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Abstract: Water pollution from human activities is largely a result of the discharge of wastewater 17 

and industrial waste into rivers. Phytoremediation, the technique that uses plants to remove pol-18 

lutants from the polluted waters, is a growing field of research because of its various environmen-19 

tal advantages. This study aims at evaluating the efficiency of a constructed wetland in removing 20 

pollutants and treating the polluted waters of the Litani River in Lebanon, by means of two aquatic 21 

plants, Phragmites australis and Sparganium erectum. Results showed that the levels of the physico-22 

chemical and biological parameters measured on water samples at downstream of the wetland 23 

were lower than those obtained at upstream. Results revealed that average removal efficiency was 24 

41% for chemical oxygen demand (COD), 54% for biological oxygen demand (BOD5), 97% for 25 

nitrate (NO3-), 40% for nitrite (NO2-), 67 % for phosphate (PO43-), while it was negative (-62 %) for 26 

sulfate (SO42-), indicating an increase in sulfate content in the treated effluent returning to the 27 

River. On the other hand, most of the effluent chemical and biological characteristics were within 28 

the provisional discharge limits of effluent to water body set by the Ministry of Environment (MoE) 29 

and Lebanese Wastewater Reuse Guidelines of the Food and Agricultural Organization of the 30 

United Nations (FAO). Statistical analyses also showed significant variations (P<0.5) among the 31 

two sampling sites along the wetland. Our findings clearly demonstrate that phytoremediation is a 32 

viable solution to remove pollutants in a competitive environment, and improve the quality of 33 

contaminated waters by acting as a sink for various contaminants. The gained experience may be 34 

scalable to other sites and environments across the country. 35 

Keywords: Water pollution; Litani River; Constructed wetland; Biological Oxygen Demand; 36 

Chemical Oxygen Demand; Pollutants removal 37 

 38 

 39 

1. Introduction 40 

Constructed Wetlands are an alternative, promising technology for wa-41 

ter/wastewater treatment and pollution mitigation (Stefanakis, 2020). They belong to the 42 
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wider category of natural treatment systems, which are designed and constructed to uti-43 

lize the natural processes involving wetland vegetation, soils, and the associated micro-44 

bial assemblages to assist in treating wastewaters (Mustafa et al., 2009; Mustafa, 2013; 45 

Vyamazal, 2013). In addition, this environmentally friendly and sustainable technology 46 

provides multiple economic, ecological, technical and societal benefits, not only for do-47 

mestic, municipal and industrial wastewater treatment, but also for treating agricultural 48 

runoff and agro-industrial wastewater (Mustafa and Haydar, 2020). Endowed with the 49 

advantages of cost-effectiveness and low energy consumption, the wetland technology 50 

places the overall context of the need for reliable and sustainable solutions to managing 51 

agricultural runoff and agro-industrial wastewater (Wang et al., 2018). 52 

Phytoremediation using constructed wetlands has become a logical solution to im-53 

prove the quality of contaminated waters by acting as a sink for various contaminants 54 

(Herath and Vithanage, 2015). Phytoremediation is a technique for which aquatic plants 55 

are highly useful in removing pollutants in wastewater, by absorbing organic and inor-56 

ganic pollutants in a competitive environment (Garad, 2022; Ali, 2022 Anning et al., 57 

2013). Multiple water contaminants can be eliminated by using renewable and biological 58 

processes offered by constructed wetlands, requiring limited maintenance and external 59 

energy inputs (US-EPA, 2016).  60 

The most important advantage of this system is that it is a green technology that 61 

uses plant and microbe natural resources, lowers degradation of the environment and 62 

safeguards ecosystems. Other benefits include the fact that both organic and inorganic 63 

pollutants are effectively removed by aquatic plants, making them suited for the treat-64 

ment of mixed types of pollutants (Ali et al., 2022). However, a critical assessment of the 65 

performance and effectiveness of wetland systems for removing various contaminants, 66 

for which the design parameters and operational conditions affecting the efficiency of 67 

contaminant removal (Wang et al., 2018). 68 

Plants are the primary components of a constructed wetland, as they can influence 69 

the wetland treatment performance by several processes (Wang et al., 2015), either for 70 

enhancing the abundance and diversity of microorganisms in the rhizosphere by in-71 

creasing available surface area for bacterial attachment and growth (Menon et al., 2013), 72 

or exuding a range of degradable organic compounds (including sugars, organic acids, 73 

and amino acids), which can especially provide a continuing supply of carbon for deni-74 

trification bacteria in wetland systems (Dong et al., 2016). In addition, wetland plants 75 

absorb nutrients into their tissues directly (Liu et al., 2014), and other contaminants, such 76 

as heavy metals and micro-pollutants (Teuchies et al., 2012; Huang et al., 2012). Wang et 77 

