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Optimal estimation of broiler movement for commercial tracking 
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A B S T R A C T   

Nowadays, video tracking has taken a considerable part in monitoring systems. It allows identifying and follow 
every object in the camera field over time. While most of these algorithms are rather well suited to regular 
movements (following cars, pedestrians), they are often limited in more complex situations (high variations in 
speed, low detection rate, frequent shape variation). This paper proposes three methods adapted to broilers 
tracking in commercial environment. Past movements analysis of known broilers enable to estimate their mo-
tions and therefore to predict their new position. New unidentified broilers positions are then compared to these 
predicted positions. Distances between these two sets of positions are then used in the Hungarian Algorithm to 
assign an ID to new detected broilers regarding their past positions. Our methods differentiate by the way they 
predict the future positions. Contrary to most methods, they do not seek perfect regularity of movements and can 
deal with low rate detection. The proposed methods showed better performances than existing one. Tests have 
been made at 21, 26, and 37 days of age. At 21 days, our best method produces up to 35% fewer errors than a 
method with no estimation of movement. At 26 days of age, displacement distances can be set to only 68% of the 
maximum recorded displacement while improving an average of 21% of tracking errors across all methods.   

1. Introduction 

One of the most widely used techniques in the field of crowd sur-
veillance remains video analysis. It is a non-invasive and inexpensive 
method for monitoring objects. Video tracking makes it possible to 
detect and follow each object in video to document their activities. 
There are today many tracking methods. These depend on the nature of 
the tracked objects, the time constraints, and the resources available for 
the calculations. We are interested in the tracking of several hundred of 
broilers. The natural framework is the so-called Multiple Object 
Tracking (MOT) which can deal with many objects compared to single 
object tracking. Video tracking consists in putting the same ID on the 
same object on all subsequent images. In his review, Luo et al. [1] 
distinguished the tracking methods according to the way the initializa-
tion, the processing steps and the pairing step are performed. There are 
mainly two ways to perform the initialization step: either detection of all 
objects is performed at each image (tracking by detection) or at each 
image one keeps the objects already present in the previous images. This 
last way to proceed characterizes the detection-free tracking methods. 
As it does not detect new objects entering the camera field, it is not 
suited to broilers tracking that are not enclosed in the camera field. In 

the tracking by detection approach [2], each object is limited by a 
bounding box which returns the position and size of the detected object. 
Detection requires searching objects in the whole image and it is 
generally applied to well-defined classes of objects. These methods 
guarantee a pretty good localization of detected objects. The effective-
ness of MOT models largely depends on the detection model that pre-
cedes them. Nowadays, convolutional neural network detection 
methods achieve excellent detection rates, and some of them can be used 
for real-time analyses [3,4]. They are preferred to simple image pro-
cessing methods like those summarized in Balaji and Karthikeyan [5], 
Kothiya and Mistree [6]. These methods are highly dependent on 
environmental conditions like illumination, background contrast, noise 
in the Image. Two processing modes can be considered; namely, the 
online [7,8] and the offline modes [9]. When using the online mode, the 
images are analyzed sequentially, one by one according to their 
recording time. To identify objects on an image, the tracking algorithm 
can only refer to past detected objects. The second mode is offline 
tracking. Even though it is still possible to identify objects sequentially, 
in offline mode, detection is realized over the whole image beforehand. 
It means that for identification, tracking algorithm has access to past 
identified objects and future detected objects. Where online mode is well 

* Corresponding author. 
E-mail addresses: henry.brunet@univ-tlse3.fr (H. Brunet), didier.concordet@envt.fr (D. Concordet).  

