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ABSTRACT

Many studies over the last 30 years have shown the 
effects of farming practices on milk compounds. Combi-
nations of practices may have antagonistic or synergis-
tic effects on milk compounds, but these combination 
effects remain underinvestigated. Research needs to 
focus on overall intrinsic milk quality (including sen-
sory, technological, health, and nutritional dimensions) 
and identify the combinations that can optimize it. 
The aim of this study was to identify which combina-
tions of farming practices achieved the best scores for 
sensory, technological, health, and nutritional dimen-
sions and for overall intrinsic milk quality. Ninety-nine 
private farms were visited once each to sample their 
bulk tank milk and survey their farming practices. The 
surveyed practices concerned herd characteristics, feed-
ing management, housing conditions, and milking and 
milk storage conditions on the day of test. Analyses of 
bulk tank milk were designed to evaluate the overall 
intrinsic quality of the milk for 2 target products: raw 
milk cheese and semi-skimmed UHT milk. Regression 
trees were then used to identify the combinations of 
farming practices that achieved the best scores on each 
dimension and on overall intrinsic quality of the milk. 
Breed and diet (type of forage) were the most influen-
tial factors for sensory and health dimensions and for 
technological and nutritional dimension scores, respec-
tively, in the cheese assessment. Overall cheese quality 
was highly positively correlated with these 4 dimension 
scores. Therefore, breed and diet emerged as the most 
influential practices in the regression tree for overall 
cheese quality. However, the combinations of practices 
that resulted in the best quality scores differed accord-

ing to dimension studied and product targeted. This 
suggests that advice on farming practices to improve 
intrinsic milk quality needs to be adapted according to 
the end-purpose of the collected milk. This innovative 
approach combining on-farm data and regression trees 
provides farm managers with a valuable and practical 
tool to prioritize practices in terms of their role in shap-
ing milk quality, and to identify the combinations of 
practices that promote good milk quality and practice 
thresholds or modalities needed to achieve it.
Key words: dairy cow, bulk tank milk, quality score, 
dairy products, regression analysis

INTRODUCTION

Over the past 30 yr, there has been ample literature 
on the effects of farming practices on milk compounds 
(Baeza-Campone et al., 2020), but the effects of com-
binations of practices remain under-researched. The 
studies conducted to date have generally focused on (1) 
only some compounds, generally considered separately, 
or (2) the effect of a single practice taken in isolation 
(often feeding) on one or more compounds. However, 
certain practices can have a synergistic or antagonistic 
effect on milk quality. For example, milking with an 
automatic milking system (AMS) instead of in a milk 
parlor leads to higher milk lipolysis (greater amount of 
free fatty acids, FA) and sometimes higher milk SCC 
(Hogenboom et al., 2019), both of which are globally 
detrimental to milk quality. In this case, the AMS has 
a synergistic effect on milk compounds in terms of 
quality. Conversely, milk from cows fed fresh grass as 
their main forage source instead of corn silage is lower 
in SFA, higher in UFA, and yellower (Nozière et al., 
2006; Couvreur et al., 2007), all of which are globally 
beneficial to milk quality. However, milk from cows fed 
fresh grass also has a lower fat content (Legarto et al., 
2014), which is detrimental to milk quality. In this case, 
the dominant forage in the cow diet has an antagonist 
effect on milk compounds in terms of quality.

Research is therefore needed to study the effects of 
farming practices and their combinations on the overall 
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intrinsic quality of milk. Rey-Cadilhac et al. (2021) re-
cently reported a multicriteria assessment model of the 
overall intrinsic quality of milk, taking into account its 
sensory, technological, health, and nutritional dimen-
sions. They developed 2 separate multicriteria assess-
ments for 2 products based on end-purpose of the milk: 
pressed uncooked nonstandardized raw milk cheese 
(cheese assessment) and semi-skimmed standardized 
UHT milk (UHT milk assessment). The application 
of the multicriteria assessments allowed us to identify 
the quality indicators to be optimized to achieve bet-
ter quality scores of raw milk but it is not possible to 
explain these scores by farming practices.

To address this gap, the present study was designed 
to meet 2 objectives: (1) to identify combinations of 
practices that result in the best dimensions and over-
all quality scores of bulk tank milk; and (2) to test 
whether the combinations of practices identified differ 
according to target product (cheese or UHT milk) and 
among the target dimensions. To do so, we used the 
2 multicriteria assessments of overall intrinsic quality 
combined with regression trees to identify the com-
binations of farming practices that achieved the best 
scores for overall intrinsic quality of raw bulk tank 
milk.

MATERIALS AND METHODS

Selection of Farms

Only routine milk sampling and farmer surveys were 
performed during this study, so no ethical approval 
was needed. The objective was to select 100 private 
farms that met the following criteria: dominant breed 
in the herd must be Montbéliarde (MB) or Holstein 
Friesian (HF) with <30% of other breeds; milking in a 
parlor or with an AMS; and lactating cows fed with a 
dominant forage (corn silage, wet conserved grass, hay, 
or pasture). The rationale for choosing these criteria 
was, first, to address the main factors affecting milk 
quality (breed, milking system, and diet) and, second, 
to control these factors by having a limited number of 
modalities for each. The aim was also to have a set of 
farms that was representative of the diversity of exist-
ing systems in France by selecting farms from different 
milk-producing regions.

In total, 99 private farms were visited once between 
June and November 2020 in 3 locations in France. Dur-
ing the visit, we collected bulk tank milk samples and 
surveyed the farming practices applied on the day of 
sampling (Figure 1).