al. (2015) demonstrated that plant roots improve oxygen conditions, thereby supporting 78 

the aerobic processes in constructed wetlands in flooded conditions. On the other hand, 79 

the existence of plants is thought to increase and stabilize hydraulic conductivity in con-80 

structed wetlands (Zhang et al., 2014). Lama et al. (2022) demonstrated that the interac-81 

tion between water flow and Phragmites australis plants significantly affects flow dy-82 

namics, hydraulic conveyance, and water quality of vegetated water bodies. 83 

The Litani River is Lebanon's largest river and most important water resource, suf-84 

fering from widespread sewage disposal, direct drainage of unregulated industrial 85 

wastewater from urban areas, lack of river bed protection and illegal diversion. Today, 86 

the river is becoming a threat to public health as water contamination extends to soils, 87 

crops and wildlife, as well as hinders the socio-economic growth and well-being of ri-88 

parian ecosystems. In an attempt to address the deteriorating water quality of the Litani 89 

River, the Litani River Basin Management Support (LRBMS) has constructed a wetland 90 

system between 2012 and 2013 in a publicly owned site by the Litani River Authority 91 

(LRA), to contribute to reducing the high pollution rates of the River’s waters. The objec-92 

tives of the present study were to (i) assess the performance of a constructed wetland 93 

using two aquatic plants, Sparganium erectum and Phragmites australis, in treating the 94 
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contaminated waters of the Litani River, and (ii) (ii) determine the efficiency of these two 95 

plants in removing pollutants and improving the quality of the polluted waters of the 96 

River. 97 

2. Materials and methods 98 

2.1. Climatic characteristics of the wetland site 99 

The climate of South Bekaa Valley is sub-Mediterranean, with hot and dry season 100 

between April and September and cold and wet season for the rest of the year. Average 101 

yearly rain and potential evapotranspiration are 696 mm and 1314 mm, respectively, 102 

based on data of the EU-SUPROMED Project (Sustainable Production in Water Limited 103 

Environments of Mediterranean Agro-Ecosystems, 2019-2022) for the calculation of 104 

Typical Meteorological Year (TMY) for South Bekaa Valley, during the period from 1994 105 

through 2018 (Karam et al., 2022). About 95% of the rain occurs from November to 106 

March. Ambient weather data (solar radiation, air temperature, wind speed at 2m 107 

height, air temperature at dew point and relative humidity) were recorded on an hourly 108 

basis from an automated weather station (METOS Compact, PESSL Instruments, Aus-109 

tria) 80 m apart from the wetland site. The weather station is established within a stand-110 

ard meteorological park (40 m N–S×40 m W–E) cultivated with rye grass (Lolium 111 

perenne), and is automatically linked to a built-in data logger, which discharges at 10-min 112 

interval the registered meteorological data via GPRS (General Packet Radio Service) 113 

standard wireless communication into a computer situated in the weather monitoring 114 

unit of the research station. Data was used to compute potential evapotranspiration ac-115 

cording to Penman–Monteith equation (Allen et al., 1998) (Figure 1). 116 

 117 

Figure 1. Daily precipitation (P, mm), maximum (Tmax, ºC) and minimum (Tmin, ºC) air temper-118 

ature and potential evapotranspiration (ETo, mm day-1) recorded at the wetland site during the 119 

sampling period. 120 

2.2. Characteristics of the constructed wetland 121 

The designed wetland is a Free Water Surface (FWS) wetland established in 2013 by 122 

the Litani River Basin Management System (LRBMS), on a public-owned property, in the 123 

southern plains of the Bekaa Valley. The site is within Khirbet Kanafar Agricultural and 124 
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Extension Center of the Litani River Authority, and 10 km away from Lebanon's only 125 

remaining natural wetland “Ammiq Wetland” (UNESCO biosphere reserve), offering 126 

significant potential for environmental education, wetland habitat restoration, and other 127 

additional benefits. The constructed wetland area boundary is generally flat, with eleva-128 

tions ranging from 861.5 m above the sea level (a.s.l) at the top of the surrounding berms, 129 

to 860.0 m a.s.l in the shallow basins cultivated with Phragmites australis and Sparganium 130 

erectum, to 857.5-858.5 m a.s.l in the deep ponds (Figure 2). The wetland is approximately 131 

