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Abstract

In anaerobic digestion plants, it is often crucial to measure state variables
such as the substrate or biomass densities for monitoring the process. But,
this task can be very difficult to achieve because the sensors are sometimes
unavailable, unreliable or very expensive. For these reasons software sensors
can be sought instead, using indirect measurements. In this paper, we de-
sign a new observer for the chemostat model with the single measurement
of biogas flow rate. This observer is positive and we show its adjustable
convergence. Through simulations we also show its robustness under noise
measurements. The key point is to construct a non-linear observer using
hidden symmetries in the framework of the theory of symmetry preserving
nonlinear systems. The effectiveness of the proposed methodology is shown
through simulations.

Keywords:
Nonlinear system, invariant system, invariant observer, chemostat model.

1. Introduction

The state reconstruction of anaerobic digestion models by software sensors
or observers has received great attention in the literature. For an overview,
one can see [15, 5] and the references therein. Most of the time, some of the
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state variables of the model are assumed to be measured, such as the biomass
or substrate densities. Unfortunately the sensors measuring these quantities,
if available, are too expensive or unreliable [29, 4, 32, 22, 10, 11]. However,
in the context of anaerobic digestion, measuring the biogas production is
an easy and cheap alternative [18, 30, 31, 17]. In this work, we address
the problem of reconstructing the state variables of the chemostat model,
which is often considered as a good representation of the anaerobic digestion
process, with the single measurement of biogas flow rate.

The well-known (nonlinear) model of the chemostat obtained by mass
balance is given by the differential equations

ṡ = D(t)(sin − s)− kµ(s,K)x,
ẋ = [µ(s,K)−D(t)]x,

(1)

where the vector (s, x) ∈ X := R2
+ represents the substrate and biomass

concentrations respectively. D(t) is the dilution rate, k the conversion factor,
sin the input substrate concentration and µ(·, K) the specific growth rate
per unit of biomass with K a parameters vector. Most of the time, µ(.)
is a function of the variable s only, and is parameterized by one or several
constants that can be gathered in a vector denoted K. We emphasize here
the dependence of µ on K in order to apply below the theory of symmetry
preserving systems. In the present work, we consider the output variable

y(t) = µ(s(t), K)x(t) ∈ Y := R+, (2)

which represents the biogas flow rate, up to a stoichiometric parameter (typ-
ically, the biogas is produced at a rate proportional to the growth rate). In
bioprocess and automatic control literature, one mainly find state estima-
tions with sensors measuring reactant concentrations, and only some recent
works have tackled the state estimation problem with biogas measurements.
In [7], an asymptotic observer has been proposed for anaerobic digestion,
which is robust with respect to the knowledge of the function µ(·, K), but its
convergence speed cannot be assigned and depends strongly on the control
function D(·). In particular if D(·) takes small values on certain time interval
the speed of convergence will be very slow. Moreover, it has been chosen to
be sensitive to the knowledge of the stoichiometric coefficients [14]. Several
techniques based on linearization have been also applied, such as bundles of
local observers [9], extended Kalman filter [23], or unscented Kalman Filter
[21]. However, as underlined in [15], these approaches are not satisfactory
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for operating conditions too far from nominal ones and can reserve some
surprises with certain time-varying control functions D(·), differently to the
asymptotic observer. More recently, a new kind of observer has been pro-
posed, which consists in considering the biogas flow rate as an additional
state variable with an unmodeled part of the dynamics, and an nonlinear
observer that is robust with respect to the unmodeled part [24]. This ob-
server has been shown to behave better that more local ones, although its
convergence analysis could not have been achieved exhaustively. Another
kind of observer based on sliding mode technique is proposed in [28]. It uses
the measurement of the biogas and the substrate to estimate the unknown
inputs and biomasses for an anaerobic digestion model with four states vari-
ables. Here, we aim at providing an exact an adjustable observer with the
measurement of the biogas only and proving its convergence.

Let us underline that y is not a state variable, as it is often the case in
observer design, and that it is not easy to find a smooth invertible change of
coordinates with y as a state variable, to write the system in the canonical
nonlinear normal form [19].

Recently, a new methodology based on the so-called "invariant observers"
exploiting the symmetries of the dynamics has been proposed [1, 8]. The
aim of the present work is to investigate how it can be applied to the present
observation problem. It consists in two steps:

1. find invariants to propose a form of a observer whose estimations remain
positive,

2. find the conditions on the gains to prove the convergence of the ob-
server.