Rey-Cadilhac et al.: BEST FARMING PRACTICES FOR MILK QUALITY

Figure 1. Steps for the construction of regression trees explaining sensory, technological, health, nutritional dimensions, and overall quality 
scores of the cheese and UHT milk assessments from farming practices. Raw milk cheese = pressed uncooked nonstandardized raw milk cheese, 
and UHT milk = semi-skimmed standardized UHT milk. In the example regression tree, leaves show predicted score, number of farms within 
the leaves (n), and % of farms of the total sample. Red and green colors correspond to the worst and best quality scores, with intermediate 
colors indicating intermediate scores.
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Survey of Farming Practices

In our study, the farming practices encompassed herd 
characteristics, feeding management, housing condi-
tions, and milking and milk storage conditions on the 
day of milk collection. These practices applied on the 
farms were collected by survey using a questionnaire 
containing closed-ended questions. This latter was de-
veloped through consultation with field and scientific 
experts in the topics it addresses. It was tested and 
validated on the experimental farm of INRAE facili-
ties (Herbipôle, Theix, France). It was then applied 
on the selected farms by 3 trained research personal 
who surveyed the farm owner(s) or manager(s). The 
survey was completed using data from milk records 
(monthly dairy herd improvement testing) or the AMS 
data collection system for lactation stage, parity, and 
milk output. The survey also captured observational 
data recorded by the surveyor during milking; namely, 
milking equipment conception, milking practices such 
as teat cleaning, cow dirtiness, and housing conditions. 
Collected data of farming practices were checked for 
errors and outliers and for overall consistency between 
farmer’s answers, milk records or AMS, and observa-
tional data. We then built aggregated variables, such 
as teat cleaning scores, complexity of the milking ma-
chine, milking machine washing scores, or dominant 
forage in the diet (Tables 1 and 2 and Supplemental 
Tables S1, S2, S3, and S4; https:​/​/​data​.mendeley​.com/​
datasets/​3xdpk76v8b/​1; Rey-Cadilhac et al., 2022), to 
derive variables that were applicable to all farms and 
could thus serve as comparators. The practices finally 
tested to implement the trees are described in Table 1 
(continuous variables) and Table 2 (categorical vari-
ables or continuous variables separated into groups and 
analyzed as categorical variables due to the frequency 
of observation and distribution).

Bulk Tank Milk Sampling and Analysis

Bulk tank milk samples were collected once on each 
farm in a tank containing an even number of milkings 
(2, 4, or 6) or at least a 12-h milking since the last 
tank emptying at the farms equipped with an AMS. A 
2-L sample of milk was collected from the tank after a 
5-min agitation using a sterile sampling rod through 
the opening, and then directly aliquoted and either 
kept between 0 and 4°C or directly frozen at −20°C in 
a portable freezer. The milk compounds measured and 
method of analysis for each compound are described in 
Rey-Cadilhac et al. (2021). Most of the analyses (fat, 
protein, free FA, urea and lactose contents, total bacte-
ria, coliforms, β-glucuronidase-positive Escherichia coli, 
coagulase-positive staphylococci, and Pseudomonas 

Rey-Cadilhac et al.: BEST FARMING PRACTICES FOR MILK QUALITY
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counts, SCC, lactofermentation test, and pH variation 
during the test, pH, Dornic acidity, and Ramsdell and 
alcohol tests) were performed on fresh milk within 24 
h, whereas other analyses were performed on fresh milk 

within 48 h (gel firmness and rennet coagulation time) 
or on frozen milk samples (mesophilic lactic acid bac-
teria counts, calcium, phosphorus, caseins, soluble pro-
teins, FA and vitamin B2 content, and b color index).

Rey-Cadilhac et al.: BEST FARMING PRACTICES FOR MILK QUALITY

Table 2. Regression tree models input categorical variables characterizing farming practices

Categorical variable   Description of variable1   Category
% total (n/N),  

N = 91   Selected from RF2

Herd breed   Dominant breed in the herd 
(>80% of cows)

  MB = Montbéliarde 41 (37/91) Cheese, UHTmilk,  
T, N    HF = Holstein Friesian 48 (44/91)

    Other = mixed herds with pure HF and 
MB cows or MB × HF crossbreds (any 
other animals were always <30% of the 
herd)

11 (10/91)

Diet forage   Dominant forage in the 
dry matter forages intake 
(description in Supplemental 
Table S43)

  WetConservedGrass = grass silage or 
haylage

26 (24/91) Cheese, UHTmilk,  
S, H, N

    CornSilage = corn or sorghum silage 30 (27/91)
    Hay 19 (17/91)
    Pasture = pasture or fresh grass 25 (23/91)

Diet corn silage pres   Presence of corn or sorghum 
silage in the diet

  Yes 54 (49/91) Cheese, H
    No 46 (42/91)

Diet grass silage pres   Presence of grass silage or 
haylage in the diet

  Yes 56 (51/91)  
    No 44 (40/91)  

Diet hay pres   Presence of hay in the diet   Yes 59 (54/91)  
    No 41 (37/91)  

Diet pasture pres   Presence of pasture in the 
diet

  Yes 45 (41/91)  
    No 55 (50/91)  

Housing pres   Time spent in the barn 
outside of milking time

  Yes 77 (70/91)  
    No 23 (21/91)  

Housing type   Type of housing   Bedded_area = strawbedded area 16.5 (15/91)  
    Cubicles = cubicles (any kind of litter) 60.5 (55/91)  
    100%Pasture = cows all the time on 

pasture (not concerned)
23 (21/91)  

Housing stocking  
  density

  Stocking density in the barn 
(number of cows per place2)

  Inf1 = 1 or <1 cow/place 59 (54/91)  
    Sup1 = >1 cow/place 18 (16/91)  
    100%Pasture = cows on pasture all the 

time (not concerned)
23 (21/91)  

MilkingEq system   Milking machine   CMS = conventional milking system 75 (68/91)  
    AMS = automatic milking system 25 (23/91)  