3.5 ha in size, with an inner wet area (shallow basins and deep ponds) of 2.5 ha in size. It 132 

consists of three main parts: 133 

 134 

Figure 2. Overview of Litani River constructed wetland (LRBMS, 2012). 135 

 Inlet structure, including piping and pumping station, constructed near the 136 

river bank, conveys inflow water from the river to the wetland. The pump-137 

ing station consists of three electrical pumps, two of which are 60 l/s capac-138 

ity each, and one 30 l/s capacity, impelling water directly from the bottom of 139 

the river, and conveying it into the wetland by means of a 16-inch galva-140 

nized iron pipe buried in the soil. 141 

 An oval-shaped basin, 240 m average length (north-south) and 125 m aver-142 

age width (east-west), with an average outer area, including berms, of 143 

35,000 m2, and inner wet area of 25,000 m2. The inner area consists of an al-144 

ternation of three deep ponds (2-3 m deep) and two shallow areas (30-50 cm 145 

deep), with a ratio of 2:1 (2/3 deep ponds versus 1/3 shallow areas). The deep 146 

ponds were designed to promote mixing and uniform flow, and the shallow 147 

areas to promote growth of emergent wetland vegetation, which provides a 148 

biologically and chemically diverse environment, where much of the pol-149 

lutant removal occurs. 150 

 Adjustable outlet structure, made of a concrete weir, piping and outlet earth 151 

channel to convey the treated water back to the Litani River. The discharge 152 

channel features initial and terminal narrow stream channels whose banks 153 

are seeded with the same mix of plant species as the outside of the wetland 154 

berms. The bed of the discharge channel ends with a large rock weir struc-155 

ture. The discharge channel has been sized to accommodate a normal flow 156 
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of 20-60 l/s, based on expected outflows from the constructed wetland sys-157 

tem. This corresponds to a channel width of approximately three to five 158 

meters with the exception of the widened, flattened central area. 159 

 160 

The wetland has been designed to provide 5-day residency time for effluents, and 161 

treat as much as 100% of the River waters during the dry season. From the inlet pipe to 162 

the outlet pipe, water in the wetland spends 5-6 days for treatment purposes. This in-163 

terval has been designed as the time period needed for water residency in the wetland, 164 

which corresponds to BOD five days (BOD5). With a pumping capacity of 60 l/s, total 165 

daily pumped water 5184 m3. With a storage capacity of 30,000 m3, the residency time is 166 

then 30,000 m3/5184 m3 per day = 5.72 days. This water residency-time inside the wetland 167 

corresponds to BOD5, or the amount of oxygen needed for the biological degradation of 168 

organic substances in water. From hydraulic point of view, a wetland is considered a 169 

water catchment surface, conceptualized as a ‘Reservoir’ with inflows (upstream contri-170 

butions) and outflows (evaporation, infiltration, surface runoff and final drainage dis-171 

charge. The storage within the wetland is conceptualized as the difference between in-172 

flows and outflows: 173 

𝑄𝑖𝑛 −  𝑄𝑜𝑢𝑡 =  
𝑑𝑉

𝑑𝑡
           (1) 174 

Where Qin is inflow (m3/s), Qout outflow (m3/s), V storage (m3) and t time. 175 

The constructed wetland has a dense coverage of emergent vegetation in its shallow 176 

zones with species adapted to constant flooding. Phragmites australis (common reed) and 177 

Sparganium erectum are native to Lebanon and a robust emergent marsh plant species that 178 

provides habitat for a variety of bird species. Moreover, they are commonly found near 179 

the site at Ammiq wetland, and are readily propagated by planting its rhizomes (root 180 

structures). In the deep, open water areas of the constructed wetland, both floating and 181 

submerged plants will serve to enhance biodiversity and the treatment effectiveness for 182 

certain pollutants. Nymphaea alba, or water lily are planted in the wetlands for this pur-183 

pose. 184 

3. Methodology used 185 

For quality assessment, water samples were collected weekly during 10-week period 186 

from 21 June through 29 August 2020, from both the wetland inflow and outflow ponds. 187 

Water sampling method was the extendable sampling pole method, which is fully de-188 

scribed in the ‘Climate Change Indicators in the United States’ (US-EPA, 2000 and 2016) 189 

and the ‘Monitoring and Sampling Manual’ of the Department of Environment and Sci-190 

ence Government of the State of Queensland, Australia (DES, 2018). Samples were col-191 

lected directly into the laboratory supplied containers at each water sampling date to 192 

reduce the risk of contamination. As described by US-EPA and DES, also UN-HABITAT 193 

(2008), direct sample collection is the preferred procedure if the environment is safe, e.g., 194 

during low flow conditions, and sample bottles do not contain preservative. Collected 195 

water samples using the extendable sampling pole is recommended in isolated pools, so 196 

as not to disturb the substrate. A full description of the sampling method is available in 197 

the Monitoring and Sampling Manual of the Department of Environment and Science, 198 

State of Queensland (DES, 2018). Physicochemical and biological parameters were ana-199 

lyzed at the soil and water Laboratory of Kherbet Kanafar Agricultural and Extension 200 