Contents lists available at ScienceDirect 

Smart Agricultural Technology 

journal homepage: www.journals.elsevier.com/smart-agricultural-technology 

https://doi.org/10.1016/j.atech.2022.100113 
Received 16 July 2022; Received in revised form 29 August 2022; Accepted 31 August 2022   

mailto:henry.brunet@univ-tlse3.fr
mailto:didier.concordet@envt.fr
www.sciencedirect.com/science/journal/27723755
https://www.journals.elsevier.com/smart-agricultural-technology
https://doi.org/10.1016/j.atech.2022.100113
https://doi.org/10.1016/j.atech.2022.100113
https://doi.org/10.1016/j.atech.2022.100113
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atech.2022.100113&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Smart Agricultural Technology 3 (2023) 100113

2

suited to real time process, offline mode has the advantage of having 
more detection data at its disposal, enabling thus to make better allo-
cation decisions. In practice, offline mode does not deal with all data but 
only with a batch of frames. Despite its potential better performances, 
this mode leads to too long calculations, running out of memory, and a 
delay in the results output [1,10]. 

The two pairing modes are: Deterministic tracking and Stochastic 
tracking [11,12]. Deterministic tracking seeks for the best paring be-
tween new detected objects and previous identified objects. To doing so, 
a metric is chosen in order to favor specific displacements like constant 
motion. Hungarian algorithm [13] is still one of the main cited and used 
method for such an assignment problem. Greedy algorithms [12,14,15] 
are the mains substitutes to the Hungarian algorithm. Stochastic 
tracking assumes noises in data coming from the detection model. 
Therefore, it introduces uncertainty in the measures. These methods are 
often based on Kalman filter algorithm [16,17]. The main stochastic 
tracking algorithms are Network flow [18], Shortest path [19] and 
conditional random field [20], they are all suited for offline mode 
tracking. The two widely used methods for multi objects tracking are 
Joint Probability Data Association Filtering [21] and Multiple Hypoth-
esis Tracking [22]. The Multi Target Tracking (MTT) try all possible 
associations between targets and tracked objects over time. This method 
leads to heavy computation. The Joint Probability Data Association 
Filtering (JPDAF) is less computationally expensive as it uses a filtering 
process based on the distance between target and tracked objects to 
reduce the number of potential association. The main drawback is that 
JPADF works only for a fix number of tracked objects and struggles to 
dissociate too closed objects. Main stochastic methods are not suited to 
unfixed and high number of objects to track. 

While most of tracking algorithms are rather well suited to regular 
movements (following cars, pedestrians), they are often limited in more 
complex situations with high variations in speed, low detection rate and 
frequent shape variation. This article aims at developing a tracking 
method for broilers. This is why, we opt for the use of a detection based 
method that provides a solution to incoming and out-coming broilers in 
the camera field. To reduce the complexity of calculation due to the high 
amount of broilers in the camera field and therefore the high number of 
possible data association, we opt for an sequential processing (that has 
the advantage to work for both online and offline modes) and a deter-
ministic pairing mode. This tracking method seeks to be independent to 
animals activity, to their spacing, to their weak movement regularity, to 
their occlusions etc. More precisely, we present three different ways to 
predict broilers positions. 

The next section summarizes the works published on multi object 
tracking. The main algorithms used as benchmark to compare to our 
methods and the description of tree methods we suggest for broilers 
tracking are presented. Finally, the performances of the tracking 
methods suggested in this article are compared to the benchmark 
methods. 

2. Related work 

As reported by Yilmaz et al. [23], tracking algorithms can separated 
into three groups according to the information used to identify object in 

each image. The main idea behind all these algorithms is to select spe-
cific object information that remains similar into successive frames for 
each object, or at least that is easily predictable among successive 
frames. kernel tracking algorithms use information like distribution of 
colors or object’s texture included in the bounding box from previous 
detection. They are usually represented as histograms. The idea is to find 
object having the “closest” histogram [24] in successive frames. An 
example of distance measurement between two histograms is given by 
Pele and Werman [25]. For the texture analysis, Tuceryan [26] sum-
marizes the different kinds of features we can find in the literature. At 
last, template tracking methods are also part of kernel tracking family. 
It’s a brute method looking for correlations between small images 
delimited by bounding boxes [27]. These kinds of methods are really 
sensitive to illumination. 