MilkingEq complexity   Complexity of the milking 
pipeline

  Modalities defined in Supplemental Table 
S33: Short_simple = short and simple

23 (21/91)  

    Intermed = intermediate 30 (27/91)  
    Large_complex = large and complex 22 (20/91)  
    AMS (not concerned) 25 (23/91)  

MilkingEq milk  
  filtration

  Use of a milk filter before 
arrival to the tank (to 
remove particulates from 
milk)

  Yes 46 (42/91)  
    No 54 (49/91)  

MilkingEq milk fall   Milk fall of >2 m at arrival 
in the tank

  Yes 38 (35/91)  
    No 62 (56/91)  

Milking cup drop   Cup drop during milking   Yes 27.5 (25/91)  
    No 47 (43/91)  
    AMS (not concerned) 25.5 (23/91)  

Milking cup air intake   Cup air intake during the 
milking

  Rarely 44 (40/91)  
    Often 31 (28/91)  
    AMS 25 (23/91)  

Tank storage temp   Milk storage temperature in 
the empty tank

  ~4°C 91 (83/91)  
    ~12°C 9 (8/91)  

1Average value of the herd of lactating cows or information about the lactating cows.
2Variables selected from the variable importance graphs of random forest (RF; Supplemental Figures S1 and S2; https:​/​/​data​.mendeley​.com/​
datasets/​3xdpk76v8b/​1; Rey-Cadilhac et al., 2022) to be implemented in the overall UHT milk quality (UHTmilk), overall cheese quality 
(Cheese), and cheese technological (T), sensory (S), health (H), and nutritional (N) dimension regression trees.
3Supplemental Tables S3 and S4: https:​/​/​data​.mendeley​.com/​datasets/​3xdpk76v8b/​1; Rey-Cadilhac et al., 2022.

https://data.mendeley.com/datasets/3xdpk76v8b/1
https://data.mendeley.com/datasets/3xdpk76v8b/1
https://data.mendeley.com/datasets/3xdpk76v8b/1


Journal of Dairy Science Vol. 106 No. 2, 2023

1030

Calculation of Milk Quality Scores

Rey-Cadilhac et al. (2021) developed 2 assessments 
of the intrinsic quality of raw milk designed to score 
the overall quality of a farm’s bulk tank milk on a scale 
of 0 to 10 in relation to its end-purpose; that is, either 
pressed, uncooked, nonstandardized raw milk cheese or 
standardized semi-skimmed UHT milk. These assess-
ments were developed through a participative approach 
by consulting experts in different fields. They built 
the hierarchical structure of the assessment from the 
indicators measured in milk to the final score. They 
also defined the thresholds to interpret the indicators 
and the ponderation (weight given to each indicator in 
percentage) and compensation rules to aggregate the 
information from one level to another to the final over-
all scores via several aggregation steps (Rey-Cadilhac 
et al., 2021).

The multicriteria assessments use values measured via 
milk analyses (i.e., raw values of indicators) to calculate 
the scores of the 4 milk quality dimensions (sensory, 
technological, health, and nutritional scores) as well as 
an overall quality score for the 2 target end-products 
(Figure 1). The indicators used in each dimension of the 
cheese assessment are described in Supplemental Table 
S5 (https:​/​/​data​.mendeley​.com/​datasets/​3xdpk76v8b/​
1; Rey-Cadilhac et al., 2022). These 2 assessments were 
adapted and applied here to the bulk tank milks of the 
99 farms based on their results of analysis. Adapta-
tions from the initial assessments were made with input 
from the same expert group that created them in Rey-
Cadilhac et al. (2021), and are described in Supple-
mental File S1 (https:​/​/​data​.mendeley​.com/​datasets/​
3xdpk76v8b/​1; Rey-Cadilhac et al., 2022).

Statistical Analysis

All data statistical analysis was performed using R 
software (version 4.0.5; https:​/​/​www​.r​-project​.org/​).

Imputation of Missing Analytical Data. When 
analytical data were missing (raw values of some indi-
cators for some bulk tank milks: alcohol test, Ramsdell 
test, Dornic acidity, fat content, and pH variation), 
they were approximated using the method of multivari-
ate imputation by chained equations by random forest 
imputation with the “MICE” package (van Buuren 
and Groothuis-Oudshoorn, 2011) in R (https:​/​/​www​.r​
-project​.org/​). This multiple imputation method led to 
5 imputed data sets that were then averaged to obtain 
a final analysis data set with a better stability of esti-
mated values. Quality scores were then calculated from 
this averaged analysis data set.

Correlations Among Milk Quality Scores. Cor-
relation coefficients among milk quality scores were 

calculated as follows: (1) for each dimension of each 
product, among the dimension scores and the scores 
of the indicators characterizing that dimension (inter-
preted values of measures in milk, Figure 1); (2) for 
each product among the dimension scores and overall 
quality scores; and (3) among the overall quality scores 
of the 2 targeted end-products. When data did not fit 
the normality hypothesis, a Spearman coefficient was 
calculated for correlations (1) and (2), and a Pearson 
correlation coefficient was calculated for (3). For (1), 
we retained the indicators that were best correlated (r 
≥ 0.4) to the dimension they characterized.

Control of Confounding Effects Among Farm-
ing Practice Variables. Having confounding vari-
ables is not a problem when applying the regression 
tree method. However, this fact should be kept in mind 
when interpreting the results. The intensity of the rela-
tions among quantitative variables was assessed by the 
coefficient of correlation. The intensity of the relations 
among quantitative and qualitative variables was as-
sessed by the correlation ratio (corRatio) and the in-
tensity of the relations among qualitative variables was 
evaluated by Cramer’s V coefficient. The threshold to 
consider confounding effects among variables was 0.4.