Center of the Litani River Authority, 100 m apart from the constructed wetland. Physi-201 

cochemical parameters included Total dissolved solids (TDS) and electrical conductivity 202 

(EC), which were determined by a tracer pocket tester (JENWAY 470 conductivity meter), 203 

pH by a portable pH meter (HI-83141), and nitrate (NO3-), nitrite (NO2-), phosphate 204 
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(PO43-), and sulfate (SO42-) by spectrometer (Thermo Helios Aquamate 2000E). Biological 205 

parameters included Chemical Oxygen Demand (COD), Biological Oxygen Demand 206 

(BOD5), and Dissolved Oxygen (DO). The ratio of BOD5/COD was then calculated. DO 207 

was measured directly on site by a dissolved oxygen meter (MILWAUKEE). COD was 208 

determined by using COD reagent tubes containing dichromate solution, 2 mL of water 209 

samples were added to the tubes, and then were placed in a heating reactor (VELP- Sci-210 

entifica, Spain) at 150 C for 2 hrs. After that, COD concentration was determined by a 211 

spectrometer (Thermo Helios Aquamate 2000E). For BOD5 measurement, 250 ml of water 212 

sample were poured in glace bottles, a stirring bar, sodium hydroxide and nitrification 213 

inhibitor were added to the bottles that were closed by a VELP BOD sensor and placed in 214 

a BOD System 6–FTC 90–r Refrigerated incubator (VELP- Scientifica, Spain) for 5 days at 215 

20 C. Sampling was made regularly at weekly basis starting from the week of 21-27 June 216 

2020, through the week of 23-29 August 2020. The influent samples were collected on 217 

Monday of each week of the sampling period, while the effluent samples were collected 218 

on Friday, to abide the 5-day interval of water time-residency between the two samplings 219 

days, so that the time needed for BOD5 is respected. 220 

3.1. Pollutants removal efficiency 221 

The reduction efficiency (RE, in %) of the concentration of pollutants was assessed 222 

according to the International Water Association (Sperling, 2007) which proposed an 223 

equation for this intent (Singh, 2013). The efficiency of the wetland in terms of the re-224 

moval percentage of pollutants (COD, BOD5, NO3-, NO2-, PO43-, and SO42-) was computed 225 

using the following formula:  226 

RE (%) = 
𝐶𝑖−𝐶𝑒

𝐶𝑖
 𝑥 100       (2) 227 

Where, Ci and Ce are the average influent and effluent concentrations, respectively 228 

(in mg/L). 229 

3.2. Statistical analyses 230 

Statistical analyses of the physicochemical and biological parameters data obtained 231 

from water sampling at the wetland inflow and outflow during the study period were 232 

conducted by paired t-test using STATISTICA, Software version 10, which provides all 233 

the tools needed for statistical analysis (Hill and Lewicki, 2007; Statsoft Inc., 2011). The 234 

Student’s t-test was used to detect how significant the differences between the two wa-235 

ter sampling groups, inflow and outflow, are in terms of pollutant’s concentration, and 236 

how the differences were repeatable for the whole sampling period. 237 

4. Results and Discussion 238 

4.1. Comparative influent and effluent water quality 239 

Minimum, maximum and mean values of chemical oxygen demand (COD), dis-240 

solved oxygen (DO), biological oxygen demand (BOD5), phosphate (PO43-), nitrate (NO3-), 241 

nitrite (NO2-), sulfate (SO42-), water temperature (T), total dissolved solids (TDS), electrical 242 

conductivity (EC), and pH, measured on water samples from the wetland influent and 243 

effluent are found in Tables 1 and 2, respectively, alongside the Environmental limit 244 

values for surface water based on MoE Decision 8/1 of the Ministry of Environment 245 

(MOE, 2001) and the Lebanese Wastewater Reuse Guidelines (Food and Agricultural 246 

Organization of the United Nations, 2010 and 2016). In addition, Table 3 presents the 247 

results of standard deviation and p value of the removal efficiency of contaminants cal-248 

culated according to Eqn. (2) on water samples from the two sites along the wetland. 249 

Table 1. Minimum, maximum and mean value of water quality parameters collected from the 250 

wetland influent compared to recommended limits. 251 

https://www.statisticshowto.com/what-is-statistical-significance/
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Parameters 

Wetland Influents 
Environmental limit 

values for surface 

water based on MoE 

Decision 8/1 (MoE 

2001) 

Lebanese wastewater reuse guidelines 

(United Nations - Food and Agricultural 

Organization, 2010) 

