differed from those obtained at the regional scale (Table 3 and Fig. 5). While 429 

clay and sand contents may be considered correctly predicted at the regional scale (Fig. 5a, 430 

b), both soil properties were poorly predicted over Vertisols samples (Table 3), for which 431 

these properties were characterized by a small range (SD of 8.75% and 10.6%, respectively, 432 

Table 2) and thus do not follow the rule (1.3) stated by Chabrillat et al. (2019). Additionally, 433 

while CEC may be considered correctly predicted at the regional scale (Fig. 5c), CEC was 434 

poorly predicted for Alfisols samples (Table 3), which was characterized by a small CEC 435 

range (SD of 9.8 cmol (+) kg
-1

, Table 2) and thus does not follow the rule (1.3) stated by 436 

Chabrillat et al. (2019). 437 

 So models based on the regional database for calibration can be considered as 438 

providing high accuracy of some soil properties estimations when considering the regional 439 

strategy in the validation step but modest accuracy of these same soil properties when 440 

considering subsets stratified by soil order from the regional database in validation step. 441 

These results are in accordance with Gomez and Coulouma (2018), who showed that while 442 
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their prediction models were accurate at a regional scale, the prediction model performances 443 

at within-field scales depended on the specific soil property. As the estimation accuracy 444 

appreciation is depending on the validation database, the appreciation of prediction 445 

accuracies can be done both at regional and soil-order scale to reinforce the performance 446 

analysis. 447 

 448 

4.3. Predictions at the soil order scale based on soil order models 449 

The soil-order models dedicated to Entisols and Inceptisols predict clay contents (R
2

val of 450 

0.80 and 0.79, respectively, Table 3) with more accuracy than the soil-order models dedicated 451 

to Vertisols (R
2

val of 0.54, Table 3), as the presence of smectite clay minerals and the high 452 

moisture-holding capacity of Vertisols may reduce the relative spectral reflectance at 1300–453 

1400, 1800–1900, and 2200–2500 nm bands (Baumgardner et al., 1985; Babaeian et al., 454 

2015; Demattê et al., 2017). The prediction of CEC was on par with clay for different soil 455 

orders, which might be due to a positive correlation between clay and CEC. The trends in 456 

CEC prediction for the soil orders were similar to the trends in the correlation coefficients 457 

between clay and CEC (Supplementary Information 4-7). The higher performances for sand 458 

prediction (R
2

val ≥ 0.75, Table 3) in Inceptisols and Entisols might be explained by the higher 459 

sand content in these soils which are at the inception of soil development (Santos et al., 460 

2013). A relatively better prediction of silt content was achieved through a soil-order model 461 

for Entisols, which might be attributed to the predominance of highly weatherable minerals in 462 

these soils that alter their albedo (Poppiel et al., 2018). 463 

 464 

4.4. Regional model versus soil-order model 465 

For Vertisols, the soil-order models for clay and sand estimates significantly outperformed 466 

the regional models (Table 3), while both the soil-order and regional models for other soil 467 
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property predictions provided a similar range of performances. For Alfisols, the soil-order 468 

model for CEC estimates significantly outperformed the regional model (Table 3), while both 469 

the soil-order and regional models for the other soil property predictions provided a similar 470 

range of performances. Over Inceptisols, the regional models for pH and silt estimates 471 

significantly outperformed the soil-order models (Table 3), while both the soil-order and 472 

regional models for other soil property predictions provided a similar range of performances. 473 

For Entisols, the regional models for CEC, sand and silt estimates significantly outperformed 474 

the soil-order models (Table 3), while both the soil-order and regional models for the other 475 

soil property predictions provided a similar range of performances. 476 

Therefore, these results did not allow us to conclude whether a regional model or a 477 

soil-order model is the best strategy for predicting different properties across different soils. 478 

The literature is also not unanimous on this point, as some works have shown that regional 479 

models outperform soil-order models (e.g., Vasques et al., 2010; Liu et al., 2018), while other 480 

works have shown the opposite (e.g., Madari et al., 2005; McDowell et al., 2012). Therefore, 481 

while our results did not enable any recommendations for choosing between a regional or 482 

soil-order model, they highlight the risk of overestimating prediction accuracy at the soil-483 

order scale when figures of merit are based on a validation dataset built at the regional scale. 484 

 485 

5. Conclusion 486 

In the present study, the effectiveness of using Vis-NIR spectroscopy for the prediction of 487 

soil properties was analyzed based on soil order knowledge in both calibration and validation 488 

steps. While these results did not enable any recommendations for choosing between a 489 

regional or soil-order model when validating on soil-order datasets, they highlighted the risk 490 

of overestimating prediction accuracy at the soil-order scale when figures of merit are based 491 

on a validation dataset built at a regional scale. As large soil spectral libraries are currently 492 
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highly developed, this work showed that soil-order knowledge may be useful to avoid 493 

misestimating soil properties. In future, this work could be completed by an analysis of how 494 

land use or other environmental covariates may be used to improve soil properties prediction 495 

models.  496 

 497 
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