Regression Trees. Regression trees were construct-
ed to identify the combinations of farming practices 
determining the scores obtained with the assessments 
for cheese and UHT milk. The trees were constructed 
by the Classification and Regression Tree (CART) 
method in R using the “rpart” package (Figure 1).The 
CART method was selected for its ability to deal with 
either categorical or continuous data without conditions 
on the data such as normality or non-multicollinearity. 
Moreover, it allowed us to identify the combinations of 
farming practices that best explained the quality scores 
and to rank the farming practices in terms of their ex-
planatory power.

To balance the potential instability of the trees, 
practices were preselected using the random forest “in-
crease in node purity” measure of variable importance 
(Breiman et al., 1984) in R using the “randomFor-
est” package (with ntree = 500 trees and mtry = 15 
tested practices). Practices were thus ranked according 
to their importance values for overall quality and for 
each quality dimension (Supplemental Figure S1 for 
cheese quality scores and Supplemental Figure S2 for 
UHT milk quality scores; https:​/​/​data​.mendeley​.com/​
datasets/​3xdpk76v8b/​1; Rey-Cadilhac et al., 2022), 
and top 5 practices (i.e., with the 5 highest importance 
values) were retained for implementation in the regres-
sion trees (see the last column of Tables 1 and 2).

Within the CART method, practices are recursively 
selected at a determined numerical or categorical value 
(e.g., the amount of concentrate in the herd diet >30% 
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of feed intake) that splits individuals into 2 mutually 
exclusive subsets that are as homogeneous as possible 
in terms of the response variable (i.e., quality scores) 
by minimizing the sums of squares inside the subsets 
(Breiman et al., 1984). The regression trees therefore 
split the whole source set into 2 branches, giving 2 
subsets called nodes. The process is repeated until a 
stop criterion is reached: in our case, we chose to have 
a minimum of 10 individuals in the final nodes, called 
leaves, to avoid subsets with small numbers of individu-
als that would not be reproducible. We then pruned 
the trees based on a 10-fold cross-validation to obtain 
optimal-sized trees without overfitting to have valid 
trees on new data. The coefficient of determination, R2, 
was calculated for each tree to compare the different 
models. The averages of the final leaves of each tree 
were compared using ANOVA followed by a Tukey test. 
Significance was declared at P ≤ 0.05, and trends were 
considered at 0.05 < P ≤ 0.10.

RESULTS

This article focuses on the results obtained for milk 
intended for cheese processing. For milk intended for 
processing into UHT milk, only the results on overall 
quality are presented and discussed here (other results 
are presented in Supplemental File S2 for correlations 
among the quality dimensions, and Supplemental Fig-
ure S3 for quality-dimension regression trees; https:​/​
/​data​.mendeley​.com/​datasets/​3xdpk76v8b/​1; Rey-
Cadilhac et al., 2022).

Surveyed Farming Practices

Of the 99 surveyed and milk-sampled farms, 5 were 
excluded as they had missing data on farming practices, 
and 3 were excluded as they had a similar amount of 
pasture and corn silage in the diets, leaving a total of 91 
farms for analysis (Figure 1). The number of lactating 
cows ranged from 22 to 200, with an average of 67 ± 33 
cows (mean ± SD), and milk output ranged from 8.3 to 
34.5 L/d per cow, with an average of 23.4 ± 5.0 L/d per 
cow. Averages and frequencies of the farming-practice 
modalities are presented in Tables 1 and 2. Lactating 
herds were, on average, at 183 ± 34 DIM and 2.6 ± 
0.4 parities. Diets contained 26 ± 10% of concentrate 
in total DMI. Diets were based on wet conserved grass, 
corn silage, hay, and pasture on 26, 30, 19, and 25% of 
the farms, respectively. Supplemental Table S4 reports 
the diet groups. The dominant breed was HF on 48% 
of farms and MB on 41%. The remaining 11% had 
mixed herds with pure HF and MB cows or MB × HF 
crossbreds (but any other animals were always <30% of 
the herd). Furthermore, 23% of farms were on full-day 

grazing, 16.5% had a straw-bedded area, and 60.5% 
had cubicles (with a different sort of litter). Finally, 
75% had a conventional milking parlor and 25% has an 
AMS. Intensiveness of the teat-cleaning method evalu-
ated on a 0 to 10 scale (where 0 = nonintensive to 10 = 
very intensive) averaged 6.2 ± 1.9.

There were no confounding variables among quanti-
tative farming variables (r > 0.4, Supplemental Table 
S6; https:​/​/​data​.mendeley​.com/​datasets/​3xdpk76v8b/​
1; Rey-Cadilhac et al., 2022) or among quantitative 
and qualitative farming variables (corRatio > 0.4, 
Supplemental Table S7; https:​/​/​data​.mendeley​.com/​
datasets/​3xdpk76v8b/​1; Rey-Cadilhac et al., 2022). A 
few effects confounded between qualitative variables 
were demonstrated (Cramer’s V coefficient >0.4, 
Supplemental Table S8; https:​/​/​data​.mendeley​.com/​
datasets/​3xdpk76v8b/​1; Rey-Cadilhac et al., 2022) 
and were related to the construction of the variables 
(e.g., Housing_type and Housing_stocking density have 
“100%Pasture” as a common modality; Table 2) or to 
the systems studied (e.g., the absence of AMS in farms 
with pasture as dominant forage).

Factors Explaining Cheese Scores on Sensory, 
Technological, Health, and Nutritional Dimensions

Correlation Between Dimension Scores and 
Overall Quality and Indicator Scores. Scores for 
the sensory, technological, health, and nutritional di-
mensions in the cheese assessment measured on a 0 to 
10 scale averaged 4.0 ± 2.0, 4.1 ± 1.8, 4.9 ± 2.3, and 
3.0 ± 2.0, respectively (Table 3). Overall cheese quality 
score was positively correlated with cheese technologi-
cal and health scores (r = 0.65 and 0.56, respectively; 
P < 0.001) and highly positively correlated with cheese 
sensory and nutritional scores (r = 0.79 and 0.78, re-
spectively; P < 0.001).