As we shall see, these tasks are far to be straightforward, but the final ob-
server possesses several advantages compared to the other approaches men-
tioned previously. In particular, the proposed observer is positive as the
original system is a positive system. This avoids for instance some estima-
tion peaking that could provide negative values during the transient. The
question of designing positive observers for positive systems has been ad-
dressed in the literature mainly for linear systems [12, 20, 6, 3], but not for
nonlinear dynamics up to our knowledge.

In this paper, we will consider the invariant domain

D := {(s, x) ∈ X, (s, x) > 0}. (3)
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Note that the estimation in batch i.e. with D identically null has already
been tackled in [16, 26] where a new exact observer has been proposed, al-
though the trajectories of the system converge to a subset of the state state
that is not observable. Here we consider the "true" chemostat for which we
shall assume persistently exciting inputs D.

Assumption 1. There exists numbers Dmin, Dmax such that

0 < Dmin < D(t) < Dmax, ∀t ≥ 0. (4)

Observe also that the subset

I := {(s, x) ∈ D, kx+ s = sin} (5)

is invariant by the dynamics (1) and that the dynamics is reduced to a scalar
dynamics on this subset

ṡ = (sin − s)(D(t)− µ(s,K)). (6)

We shall focus here on the true planar dynamics, assuming that the (un-
known) initial condition does not belong to the particular subset I (which
cannot be reached in finite time). It is indeed very unlikely in practice that
the initial condition belongs exactly to this set. The observability analysis
on D \ I is given in Appendix B, under an additional technical assumption.

The paper is organized as follows. In Section 2, we show step by step the
construction of an "invariant observer", leading to a "pre-observer" form.
Then, in Section 3 we give our main result which guarantees the convergence
of the proposed observer for a right choice of its gains. Finally Section 4
shows numerical simulations and discuss about this new observer.

2. Design of the observer

Let us consider the vector

u = (sin, k,K) ∈ U := R3
+ (7)

as the "virtual" control, and deploy the methodology of invariant observers
introduced in [8] to characterize symmetries in the system, as it has been
done for bioprocess systems [13]. Note that the true input of the system is
sin. Since k and K are constant parameters, we will keep them at constant
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values as part of the virtual control. Here, K is chosen as a single scalar
parameter because we shall consider the following assumption on the growth
function. Let us underline that the use of an extended vector of controls
including the true control and some parameters of the system is new and has
not been introduced before.

Assumption 2. The growth function µ(·, K) is homogeneous i.e. µ(s,K) =
µ∗

(
s
K

)
, where µ∗ is an analytical function in R⋆

+.

We consider transformations G := {Gλ1,λ2}λ1,λ2 parameterized by λ1 > 0
and λ2 > 0

Gλ1,λ2 : X × U × Y 7→ X × U × Y (8)
of the form

Gλ1,λ2((s, x), u, y) = (φλ1,λ2(s, x), ψλ1,λ2(sin, k,K), ρλ1,λ2(y)) (9)
such that

φλ1,λ2(s, x) = (λ1s, λ2x) ,

ψλ1,λ2(sin, k,K) =
(
λ1sin,

λ1

λ2
k, λ1K

)
,

ρλ1,λ2(y) = λ2y.

(10)

We shall show that the dynamics (1) is invariant by such G-actions, that
is for any λ1 > 0, λ2 > 0. Here, the word invariance refers to the symmetry
preserving property under the action of a group of transformations, that
was introduced and developed by P. Rouchon et al. (we invite a reader not
familiar with this concept to consult the reference [8]). Posit

f(t, (s, x), (sin, k,K)) :=

[
D(t)(sin − s)− kµ(s,K)x

[µ(s,K)−D(t)]x

]
(11)

as the right hand side of the differential equation (1). On one hand, one has

f

(
t, (λ1s, λ2x),

(
λ1sin,

λ1
λ2
k, λ1K

))
=[

D(t)(λ1sin − λ1s)− λ1

λ2
kµ(λ1s, λ1K)λ2x

[µ(λ1s, λ1K)−D(t)]λ2x

] (12)

and on the other hand

Dφλ1,λ2
(s, x).f =

[
λ1 0
0 λ2

]
f (13)

where Dφλ1,λ2
denotes the differential of φλ1,λ2 , which proves the invariance.
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2.1. Invariant scalar functions and vector fields
We consider now functions J : X ×U × Y 7→ R that are invariant by the