Silhouette tracking: While kernel tracking deals only with the in-
formation included in a fix shape (bounding box), silhouette tracking 
treats with object’s shapes and contours. Shapes tracking seeks to match 
objects having closed silhouettes in two consecutive frames based on 
edge map image. If tracked objects are nonrigid, the silhouette has to be 
updated on each frame [28,29]. The contour can be seen as a surface 
that needs to be matched to previous surface features. In this way, 
Huttenlocher et al. [28] uses the Hausdorff distance in order to evaluate 
the distance between two surfaces. On the other hand, the contours can 
be represented as a closed outline. If so, one of the most suitable methods 
to deal with such feature is the Freeman chain code [30]. 

Point Tracking: These methods are usually used for small objects or 
objects with few details. There are deterministic methods [12] and 
probabilistic methods [31]. Deterministic methods define a cost ac-
cording to the distance between two points (in two different frames). It 
could be a spatial distance, a difference between two speeds, or anything 
else that can be computed thanks to recorded positions over time. Then a 
combinatorial optimization algorithm is used to combine pairs of points 
in order to minimize the cost sum. The Hungarian algorithm [13] is the 
mainly used algorithm to solve such problem. However, greedy algo-
rithms like those from [11] and [15] are also widely used. 

In our application, we have few choices on the features to use. Our 

Fig. 1. Silhouette broiler evolution, 20 frames/second.  

Fig. 2. Example of input image.  

H. Brunet et al.                                                                                                                                                                                                                                  



Smart Agricultural Technology 3 (2023) 100113

3

situation is to track several hundred chickens in a farm. Chickens are 
filmed from above by a camera set upright. All chickens in the video are 
the same age and have similar colors (Fig. 2). However, their shape that 
are quite similar when they are resting, can change very quickly as soon 
as they are moving (Fig. 1). We can then reasonably exclude the features 
based only on the visual part of the object, as they are weakly discrim-
inative between chickens or are difficult to predict. As chickens have 
quite the same appearance, we choose the object’s position as the main 
feature representing the chicken. 

Tracking of objects summarized by their positions is really sensitive 
to miss detections. It can end up locally with no points (miss detection) 
or with one point for many objects (occlusion). One way to correct these 
problems is to assess object movement and therefore to predict its future 
positions as accurately as possible. Most of the methods deal with good 
detection, no entrance objects and straight movements. While an 
assumption like a straight movement [15] suit quite well for objects like 
cars, it becomes less usable for chickens due to their jerky movement. 

2.1. Definitions 

Let us first suppose that the system is closed, that is, all the objects 
remain in the field of the camera and no object comes out. In addition, 
we assume a perfect detection. In other words, all objects present are 
detected. If nt denotes the number of detected broilers at time t, these 
assumptions ensure that n0 = … = ntmax = N. It should be noted that at 
time t = 0, there are only detections and arbitrarily ID affectations. The 
first ID association arises at time t = 1. Let’s denote by Zt

i the i object’s 
position in R 2 at time t. In our simplified situation (closed system), 
performing tracking amounts to build a sequence of tmax permutations 
(σt)t≤tmax 

where for all t ∈ 0, …, tmax, σt ∈ SN, so that for all i ≤ n two 
successive positions of the sequence are “close”. The permutation σt is 
the permutation to be applied to the objects of the image t − 1 to obtain 
the number of the object on the image t. In the following, we note σ− t the 
reciprocal permutation of σt such that σ− t∘σt = σt∘σ− t = Id, and σt,1(i) is 
the contracted form of σt∘…∘σ1(i)

Z0
i →Z1

σ1(i)→…→Zt
σt,1(i)