Concerning the relation between dimension scores 
and scores of the indicators characterizing them in 
the multicriteria assessment, cheese sensory score was 
mostly correlated with Pseudomonas, coliform, and 
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Table 3. Overall quality and dimensions scores1 (0–10) obtained on 
the 91 bulk tank milks, calculated from an adapted version of the 
assessments published by Rey-Cadilhac et al. (2021; see Supplemental 
File S1, https:​/​/​data​.mendeley​.com/​datasets/​3xdpk76v8b/​1, Rey-
Cadilhac et al., 2022)

Dimension Cheese assessment UHT milk assessment

Sensory 4.0 ± 2.0 (0.1–8.7) 7.7 ± 3.8 (0.0–10.0)
Technological 4.1 ± 1.8 (0.9–8.2) 6.0 ± 2.6 (0.0–9.7)
Health 4.9 ± 2.3 (0.6–8.6) 2.8 ± 1.8 (0.0–7.1)
Nutritional 3.0 ± 2.0 (0.5–8.2) 3.4 ± 1.8 (0.1–7.3)
Overall quality 4.0 ± 1.4 (1.6–6.8) 4.2 ± 1.4 (0.7–6.6)
1Mean ± SD (range).
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total bacterial counts and yellow color index scores 
(r = 0.57, 0.48, 0.43, and 0.44, respectively). Cheese 
technological score was mostly correlated with casein 
content, gel firmness, fat:​protein ratio, and calcium 
content scores (r = 0.78, 0.77, 0.53, and 0.44, respec-
tively). Cheese health score was mostly correlated with 
FA profile scores [r = −0.47, 0.60, 0.68, 0.64, and 0.68 
for sum of C6:0 + C8:0 + C10:0, total SFA, C16:0 
content, α-linolenic acid (ALA) content, and n​-6:​n​-3 
ratio scores, respectively] and the E. coli count score (r 
= 0.57). Cheese nutritional score was mostly correlated 
with caseins, ALA, and calcium content scores (r = 
0.70, 0.72, and 0.46, respectively).

Combinations of Practices Explaining Di-
mension Scores. In the regression tree of the cheese 
sensory dimension (Figure 2A), the best sensory score 
was obtained for systems using grass-based diets with 
a mean parity ≥2.4 lactations and with a teat-cleaning 
routine score <5.8 (score of 5.3/10). The lowest score 
was obtained for systems with cows fed corn silage–
based diets (score of 2.4/10). Other combinations of 
practices, including diet forage, herd parity, teat-clean-
ing routine score, and tank storage time variables, led 
to intermediate scores (from 3.4 to 5.0) that were not 
significantly different from these 2 systems.

In the regression tree of the cheese technological 
dimension (Figure 2B), the best technological score 
was obtained for systems with MB herds distributing 
concentrates at 31% or more of DMI (score of 6.1/10), 
followed by systems with MB herds fed <31% con-
centrates (4.8/10), followed by systems with HF and 
mixed/crossbred herds, regardless of how long the milk 
was stored (2.8 to 3.7/10).

In the regression tree of the cheese health dimension 
(Figure 2C), the best health score was obtained for 
systems without corn silage in the diet combined with 
low teat dirtiness (<0.69) (score of 7.3/10), followed by 
systems with no corn silage but higher teat dirtiness 
(≥0.69) (5.8/10), followed by systems with corn silage 
in the diet regardless of the stage of lactation of the 
herd (2.6 to 3.8).

In the regression tree of the cheese nutritional di-
mension (Figure 2D), the best score was obtained with 
MB herds (score of 4.8/10), whereas HF and mixed/
crossbred herds, regardless of the stage of lactation of 
these herds, obtained lower scores (1.7 to 2.6/10).

Combinations of Practices Explaining Overall 
Quality Scores. Overall quality scores assessed for 
cheese and UHT milk were comparable, at 4.0 ± 1.4 
and 4.2 ± 1.4 out of 10, respectively (Table 3). There 
was a strong positive correlation between overall qual-
ity of cheese and UHT milk (r = 0.70, P < 0.001).

In the regression tree of cheese overall quality (Figure 
3A), the best overall cheese quality score was obtained 

for systems with MB and mixed/crossbred herds fed 
without corn silage, regardless of how dirty the teats 
were (scores from 4.8 to 5.6/10), whereas cheese overall 
quality score was lowest in systems with HF cows fed 
corn silage, regardless of how dirty the teats were (2.5 
to 3.1/10). Systems with MB and mixed/crossbred 
herds fed corn silage had comparable scores with sys-
tems with HF herds fed without corn silage, and their 
scores were intermediate between the first 2 systems 
(4.2 to 4.5/10).

In the regression tree of UHT milk overall quality 
(Figure 3B), the best UHT milk quality score was 
obtained for systems with grass-based diets combined 
with a mean lactation stage of <168 DIM (score of 
5.2/10), whereas the lowest UHT milk quality score 
was obtained for systems with corn silage–based diets 
(3.1/10). Systems using grass-based diets with a mean 
lactation stage ≥168 DIM had intermediary and not 
significantly different scores (3.8 to 4.8/10).