Min Max Mean Water 

Category 

I 

Water 

Category 

II 

Water 

Category 

III 

Temperature (◦C) 21.0 27.5 25.1 30 - - - 

EC (µs/m) 530.0 993.0 782.5 - - - - 

TDS (mg/L) 318.5 595.5 469.5 - - -                     - 

DO (mg/L) 2.0 5.6 3.9 - - - - 

pH 7.5 8.4 7.8 6 - 9 6 - 9 6 - 9 6 - 9 

Phosphate (mg/L) 3.5 8.2 5.8 5 - - - 

Nitrite (mg/L) NQ* 0.35 0.1 - - - - 

Nitrate (mg/L) NQ* 44.6 14.3 90 30 30 30 

Sulfate (mg/L) 20.8 46.2 35.8 1000 - - - 

BOD5 (mg/L)  28.0 159.5 69.4 25 25 100 100 

COD (mg/L) 59.0 377.5 262.1 125 125 250 250 

* Not quantifiable. 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

Table 2. Minimum, maximum and mean value of water quality parameters collected from the 261 

wetland effluent compared to recommended limits. 262 

Parameters 

Wetland effluents Environmental limit 

values for surface water 

based on MoE Decision 

8/1 (MoE 2001) 

Lebanese wastewater reuse guidelines 

(United Nations - Food and 

Agricultural Organization, 2010) 

Min Max Mean Water 

Category I 

Water 

Category 

II 

Water 

Category III 

Temperature (◦C) 24.0 28.0 26.3 30 - - - 

EC (µs/m) 561.3 1000.0 753.3 - - - - 

TDS (mg/L) 335.0 671.5 467.5 - - - - 
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DO (mg/L) 4.0 6.9 5.3 - - - - 

pH 7.8 8.9 8.2 6-9 6 - 9 6 - 9 6 - 9 

Phosphate (mg/L) 0.6 4.5 1.9 5 - - - 

Nitrite (mg/L) 0.0 0.3 0.04 - - - - 

Nitrate (mg/L) 3.3 0.0001 0.37 90 30 30 30 

Sulfate (mg/L) 15.6 181.1 57.9 1000 - - - 

BOD5 (mg/L)  5.4 99.8 31.7 25 25 100 100 

COD (mg/L) 29.0 280.0 154.7 125 125 250 250 

 263 

Table 3. Mean values of water quality parameters and variation percentages of the inflow and 264 

outflow of the constructed wetland of the Litani River. 265 

Parameter Number of 

samples 

Inflow Outflow Removal Efficiency 

(%) * 

p value 

Temperature (◦C) 10 25.02 ± 2.68 26.29 ± 1.23 -5.06 0.072 

EC (µs/m) 10 782.48 ± 127.1 753.31 ± 179.1 3.73 0.407 

TDS (mg/L) 10 469.51 ± 75.9 467.51 ± 142.6 0.43 0.952 

DO (mg/L) 10 3.96 ± 1.16 5.3 ± 1.05 -33.8 0.032 

pH 10 7.82 ± 0.28 8.22 ± 0.35 -5.12 0.006 

Phosphate (mg/L) 10 5.84 ± 1.49 1.90 ± 1.19 66.9 0.000 

Nitrite (mg/L) 10 0.08 ± 0.1 0.04 ± 0.09 40.27 0.456 

Nitrate (mg/L) 10 14.30± 20.44 0.37 ± 1.09 97.39 0.078 

Sulfate (mg/L) 10 35.86 ± 8.26 57.99 ± 49.32 -61.67 0.202 

BOD (mg/L) 10 69.45 ± 39.5 31.71 ± 26.8 54.3 0.027 

COD (mg/L) 10 262.09 ± 130.3 154.72 ± 119.5 41 0.012 

* Values were obtained by applying Equation (2). 266 

4.2. Time course evolution of physicochemical parameters 267 

4.2.1. EC, TDS, pH and T 268 

Figures 3a and 3b illustrates time course evolution of electrical conductivity (EC) 269 

and total dissolved solids (TDS), respectively, during the sampling period from June 270 

through August 2020, in inflow and outflow samples. Electrical conductivity has been 271 

shown to decrease in the wetland outflow compared to the inflow. The value of EC of the 272 

influent ranged from 530 to 993 µSm−1, with an average value of 782.5 µSm−1, while the 273 

range in the effluent ranged from 561.3 to 1000 µSm−1, with an average value of 753.3 274 

µSm−1 (Tables 1 and 2). This slight decrease of the EC level at the downstream of the 275 

wetland may be due to the absorption of ions such as Ca2+ and Mg2+, combined with sul-276 

fate and phosphate salts, by the wetland plants. Concerning TDS, the concentration of 277 
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this indicator of water turbidity along the wetland did not mark a remarkable variation, 278 

as its concentration ranged from 469.5 mg∙L−1 at the upstream to 467.5 mg∙L−1 at the 279 

downstream. Natural water sources typically have a certain level of TDS, but human ac-280 

tivity, such as irrigation, urbanization, can greatly raise the TDS level in surface water 281 