G-action, i.e. that are such that

J

(
(λ1s, λ2x) ,

(
λ1sin,

λ1
λ2
k, λ1K

)
, λ2y

)
= J ((s, x) , (sin, k,K) , y) . (14)

If J is C1, we can differentiate J with respect to λ1, for instance at
λ1 = λ2 = 1, and obtain a first p.d.e. (partial differential equation)

s
∂J

∂s
+ sin

∂J

∂sin
+ k

∂J

∂k
+K

∂J

∂K
= 0. (15)

Symmetrically, we differentiate J with respect to λ2 at λ1 = λ2 = 1, and we
obtain a second p.d.e.

x
∂J

∂x
− k

∂J

∂k
+ y

∂J

∂y
= 0. (16)

Using the well-known method of characteristics for p.d.e. (see for instance
[27] Chap 5, p. 220) to solve (15) and (16), we get solutions of the form

J ((s, x), (sin, k,K), y) = L

(
sin
s
,
kx

s
,
K

s
,
y

x

)
(17)

where L is any smooth function defined on an invariant domain of the dynam-
ics. In the following, we will restrict, for simplicity, the class of functions L
to “one variable” invariant functions (but other choices are of course possible)

J ((s, x), (sin, k,K), y) = L
(y
x

)
. (18)

We shall characterize L more precisely latter on. Following the “methodol-
ogy” (exposed in [1]) to build invariant pre-observers, let ω = (ω1, ω2) be an
invariant vector field. We have then

ω1(λ1s, λ2x) = λ1ω1(s, x),
ω2(λ1s, λ2x) = λ2ω2(s, x),

(19)

for any (s, x), and we proceed in the same way as for the scalar invariant
functions to get as candidate solutions

ω1(s, x) = as, ω2(s, x) = bx, (20)

where a and b are two constants which will play the role of "gains" of the
observer.
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2.2. The pre-observer
For the class of functions L chosen above, we get the invariant "pre-

observer" form

˙̂s = D(t)(sin − ŝ)− kµ(ŝ, K)x̂+ aŝ

[
L

(
y(t)

x̂

)
− L

(
ŷ

x̂

)]
˙̂x = [µ(ŝ, K)−D(t)] x̂+ bx̂

[
L

(
y(t)

x̂

)
− L

(
ŷ

x̂

)] (21)

where ŷ = µ(ŝ, K)x̂. To prove its convergence of the estimation, we seek for
an error expression that is invariant and which tends to 0 when t tends to
+∞.

For the following choice of the function L

L
(y
x

)
= ln

(y
x

)
, (22)

the observer is made explicit from the pre-observer form (21), and we natu-
rally consider the error variables

e1(t) = ln

(
s(t)

ŝ(t)

)
, e2(t) = ln

(
x(t)

x̂(t)

)
. (23)

Note that these error variables are well defined due to the positivity of the
variables on D, and we shall study the convergence of e towards 0. One can
easily check that the positive orthant is invariant by this observer whatever
are the gains a, b, differently to classical observers, such as Luenberger ob-
servers. This is why this observer is called a "positive observer".

Let us also assume some properties of the growth function.

Assumption 3. The function µ∗(.) is C2, concave, increasing and bounded
on R+ with µ∗(0) = 0. Moreover, we assume that its first and second deriva-
tives are bounded.

A typical instance of a function µ that fulfills Assumptions 2 and 3 is
given by the well-known Monod function

µ(s,K) =
µmaxs

K + s
(24)

with
µ∗(s) =

µmaxs

1 + s
(25)

where µmax is the maximum growth rate and K the half saturation or sub-
strate affinity constant.
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3. Convergence of the observer

We give now our main result about the asymptotic property of the state
estimation provided by the observer of the form (21) for the choice (22) of
the function L.

Theorem 1. Let Assumptions 1, 2 and 3 be fulfilled. For the system (1)
with (2) as output, the following dynamics

˙̂s = D(t)(sin − ŝ)− kµ(ŝ, K)x̂+ a ŝ ln

(
y(t)

ŷ

)
,

˙̂x = [µ(ŝ, K)−D(t)] x̂+ b x̂ ln

(
y(t)

ŷ

)
,

(26)

with ŷ = µ(ŝ, K)x̂, is an observer on D\I for any D(·) that fulfills Assump-
tion 1. (0, 0) is a uniformly asymptotically stable equilibrium of the dynamics
of the error variables (23), for non positive a and positive b, provided that
|a| is not too large and b large enough.