DISCUSSION

The results of this study demonstrated that it is pos-
sible to calculate intrinsic quality scores of bulk tank 
milks and to use regression trees to identify combina-
tions of farming practices that result in the best quality 
scores. These combinations of practices were not the 
same in the sensory, technological, health, and nutri-
tional dimension trees. A scan of the literature found 
no data on the association between overall milk quality 
and the practices that influence it. We therefore focus 
the first part of the discussion on relationships among 
scores for the indicators (that are at the base of the as-
sessment, Figure 1) that best correlated with dimension 
scores and practices in the regression trees of these di-
mension scores. The second part of the discussion deals 
with the utility and limits of these tools for translation 
into the field.

Farming Practices Influenced Milk Compounds  
and Dimension Scores

The regression trees ranked farming practices in 
terms of their importance in explaining the quality 
scores. These trees form a pyramidal structure with 
practices closer to the top (the root) being the most 
influential and the practices underneath (on nodes) be-
ing less influential. Breed and dominant forage in the 
diets were the practices that had the greatest influence 
on quality scores. Moreover, Supplemental Figure S1 
shows that when diet forage or breed was the most im-
portant practice, they were far ahead of other practices 
in most cases, meaning there was no competition from 
other practices for the place of number 1 splitter.

Rey-Cadilhac et al.: BEST FARMING PRACTICES FOR MILK QUALITY
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Breed was the main driver of both technological 
and nutritional scores. This can be explained by some 
common indicators (i.e., casein and calcium contents) 
being the most strongly correlated with both these di-
mensions. Indeed, cow breed has an important effect 
on milk calcium (Baeza-Campone et al., 2020): milk 
from MB cows has a higher calcium content than milk 

from HF cows (Macheboeuf et al., 1993; Gaignon et 
al., 2018). Milk from MB cows is also richer in caseins 
than HF cow milk (Macheboeuf et al., 1993) and has 
a casein profile more conducive to gel firmness (with a 
higher content of κ-caseins and the B-variant of κ- and 
β-caseins; Macheboeuf et al., 1993; Martin and Coulon, 
1995). The gel firmness indicator was also highly cor-
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Figure 2. Regression trees explaining (A) cheese sensory (R2 = 0.38, RMSEcv = 1.65), (B) technological (R2 = 0.38, RMSEcv = 1.50), (C) 
health (R2 = 0.53, RMSEcv = 1.77), and (D) nutritional (R2 = 0.42, RMSEcv = 1.63) dimensions from farming practices. Variables are described 
in Table 2. Values in final leaves represent the predicted score value, number of individuals in the leaf (n), and percentage of individuals of 
the total sample. Means of the final leaves with different letters (a–c) are significantly different (P < 0.05). HF = Holstein Friesian; MB = 
Montbéliarde; RMSEcv = root mean square error obtained from the 10-fold cross-validation. The box represents the first (Q1) to third (Q3) 
quartile, the line represents the median, the whiskers represent the minimum and maximum (excluding outliers), and the points represent the 
outliers [greater than Q3 + 1.5 × (Q3 – Q1) or less than Q1 – 1.5 × (Q3 – Q1)].
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Figure 3. Regression trees explaining (A) overall cheese (R2 = 0.58, RMSEcv = 0.97) and (B) UHT milk (R2 = 0.34, RMSEcv = 1.21) quali-
ties from farming practices. Variables are described in Table 2. Values in final leaves represent the predicted score value, number of individuals 
in the leaf (n), and percentage of individuals of the total sample. Means of the final leaves with different letters (a–d) are significantly different 
(P < 0.05). HF = Holstein Friesian; MB = Montbéliarde; RMSEcv = root mean square error obtained from the 10-fold cross-validation. The box 
represents the first (Q1) to third (Q3) quartile, the line represents the median, the whiskers represent the minimum and maximum (excluding 
outliers), and the points represent the outliers [greater than Q3 + 1.5 × (Q3 – Q1) or less than Q1 – 1.5 × (Q3 – Q1)].
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related with the technological dimension of the assess-
ment.

For the technological score, when the herd had MB 
cows, a higher amount of concentrate (≥31% of total 
DMI) led to higher technological scores, which is likely 
related to the casein content indicator. Increasing the 
amount of concentrates often increases the energy den-
sity of the diet, which leads to a higher milk protein 
content, a higher casein content (Coulon and Rémond, 
1991), and better gel firmness.

Type of forage was the most influential factor for 
sensory and health dimensions, the first splitter being 
either main forage in the diet or presence of corn silage 
in the diet, with higher sensory and health scores in 
case of less corn silage or the absence of it, respec-
tively. This can be explained by the best correlated 
indicators, such as the yellow color index of milk in 
the sensory dimension tree, and indicators related to 
milk FA profile (ALA, C16:0, SFA content, and n​-6:​
n​-3 ratio) in the health dimension tree. Indeed, FA 
profile is strongly influenced by type of forage, with 
larger differences among pasture- and corn silage–based 
diets, because pasture-feeding results in milk that is 
richer in UFA such as ALA, poorer in SFA (notably 
C16:0), and has a lower n​-6:​n​-3 ratio (Dewhurst et al., 
2006; Chilliard et al., 2007; Ferlay et al., 2013, 2017). 
Moreover, the yellow color of milk comes mainly from 
its carotenoid contents (notably β-carotenes), which is 
highly dependent on the carotenoid content of ingested 
forages (Nozière et al., 2006). Thus, milks from grazing 
cows are the richest in β-carotenes and therefore yel-
lower, followed by milks from cows fed grass forage, and 
finally milk from cows fed corn silage, which contains 
much less carotenoids (Nozière et al., 2006).