(Rosli and Seca, 2010). The same implies for EC, where large variations in conductivity 282 

may be due to either natural flooding, evaporation or man-made contamination which 283 

may be very harmful to the quality of the water (Mihir et al., 2015). The World Health 284 

Organization (WHO) considers a TDS concentration less than 1000 mg L-1 as acceptable, 285 

and a range of 10 to 1000 μSm-1 for EC is acceptable in freshwater (WHO, 2006). There-286 

fore, the results obtained in both the wetland inflow and outflow samples presented in 287 

Tables 1 and 2 satisfy the standards set by WHO. 288 

289 
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Figure 3. Time course evolution of electrical conductivity (3a), total dissolved solids (3b), pH (3c) 291 

water temperature (3d). 292 

On the other hand, average pH along the wetland ranged from 7.8 at the inlet to 8.2 293 

at the outlet (Figure 3c), and this range is within the environmental limits for surface 294 

water set by Decision 8/1 of the Ministry of Environment and FAO guidelines for 295 

wastewater reuse in Lebanon, while water temperature was found to steadily vary be-296 

tween the two sampling sites across the wetland from 25.0 ℃ to 26.3 ℃ (Figure 3d). 297 

4.2.2. Nitrate and Nitrite 298 

The evolution of nitrate and nitrite during the sampling period from the wetland 299 

inflow and outflow are presented in Figures 4a and 4b, respectively. Data shows a peak 300 

in the inflow concentration of nitrate at the beginning of the sampling period (Figure 4a). 301 

The mean level of nitrate (NO3-) in the downstream site of the wetland (0.37 mg L-1) was 302 

much lower than the level obtained from the upstream site of the river, which is 14.3 mg 303 

L-1, thus showing a high removal efficiency by the wetland. The high level of NO3- found 304 

at the upstream site of the wetland is mainly due to agricultural activities in the plains 305 

near the Litani River, for which overestimation of irrigation needs of sprinkler-irrigated 306 

potatoes may have led significant loads of nitrate by surface runoff to the river. 307 

For nitrite, the concentrations along the wetland trail ranged from an average value 308 

of 0.35 mg L-1 at the inflow site to 0.30 mg∙L−1 at the outflow site, with a removal efficiency 309 

of 40% (P<0.456). However, the values of NO3- and NO2- differed significantly among the 310 

different sampling dates, as marked in Figures 4a and 4b. This variation might be at-311 

tributed to several components, as the Litani River effluents contain excessive amounts of 312 

nitrogen, as a result of the agricultural runoff and agro-industrial wastewater typical of 313 

the Litani River Basin.  314 
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 317 

Figure 4. Time course evolution of Nitrate (4a), Nitrite (4b), Phosphates (4c) and Sulfates (4d). 318 

Despite substantial variability in the degree and rate of nitrogen cycling under the 319 

influence of several variables, such as air temperature, level of dissolved oxygen, pH and 320 

other environmental conditions, the probable elimination mechanisms of nitrate and ni-321 

trite include plant and microbial assimilation, nitrification/denitrification phase and po-322 

tential release of volatile ammonia gas to the atmosphere (Lee et al., 2009).  323 

The inflow NO3- concentrations (Table 1) fall within the range of the environmental 324 

limit values for surface water based on MoE Decision 8/1 (MoE, 2001). Furthermore, the 325 

levels of NO2- found in the inflow samples were found to be lower than the guideline 326 

levels for protecting sensitive aquatic animals during short-term exposures (Camargo 327 

and Alonso, 2006). On the other hand, outflow concentrations for both nitrate and nitrite 328 

remained relatively constant throughout the study, demonstrating high removal effi-329 

ciency for nitrate (97.39 %, P<0.078) and nitrite (40%, P<0.456). This was expected given 330 

the strong dependency of microbial denitrification on temperature, which converts 331 

NO2-/NO3- to NOx and N2 gases (Kadlec and Wallace, 2009). 332 

4.2.3. Phosphate 333 

Figure 4c presents time course evolution of phosphate in water samples from both 334 

the wetland inflow and outflow during the sampling period. A significant decrease in 335 

phosphate concentration measured in the outflow was observed, compared to the inflow, 336 

with a removal efficiency of 67% (Table 3). Average concentration of phosphate along the 337 

wetland upstream and downstream ranged from 5.8 mg L-1 to 1.9 mg∙L−1, respectively 338 