Proof. To simplify the writing, we shall drop the time dependency of the
variables s, x, y, ŝ, x̂, ŷ and e1, e2.

One can straightforwardly check that the time derivatives of the error
variables defined in (23) satisfy

ė1 = sinD(t)

(
1

s
− 1

ŝ

)
− k

[
µ(s,K)

x

s
− µ(ŝ, K)

x̂

ŝ

]
− a ln

(
y(t)

ŷ

)
,

ė2 = [µ(s,K)− µ(ŝ, K)]− b ln

(
y(t)

ŷ

)
.

(27)

From the expressions of the errors, we get

ŝ = se−e1 and x̂ = xe−e2 .

Using Assumption 2, one has

y

ŷ
=
µ∗

(
s
K

)
µ∗

(
ŝ
K

) x
x̂

(28)

and

ln

(
y

ŷ

)
= e2 − ln

µ∗

(
se−e1

K

)
µ∗

(
s
K

)
 . (29)
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Then the error dynamics (27) can be written as follows.

ė1 = G1(t, e1, e2) :=
sinD(t)

s
(1− ee1)

−kx
s

[
µ∗

( s
K

)
− µ∗

(
se−e1

K

)
ee1−e2

]
− a ln

(
y(t)

ŷ

)
,

ė2 = G2(t, e1, e2) :=

[
µ∗

( s
K

)
− µ∗

(
se−e1

K

)]
− b ln

(
y(t)

ŷ

)
.

(30)

One can write also

G1(t, e1, e2) =
sinD(t)

s
(1− ee1)− kx

s

[
µ∗

( s
K

)
− µ∗

(
se−e1

K

)
ee1−e2

]
−ae2 + a ln

µ∗

(
se−e1

K

)
µ∗

(
s
K

)
 ,

G2(t, e1, e2) =

[
µ∗

( s
K

)
− µ∗

(
se−e1

K

)]
− be2 + b ln

µ∗

(
se−e1

K

)
µ∗

(
s
K

)
 .

(31)

The Taylor’s formula of order 1 with Lagrange remainder writes

G1(t, e1, e2)=G1(t, 0, 0) + e1
∂G1

∂e1
(t, 0, 0) + e2

∂G1

∂e1
(t, 0, 0) +R1(t, e1, e2),

G2(t, e1, e2)=G2(t, 0, 0) + e1
∂G2

∂e1
(t, 0, 0) + e2

∂G2

∂e2
(t, 0, 0) +R2(t, e1, e2),

(32)

where

R1(t, e1, e2) =
1
2

[
e21

∂2G1

∂e21
(t, θ1(t)e1, θ1(t)e2)

+2e1e2
∂2G1

∂e1∂e2
(t, θ1(t)e1, θ1(t)e2) + e22

∂2G1

∂e22
(t, θ1(t)e1, θ1(t)e2)

]
,

R2(t, e1, e2) =
1
2

[
e21

∂2G2

∂e21
(t, θ2(t)e1, θ2(t)e2)

+2e1e2
∂2G2

∂e1∂e2
(t, θ2(t)e1, θ2(t)e2) + e22

∂2G2

∂e22
(t, θ2(t)e1, θ2(t)e2)

]
,

(33)

with θ1(t) ∈ (0, 1) and θ2(t) ∈ (0, 1). Note that R1 and R2 can be written as

R1(t, e1, e2) =
1
2
eTHG1(t, θ1(t)e)e,

R2(t, e1, e2) =
1
2
eTHG2(t, θ2(t)e)e,

(34)
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where

HG1(t, ε) =

[
∂2G1

∂e21
(t, ε) ∂2G1

∂e1∂e2
(t, ε)

∂2G1

∂e1∂e2
(t, ε) ∂2G1

∂e22
(t, ε)

]
, (35)

HG2(t, ε) =

[
∂2G2

∂e21
(t, ε) ∂2G2

∂e1∂e2
(t, ε)

∂2G2

∂e1∂e2
(t, ε) ∂2G2

∂e22
(t, ε)

]
. (36)

The error dynamics is non-autonomous and (0, 0) is an equilibrium point.
In order to show that this equilibrium is locally uniformly asymptotically
stable, we use a result given in [27] (see Theorem 2 in Appendix A). To
prove that the map

R(t, e) =

[
R1(t, e1, e2)
R2(t, e1, e2)