The other practices in the sensory regression tree 
(herd parity, teat cleaning score, and tank storage time) 
appeared to be linked to the microbial profile of the 
bulk tank milks, as the best correlated indicators were 
Pseudomonas, coliforms, and total bacteria counts. The 
effects of farming practices on milk microbial quality 
are complex and unclear, with sometimes contradictory 
results. Effect of parity on microbial counts in milk 
can be explained by an effect of parity on teat skin 
microbiota. Total microbiota on teat skin is assumed 
to increase with age (Monsallier et al., 2012), and teat 
skin is known to be a major source of microorganisms 
in raw milk (Vacheyrou et al., 2011; Frétin et al., 2018). 
Bacic et al. (1968) found that cows in third and higher 
parities had higher bacterial counts in milk than cows 
from first and second parities. This could be due to 
progressive establishment of the teat flora over time or 
a loss of integrity of teat skin with age (Monsallier et 
al., 2012), which would support the idea that, in this 

study, herds with older cows (mean parity ≥2.4) led 
to better sensory scores due to higher total bacterial 
counts in their milk.

Over the past few decades, there has been an evo-
lution in milking materials and global farming prac-
tices toward more hygienic production conditions, 
together with pressure to enhance teat cleaning that 
has prompted farmers to take measures against patho-
genic and spoilage bacteria. These practices have led 
to milks that are increasingly poor in terms of bacte-
rial and, more generally, microbial levels and diversity 
needed for traditional cheese-making (Verdier-Metz 
et al., 2009; Montel et al., 2014; Baeza-Campone et 
al., 2020). This trend was corroborated here, with a 
median of 11,000 cfu/mL for total flora. In addition, 
our measures showed that 60% and 55% of the milks 
had Pseudomonas and coliform counts ≤100 and ≤10 
cfu/mL, respectively. In the multicriteria assessment 
of the milk for cheese, these levels correspond to high 
quality scores for spoilage flora (quality score of 10/10 
if <100 and <10 cfu/mL for Pseudomonas and coliform 
counts, respectively; Rey-Cadilhac et al., 2021) and low 
scores for total flora (a score of 10/10 corresponds to 
a total flora count of 45,000 cfu/mL and a score of 0 
corresponds to total flora counts ≤5,000 or ≥100,000 
cfu/mL; Rey-Cadilhac et al., 2021). On average in our 
study, the quality scores for Pseudomonas, coliforms, 
and total flora counts were therefore 7.7 ± 3.8, 8.2 ± 
3.3 and 2.0 ± 2.6 out of 10, respectively. Less intensive 
teat-cleaning routines result in higher total bacterial 
levels and higher Pseudomonas and coliform levels in 
milk [Zucali et al., 2011; Monsallier et al., 2012 (with 
the same teat-cleaning score grid)]. As most milks in 
our study had low Pseudomonas and coliforms counts, 
these practices led globally to numerically better sen-
sory scores.

When the teat-cleaning routine was more intensive 
(teat-cleaning score ≥5.8), the next splitter was time 
of in-tank storage >15 h, which gave numerically 
better sensory scores. This result is seemingly con-
tradictory to previous studies because it is generally 
reported that growth of microorganisms is slowed 
by low-temperature in-tank storage (<6°C), whereas 
psychrotrophic bacteria such as Pseudomonas con-
tinue to proliferate (Perin et al., 2019; Skeie et al., 
2019; Baeza-Campone et al., 2020). However, some 
studies reported no growth of psychrotrophic bacteria 
during refrigerated storage <6°C (Malacarne et al., 
2013; O’Connell et al., 2016). Both of these studies 
had low levels of psychrotrophic bacteria at baseline, 
which may explain why they developed less during 
storage. The bulk tank milks studied here also had 
low levels of Pseudomonas compared with other stud-
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ies. Pseudomonas counts were 2.27 ± 1.17 log cfu/
mL of milk compared with 3.61 log cfu/mL after 24 
h and 4.05 log cfu/mL after 48 h in storage at 4°C in 
Malacarne et al. (2013), and 3.00 to 3.14 log cfu/mL 
in O’Connell et al. (2016). The total bacterial count 
found here was similar to that of previous studies. In 
the sensory dimension tree, quality scores from the 
subsets with more or less intensive teat cleaning were 
thus not significantly different (from 3.8 to 5.3).

Concerning the health dimension tree, when no corn 
silage was distributed, quality scores were higher when 
the teats were cleaner, which may be explained by the 
E. coli count indicator. Indeed, this finding is consistent 
with Zucali et al. (2011), who reported that herds with 
a higher number of cleaned cows gave bulk tank milks 
that tended to have lower E. coli counts.

Regarding overall cheese quality, the regression tree 
identified combinations of system-level practices to 
optimize scores: farms with MB or mixed/crossbred 
herds receiving grass-based diets in adequate housing 
conditions to maintain very good teat cleanliness were 
able to produce milk of good quality for processing into 
pressed, uncooked, nonstandardized raw milk cheese. 
Indeed, breed was the most important practice in the 
cheese technological and nutritional trees and in the 
overall cheese quality tree. Quality scores were better 
for milks from MB than from HF herds. The next most 
influential practices were tied to corn silage in the diets: 
presence or absence of corn silage or whether corn si-
lage was the main dietary forage. These practices were 
present in the cheese sensory and health trees and in 
the cheese overall quality tree. Quality score was bet-
ter when diets contained little or no corn silage. The 
third practice in the cheese health tree and the overall 
quality tree was cow teat dirtiness. Better scores were 
obtained with more intensively cleaned cows. These 
influential practices present in both dimensions and 
overall quality trees could explain why overall quality 
score was strongly and positively correlated (r >0.5, P 
< 0.001) with sensory, technological, health, and nutri-
tional scores.

Field Applications: Utility and Limits of On-Farm 
Data and Regression Trees

This innovative study found encouraging results, 
because, for the first time, it was possible using real 
on-farm data to correctly explain the overall intrinsic 
quality of milk for cheese processing based on combina-
tions of farming practices.