(Tables 1 and 2). The level of phosphate in the influent at all sampling dates were higher 339 

than the discharge limit of 5 mg L-1 set by the Ministry of Environment (MoE, 2001). In-340 

deed, the concentrations of phosphates at the downstream site of the wetland ranged 341 

from 0.6 to 4.5 mg∙L−1, and were higher as compared to the values obtained from the up-342 

stream site. This indicates that the river is in increasing level phosphate as the result of its 343 

direct discharge into its waters. 344 

Phosphate in water is primarily due to the natural decomposition of rocks and 345 

stones, agricultural runoff, flooding, sewage and industrial waste. Phosphorous can in-346 

crease the growth of algae and aquatic vegetation contributing to eutrophication of the 347 

aqueous environment (Sperling, 2007). On that note, Box et al. (2021) found that changes 348 

https://www.scirp.org/%28S%28351jmbntvnsjt1aadkposzje%29%29/journal/paperinformation.aspx?paperid=69056#t1
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in the riverine environment, such as vegetation growth associated with altered flow re-349 

gimes, increased sediment loads and eutrophication. In order to prevent eutrophication, 350 

the environmental limit value for phosphate concentration in surface water based on 351 

MoE Decision 8/1 (MoE, 2001) is < 5 mg/L. The constructed wetland treatment system has 352 

achieved effluent quality that satisfies these requirements in terms of PO43- in all samples. 353 

The removal mechanism of phosphate occurs as a result of several physical, chemical and 354 

biological processes, such as (i) sedimentation of particulate phosphorous (organic and 355 

inorganic absorbed PO43-), (ii) precipitation associated with mineral particles within the 356 

water column, (iii) sorption (adsorption/absorption) in wetland soils (fixation of phos-357 

phate by iron and aluminum in the soil), and (iv) biological uptake by plants and mi-358 

cro-organisms (Díaz et al., 2013). 359 

4.2.4. Sulfate 360 

Figure 4d shows the variation of sulfate concentration in water samples from the 361 

wetland inflow and outflow during the sampling period. Unlike nitrite, nitrate and 362 

phosphate, an increase in the sulfate concentration has been reported at the two sampling 363 

sites from 35.8 mg L-1 at the inlet to 57.9 mg L-1 at the outlet, thus showing a removal ef-364 

ficiency of -61.67%, with no significant difference (P>0.05) (Table 3). Minimum and 365 

maximum concentrations of sulfate at the upstream of the wetland were 20.8 and 46.2 mg 366 

L-1, while at the downstream they were 15.1 and 181.1 mg L-1. Similar results have been 367 

detected by Gruyer et al. (2013) and Bezbaruah et al. (2003), where instead of decreasing, 368 

sulfate concentration have increased in the constructed wetland outflow. This phenom-369 

ena might be due to the denitrifying bacteria activity, chemolytho-autotrophic, that use 370 

reduced sulfur compounds in the form of sulfide as an electron donor (Sierra-Alvarez et 371 

al., 2007). This nitrate reduction and S-oxidizer bacteria will oxidize sulfide back to SO42- 372 

during denitrification (Nelson et al., 1986). The activity of these bacteria may explain the 373 

high removal of NO3- and the release of SO42- in the wetlands (Sturman et al., 2008). 374 

However, values obtained in the wetland inflow and outflow, are within the acceptable 375 

range of 1000 mg L-1 for surface water set by MoE Decision 8/1 (MoE, 2001) (Tables 1 and 376 

2), while the proposed maximum allowable limit for sulfate of the National Standard for 377 

treated domestic wastewater reuse for irrigation is 500 mg L-1 (Margane and Steinel, 378 

2011). 379 

  380 
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4.3. Time course evolution of the biological parameters 381 

Figure 5 displays time course evolution of BOD5, COD, the ratio of BOD5/COD and 382 

DO in water samples from the wetland inflow and outflow. Results shows, that the wet-383 

land increased DO (average 34%) and reduced BOD5 (average 54.3%) and COD (average 384 

41%). Student’s t-test analysis revealed that these changes were significant at p<0.05 (Ta-385 

ble 3). The increasing of oxygen concentration in the wetland outflow was presumably 386 

due to the cascade input tubing and wind mixing in deep open-water areas as a result of 387 

passive aeration. Also, growth of oxygen provided by algae and submerged plants may 388 

also have contributed to these results (Todd et al., 2009). COD and BOD5 average values 389 

in the outflow samples were 154.7 mg L-1 and 31.7 mg L-1, respectively, and were slightly 390 

above the range of the environmental limit values for surface water set by MoE Decision 391 

8/1 (MoE, 2001). As such, the Lebanese surface water discharge limits refer COD<125 mg 392 

L-1 and BOD5<25 mg L-1. On the other hand, previous studies have proved that complete 393 

elimination of COD and BOD cannot be accomplished in constructed wetlands. In fact, 394 

the decomposition of plant residues and other naturally occurring organic materials in 395 

the wetland will produce BOD and COD (Lu et al., 2016; Brix, 1997; Karathanasis et al., 396 