]
(37)

verifies the condition of Theorem 2, that is

∀ϵ > 0, ∃δϵ > 0, ∥e∥ ≤ δϵ ⇒ ∥R(t, e)∥ ≤ ϵ(∥e∥), ∀t ≥ T,

any norm ∥.∥ on R2 can be used. Here we choose the L1 norm. Under
Assumption 3, one has

∥R(t, e)∥ = |R1(t, e1, e2)|+ |R2(t, e1, e2)| ≤ h(δϵ)(|e1|+ |e2|) (38)

with

h(δϵ) =
1

2

{
sinDmax

s
+
kx

s

[
4µmax + 3

sin
K
µ′
maxe

δϵ +
s2in
K2

µ′′
max

]
+(|a|+ |b|)(1 + eδϵ) +

sin
K
µ′
max +

s2in
K2

µ′′
maxe

δϵ

}
δϵ,

(39)

where µmax, µ′
max and µ′′

max denotes upper bounds of µ, µ′ and −µ′′, respec-
tively,

x̄ = max(sin, x(0)), s = min(s(0), s̃) (40)

with
s̃ = inf {s > 0 : Dmin(sin − s)− kµ(s)x̄ > 0} . (41)

Note that the function h(·) is continuous with h(0) = 0. So, for any ϵ > 0
there exists δϵ > 0 such that h(δϵ) < ϵ.
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To show that (0, 0) is locally uniformly asymptotically stable for the non-
linear system (27), it remains to show that (0, 0) is uniformly asymptotically
stable for the linear part of (27) i.e. for ė(t) = A(t)e(t) where

A(t) =

 ∂G1

∂e1
(t, 0, 0) ∂G1

∂e2
(t, 0, 0)

∂G2

∂e1
(t, 0, 0) ∂G2

∂e2
(t, 0, 0)

 (42)

with

∂G1

∂e1
(t, 0, 0) = −sin

s
D(t) +

kx

s

[
µ∗

( s
K

)
− s

K
µ′
∗

( s
K

)]
− a

s

K

µ′
∗
(

s
K

)
µ∗

(
s
K

) ,
∂G1

∂e2
(t, 0, 0) = −kx

s
µ∗

( s
K

)
− a,

(43)

∂G2

∂e1
(t, 0, 0) =

s

K
µ′
∗

( s
K

)
− b

s

K

µ′
∗
(

s
K

)
µ∗

(
s
K

) ,
∂G2

∂e2
(t, 0, 0) = −b.

For this, we consider the Losinskii measure L(.) (see [25] for more details)
associated to the L1 norm for which this measure is negative (that is ∥x∥ =∑n

j=1 |xj| for a vector x = (x1, x2, ..., xn)
T and ∥M∥ = maxj {

∑n
i=1 |mij|} for

a matrix M = [mij] ∈ Mn×n), which is given by the following expression

L(M) = max
j

{
mjj +

∑
i ̸=j

|mij|

}
, (44)

In dimension two, one gets

L(M) = max {m11 + |m12| , m22 + |m21|} . (45)

Here, we have

L(A(t)) = max
{
−av + u1(t) + |a+ u2| , −b+ v

∣∣∣b− µ∗

( s
K

)∣∣∣} (46)
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with

v =
s

K

µ′
∗
(

s
K

)
µ∗

(
s
K

) > 0, (47)

u1(t) = −sin
s
D(t) +

kx

s

[
µ∗

( s
K

)
− s

K
µ′
∗

( s
K

)]
, (48)

u2 =
kx

s
µ∗

( s
K

)
> 0. (49)

As the function µ∗ is concave, one has the inequality

µ∗(0) = 0 ≤ µ∗(s)− sµ′
∗(s), (50)

which implies v ≤ 1. Note that one has also u1(t) + u2 < 0 for any t ≥ 0.
Then, for a ≥ −u2, one gets

−av + u1(t) + |a+ u2| = a(1− v) + u1(t) + u2 (51)

which is negative for any t ≥ 0, provided that a is non positive and |a| not
too large to ensure a ≥ −u2 along the trajectory of the system. For b > µmax,
one gets

−b+ v
∣∣∣b− µ∗

( s
K

)∣∣∣ = b(v − 1)− vµ∗

( s
K

)
< 0. (52)

Finally, one obtains that L(A(t)) is negative for any t ≥ 0, which ends the
proof.