Regression trees are useful management tools (in 
this case for milk quality) for 5 main reasons. First, 
they allow users to prioritize farming practices in 
terms of importance in explaining milk quality from 

the root to the leaves of the tree. Second, they can 
identify combinations of practices that result in good 
milk quality. Third, compared with linear regression, 
regression trees clearly show the possibility to obtain 
the same quality of milk from different combinations 
of practices (e.g., systems with HF herds not fed corn 
silage had similar overall quality of milk for cheese as 
systems with MB and mixed/crossbred herds fed corn 
silage). Fourth, they can identify actionable drivers 
to improve the quality of milk (threshold values for 
quantitative practices and modalities for qualitative 
practices). For example, <31% or ≥31% of concen-
trates in the diet separated medium from high scores 
on the technological dimension. Finally, they are easy 
to understand and interpret, as reported by De’ath 
and Fabricius (2000).

Working with on-farm data allowed us to study a 
wide range of practices from different milk-producing 
regions of France in terms of breed, diet, housing, and 
milking conditions applied in those farms. In our sam-
ple, the diversity of practices may be somewhat limited 
by the fact that the livestock systems sometimes fell 
into patterns, such as intensive farming with HF cows, 
corn silage-based diets, and an AMS, or more exten-
sive farming such as grassland-based systems with 
MB. The major practices (forage system, breed, and 
milking machine) thus sometimes partly overlapped. 
However, the regression tree method allows us to miti-
gate this issue by, for example, separating the data set 
first by breed (MB vs. HF; Figure 2A) and then evalu-
ating within-node data without the breed factor inter-
fering with the next practices (intra-breed subsets). 
The importance measure of the variables obtained by 
the random forest method also allows us to identify 
whether certain practices could have similar power to 
explain the variation in the quality scores. Here, main 
forage in diet, dominant breed, and the type of milk-
ing machine were always separate. Therefore, even if 
one of these practices proved the most influential in 
the trees, it did not hide the others. However, the 
structure of our database means that subsets created 
by nodes of the tree cannot, in turn, be subdivided. 
We chose to have a minimum of 10 individuals in the 
final leaves as a parameter for the construction of the 
trees. Therefore, any node with <20 individuals can-
not be subdivided. For example, farms with HF herds 
that did not distribute corn silage at all were limited 
in number (n = 11). This explains why in the overall 
cheese quality tree (Figure 3A), the algorithm could 
not integrate new influential practices to explain their 
scores in finer detail. Conversely, the farms with HF 
herds that fed corn silage were greater in number (n = 
33), and thus we were able to integrate an additional 
influential practice (herd teat dirtiness) in the tree.
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More globally, a sample of a hundred or so farms is 
a limitation for studying more complex combinations 
of practices. In an effort to avoid overfitting, the trees 
had to be pruned quite short, and so they contained 
combinations of 2 to 4 farming practices. Therefore, the 
goodness of fit, R2, of some trees indicated that a large 
part of the variability of the quality scores remained 
to be explained. This preliminary study should be con-
solidated in the future. For that, sampling more farms 
would make it possible to study more complex com-
binations of practices without overfitting, to improve 
the accuracy of the results and develop more generic 
regression trees. For that purpose, the database could 
be completed in 2 directions in order of importance: 
(1) by a wider spectrum of intra-breed practices; for 
example, farms with grazing HF cows or farms with 
MB cows fed corn silage–based diets, and intra-milking 
machine type; for example, with farms feeding pasture- 
or hay-based diets and an AMS; and (2) by a wider 
spectrum of practices encompassing other breeds, more 
contrasted diets (e.g., transition diets without one 
dominant forage), and other housing and milking con-
figurations.

Data collected from farmer surveys can be less ac-
curate then data measured on experimental farms. 
However, to mitigate this bias, some of the informa-
tion recorded here, such as milking practices, housing 
conditions, and animal dirtiness, was observed and 
measured rather than being collected (by survey) 
from farmers. This approach also helped make the 
regression trees easily usable in the field, because the 
information needed to apply them is readily accessible 
directly on-farm.

The regression trees obtained in this study cannot 
be extrapolated to all dairy products. Indeed, the as-
sessments used to calculate quality scores focused on 
2 specific products: pressed uncooked nonstandardized 
raw milk cheese and semi-skimmed standardized UHT 
milk (Rey-Cadilhac et al., 2021). Therefore, any recom-
mendations that could be made based on the regres-
sion trees presented here are applicable only to these 2 
products. The practices found to be most important for 
explaining quality scores were not the same for cheese 
as for UHT milk (Figure 3); breed was the main driver 
in the overall cheese quality tree, whereas dominant 
forage was the main driver in the overall UHT milk 
quality tree. Therefore, the combinations of practices 
that will achieve good raw milk for UHT milk are not 
the same as those to obtain a good raw milk for cheese. 
Practices adopted and advice given need to be adjusted 
and adapted according to the end-purpose of the milk. 
Thus, it may prove complicated to advise farmers who 
deliver milk for multiple processes or who do not know 
the fate of their milk.

CONCLUSIONS

In this study, we found that breed and diet are the 
most influential practices in terms of shaping all sen-
sory, technological, health, and nutritional dimensions 
and overall quality scores of milk quality for cheese. 
However, these preliminary results need to be con-
solidated with larger and more complex databases. 
The main contribution of this study is the use of the 
regression trees to identify combinations of practices 
that affect milk quality. The focus on cheese assess-
ment showed that the combinations of practices that 
had the biggest influence on quality scores were differ-
ent between different dimensions of quality. Moreover, 
comparison of the cheese and UHT overall quality trees 
showed that the combinations of practices that achieve 
the best overall quality scores were different according 
to the end-purpose of the milk. Consequently, advice 
on farming practices to improve the intrinsic quality 
of milk needs to be adjusted and adapted according to 
end-purpose of the collected milk.
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