2003). Moreover, the comparison of the BOD and COD removal efficiency obtained with 397 

previous studies undertaken by Abi Saab et al. (2018) and Amacha et al. (2017) on the 398 

same wetland reveals that the removal rate of these parameters has decreased over the 399 

years. Therefore, it is worth to be noted that the implementation of an artificial aerated 400 

system is highly recommended in this case, as it contributes to increase DO concentra-401 

tion and therefore improve treatment performance, especially for BOD5 and COD re-402 

moval rate (Nivala et al., 2020). 403 
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 405 

Figure 5. Time course evolution of biological oxugen demand (5a), chemical oxygen demand (5b), 406 

ratio of BOD5/COD (5c) and dissolved oxygen (5d). 407 

Moreover, the calculated BOD5/COD ratio (Figure 5c), from both the wetland inlet 408 

and outlet, ranged between 0.1 and 1.0 during the sampling period, indicating a presence 409 

of biodegradable material, meaning that the limit of organic matter can be decayed by 410 

microbes in natural and artificial treatment conditions (Samudro and Mangkoedihardjo, 411 

2010). 412 

The high levels of BOD5 and COD observed in the effluent might be due to high 413 

amount of organic matter from domestic wastewater and agricultural inputs, and the 414 

processing of hides and skins of the poultry industry, as well as various chemicals 415 

sources, mainly paper and plastic industries, largely spread in the Litani River basin, 416 
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which discharge their loads directly into the environment, thereby increasing the levels 417 

of BOD5 and COD in the river waters. In the downstream site of the wetland, the levels of 418 

BOD5 and COD were significantly lower than the upstream site, thus indicating the ca-419 

pability of the aquatic plants in de-polluting the river waters through the wetland bio-420 

logical process. Dong et al., (2016) showed the role of vegetation should not be ignored in 421 

the process of wastewater purification in constructed wetlands, as root oxygen released 422 

contributes to pollutant removal, alongside with other environmental and hydraulic 423 

factors within a constructed wetland. 424 

Figure 5d illustrates the time course evolution of dissolved oxygen (DO) concentra-425 

tion of water samples from the wetland inflow and outflow. In the influent samples, av-426 

erage DO concentration was 3.96 mg L-1, while in the effluent samples the average con-427 

centration raised to 5.30 mg L-1. This increase in the concentration of the dissolved oxy-428 

gen may be due to the oxygen released by the root systems of the wetland plants, as de-429 

scribed by Wang et al. (2015) who demonstrated that plant roots improve oxygen condi-430 

tions, thereby supporting the aerobic processes in constructed wetlands in flooded con-431 

ditions. On the other hand, to investigate the effect of vegetation on microbial processes 432 

by increasing oxygen concentrations in the rhizosphere, BOD5 and COD levels in the ef-433 

fluent returning to the rivers haven decreased, compared to the level obtained at the in-434 

flow gate of the wetland.  435 

5. Conclusions 436 

Results of this study showed the constructed wetland has successfully achieved high 437 

removal rate of nitrate (NO3-), nitrite (NO2-) and phosphate (PO43-), but nut of sulfate 438 

(SO42-), the one concentration was found to increase at the wetland downstream. More-439 

over, biological oxygen demand (BOD5) and chemical oxygen demand (COD) reduction, 440 

along with the enrichment of the wetland waters at the downstream in dissolved oxygen 441 

(DO), resulted in improved water quality of effluents returning to the river. The rest of 442 

the parameters mean values, namely, electrical conductivity (EC), total dissolved solid 443 

(TDS), were within the recommended levels for natural surface water. Therefore, the 444 

constructed wetland has clearly contributed to reducing the level of pollution in the river, 445 

and improving its deteriorated water quality and ecologic viability. 446 

The presence of Phragmites australis and Sparganium erectum has been shown a great 447 

impact on the removal of pollutants, due to which both organic and inorganic pollutants 448 

have been effectively treated by these two aquatic plants, making them suited for the 449 

treatment of mixed types of pollutants by multiple removal mechanisms, such phytoac-450 

cumulation, phytodegradation, phyto-transformation, phytovolatilization, and Phytoex-451 

traction, to clean up or detoxify pollutants (Karam et al., 2021; Ali et al., 2022).  452 

A deeper comprehensive performance assessment of the constructed wetland sys-453 

tem for de-polluting the waters of the Litani River, over a longer time period, is needed. . 454 

The current research shows the potential of wastewater treatment by means of a con-455 

structed wetland, as sustainable and cost effective technology, and the gained experience 456 

may be scalable to other sites and environments across the country. 457 
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