4. Numerical illustrations

We have performed numerical simulations with the Monod growth func-
tion (24), which verifies Assumptions 2 and 3. The simulations were carried
out using the parameter values and initial conditions given in Tables 1 and
2, over a period of 5 days for a variable dilution rate depicted on Fig. 1. The
corresponding time measurement of biogas flow rate is given on Fig. 2.

We have compared the performances of three observers for the reconstruc-
tion of the state variables s and x.

1. The proposed invariant observer (26) with the gains a = −40 and
b = 50.

12



k 6.6
µmax 1.2h−1

K 4.95mg.l−1

sin 9mg.l−1

Table 1: Parameter values

model observer
s(0) = 3mg.l−1 ŝ(0) = 2mg.l−1

x(0) = 0.5mg.l−1 x̂(0) = 0.8mg.l−1

Table 2: Initial conditions

Figure 1: Dilution rate

2. The asymptotic observer

˙̂s = D(t)(sin − ŝ)− ky(t),
˙̂x = y(t)−D(t)x̂,

which is not adjustable.
3. The classical Luenberger observer

˙̂s = D(t)(sin − ŝ)− kµ(ŝ, K)x̂+ g1(y − ŷ),
˙̂x = [µ(ŝ, K)−D(t)] x̂+ g2(y − ŷ),

with the gains g1 = 100, g2 = 100.
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Figure 2: Biogas measurement

Figure 3: Estimations of the substrate and biomass concentrations
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The comparison of the three estimators given on Fig. 3 shows that the
invariant observer provides a very fast convergence, faster than the other ob-
servers. For the Luenberger observer, we did not obtained faster convergence,
even with very large gains g1, g2. The asymptotic observer does converge but
its convergence speed is low, especially for the estimation of the variable x.
Despite the relatively large values of the gains a and b, one can observe that
the invariant observer does not suffer from any peaking in the transients, due
to its structure that preserves positivity of the variables.

To test the robustness of the observers, we have considered uncertainty on
the knowledge of the parameter µmax, with observers using the value of µmax

20% higher than the real value. Fig. 4 shows that the invariant observer,
with the same gains as before, does not behave well...

Figure 4: Estimations of the substrate and biomass concentrations with a bad knowledge
of the parameter µmax

If one reduces the absolute value of the gain a, accordingly to the state-
ment of Theorem 1, taking a = −5 instead of a = −40, Fig. 5 shows that
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the estimation of the variable s is satisfactorily reconstructed, in a better
way than for the two other observers. A compromise with a lower speed of
convergence has therefore to be chosen. However, the reconstruction of the
variable x presents a bias, as for the Luenberger one (indeed the product
µmaxx(t) is well estimated, which provides an estimation of x(t) 20% lower).
On the contrary, the asymptotic observer does not present an asymptotic
bias because its dynamics does not rely on the knowledge of the function
µ, but its estimation error remains very large during a long period of time
because of its slow convergence.

Figure 5: Estimations of the substrate and biomass concentrations under a bad knowledge
of the parameter µmax with the gain a = −5 for the invariant observer

Finally, we have considered in the first simulations an additive corrupted
noise on the measurements (with a Gaussian noise of variance 10−3), de-
picted on Fig. 6. The simulations of the three observers show that the in-
variant observer still behaves well (better than the Luenberger one), while
the asymptotic observer is not much affected by the noise (this is due to the
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fact that this estimator filters the measurement signal without any amplifi-
cation gain). Despite this property of filtering of the asymptotic observer,
the invariant observer is better from the point of view of convergence to the
true signal.

Figure 6: Biogas measurement with noise
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Figure 7: Estimations of the substrate and biomass concentrations with measurement
noise

5. Conclusion

In this work, we have designed a nonlinear observer using hidden sym-
metries for the chemostat model with the single measurement of biogas flow
rate. The novelty is the use of an extended vector of controls including the
true control and some parameters. The main advantage of this observer is its
positivity and its convergence without having to choose high gains as it often
occurs with other nonlinear techniques. Important features of this study is
that any growth rate function µ can be considered under some mild assump-
tions, and the convergence of the observer and the local observability have
been theoretically proven. A future work will concern its extension to more
general classes of growth functions to weaken the assumptions on the growth
function, and allow non-monotonic ones such as the Haldane function [2].

Appendix A.

We recall the result from [27] (Theorem I.2.1, p. 195):
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Theorem 2. Let ẋ = A(t)x be a linear system in Rn, uniformly stable for
t ≥ T . Let F : R× Rn 7→ Rn be a continuous map such that

∀ϵ > 0, ∃η > 0, ||x|| ≤ η ⇒ ||F (t, x)|| ≤ ϵ||x||, ∀t ≥ T. (A.1)

Then, the equilibrium 0 of the system ẋ = A(t)x+F (t, x) is uniformly asymp-
totically stable for t ≥ T .

Appendix B. The observability analysis

For technicalities, we consider here the following class of dilution rate
functions D(·), as considered on the example of Section 4.

Assumption 4. D(·) is piecewise constant with at least one discontinuity
point on [0, T ].

Proposition 3. Under Assumptions 1, 3 and 4, the system is observable on
the domain D \ I.

Proof. We can prove the observability of the dynamic system (1) for the
output y = µ(s,K)x, by expressing the variables s and x from y and ẏ. We
have

ẏ = ṡµ′(s,K)x+ ẋµ(s,K) (B.1)

and then

ẏ = −kµ′(s,K)µ(s,K)x2

+ [D(t)(sin − s)µ′(s,K) + (µ(s,K)−D(t))µ(s,K)]x.
(B.2)

The Jacobian of the transformation (s, x) → (y, ẏ) is

Jac(t, s, x) =

 ∂y
∂s
(t, s, x) ∂y

∂x
(t, s, x)

∂ẏ
∂s
(t, s, x) ∂ẏ

∂x
(t, s, x)

 (B.3)
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where

∂y

∂s
= µ′(s,K)x, (B.4)

∂y

∂x
= µ(s,K), (B.5)

∂ẏ

∂s
= −k[µ′′(s,K)µ(s,K) + µ′(s,K)2]x2

+ [2µ(s,K)µ′(s,K)− 2D(t)µ′(s,K) +D(t)(sin − s)µ′′(s,K)] , (B.6)
∂ẏ

∂x
= −2kµ′(s,K)µ(s,K)x

+ [D(t)(sin − s)µ′(s,K) + (µ(s,K)−D(t))µ(s,K)]. (B.7)

For a given trajectory in D \ I, let us consider

J(t) = det(Jac(t, s(t), x(t))). (B.8)

One has

J(t) = D(t)
[
(µ(s(t), K)µ′′(s(t), K)− µ′(s(t), K)2)(sin − s(t))

−µ(s(t), K)µ′(s(t), K)
]
x(t) + µ(s(t), K)

[
kx(µ′(s(t), K)2

−µ(s(t))µ′′(s(t), K)) + µ(s(t), K)µ′(s(t), K)
]
x(t).

(B.9)

To prove that the system is observable on [0, T ], it is enough to show that
there exists t ∈ [0, T ] such that J(t) ̸= 0. Suppose on the contrary that
J is identically null on the interval [0, T ]. Note first that D is a positive
function under Assumption 1, and that all terms in J are continuous with
respect to t except D. Let t∗ be a discontinuity point of D(·), and write
lim
t→t+⋆

J(t) = lim
t→t−⋆

J(t) = 0 with s∗ = s(t∗) and x∗ = x(t∗). This gives the

conditions

x∗
[
(µ(s∗, K)µ′′(s∗)− µ′(s∗, K)2)(sin − s∗)− µ(s∗, K)µ′(s∗, K)

]
= 0,

(B.10)

x∗µ(s∗, K)
[
kx∗(µ′(s∗, K)2 − µ(s∗, K)µ′′(s∗, K)) + µ(s∗, K)µ′(s∗, K)

]
= 0.
(B.11)
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As x∗ ̸= 0 and µ(s∗, K) ̸= 0, we get

(µ(s∗, K)µ′′(s∗, K)− µ′(s∗, K)2)(sin − s∗)− µ(s∗, K)µ′(s∗, K) = 0, (B.12)

kx∗(µ′(s∗, K)2 − µ(s∗, K)µ′′(s∗, K)) + µ(s∗, K)µ′(s∗, K) = 0. (B.13)

Adding these two last equations raises the condition

(µ(s∗, K)µ′′(s∗, K)− µ′(s∗, K)2)(sin − s∗ − kx∗) = 0. (B.14)

Outside the set I, one deduces from this last equality that the condition

µ(s∗, K)µ′′(s∗, K)− µ′(s∗, K)2 = 0 (B.15)

has to be fulfilled, and thus a contradiction as µ is assumed to be concave
and increasing with respect to s. This ends the proof.
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