Z0
σ− 1,− t(j)←…←Zt− 1

σ− t(j)←Zt
j  

In the above equation, i = σ− 1,− t(j) and j = σt,1(i). 
The velocity vector Vt

i,k = Zt
k − Zt− 1

i allows to go from the point Zt− 1
i 

to Zt
k is noted. When these points belong to the path of the same broiler 

like Zt− 1
σ− t(i) and Zt

i this notation is simplified to Vt
i instead of Vt

σ− t(i),i. Its 
magnitude corresponds to the speed of the object. The angle between 
two successive velocity vectors Vt− 1

σ− t(i) and Vt
i is denoted αt

i . By conven-
tion, objects at time t are the last tracked objects to which an identifier 
has been assigned. Those at time t + 1 correspond to the newly detected 
objects, which must be assigned to the previously identified objects. 

Point tracking may either operate data association of new detected 
points directly on previous recorded points or on estimated points. Point 
tracking operating on previous recorded is based on the notion of proximity 
(small position variation) and regular motion (small speed and direction 
variation). It defines a metric to measure the similarity between the ve-
locity vectors Vt and the vectors Vt+1. With a reasonable capture fre-
quency, the object varies only very slightly in speed and orientation [11]. It 
may be well suited for tracking cars as they do not vary drastically of 
motion due to their inertia. 

Point tracking operating on estimated points seek to predict the 

position of the points Zt+1 denotes Ẑ
t+1

, and the associated velocity 

vectors V̂
t+1

. In this case, the distance is measured between the vectors 

Vt+1 and V̂
t+1

. 
After measuring a potential match score between two objects, the 

tracking uses a combinatorial optimization algorithm to establish the 

best possible average correspondence between all the objects tracked at 
time t and all the objects detected at time t+ 1, based on the match 
scores. 

2.2. Distance for data association 

The reference method in this category is carried by Sethi and Jain 
[11]. They define standardized distances which favor the uniformity of 
directions (d1t

i,j) and velocities (d2t
i,j), between the vectors Vt

i and Vt+1
k . 

d1t
i,j = 1 −

〈
Vt

i ,Vt+1
j

〉

‖ Vt
i ‖ ‖ Vt+1

j ‖
= 1 − cos

(
Vt

i ,Vt+1
j

)
(1) 

The distance d1i,j (Eq. (1))is called directional coherence, it can be 
seen as the cosine of the angle between motion vectors Vt

i and Vt+1
j . The 

distance is minimal when the two vectors are collinear and in the same 
direction. As the distance depends on the cosine of the angle, it does not 
discriminate easily two vectors with a low angle. 

d2t
i,j = 1 −

2*
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
‖ Vt

i ‖ ‖ Vt+1
j ‖

√

‖ Vt
i ‖ +‖ Vt+1

j ‖
=

( ̅̅̅̅̅̅̅̅̅̅̅̅̅
‖ Vt

i ‖
√

−
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
‖ Vt+1

j ‖
√ )2

‖ Vt
i ‖ +‖ Vt+1

j ‖
(2) 

The distance d2i,j (Eq. (2)) is called speed coherence. This term 
measures the variation of magnitude between the two vectors Vt

i and 
Vt+1

j . This distance is null when the two vectors magnitudes are equal 
and it increases as the magnitude differ from each other (Fig. 4). The 
maximum value is 1. It happens either if ‖ Vt+1

j ‖ or ‖ Vt
i ‖ is null, or if ‖

Vt+1
j ‖ or ‖ Vt

i ‖ is infinite. 
This speed coherence does not imply that the difference between the 

two speeds has to be minimal. If a broiler progress at low speed, this 
speed coherence might prefer to associate this broiler to far away 
chicken in the next frame than with itself. This situation appears in 
particular when broilers stops or get start. Sethi and Jain then define 
Δ = w1*d1t

i,j + w2*d2t
i,j which is a combination of two distances. The 

weights w1 and w2 are chosen between 0 and 1, such that w1+ w2 = 1. 
A second much more classical method is carried by Rangarajan [15]. 

Its distance is made up of two terms. The first one measures the differ-
ence between the velocity vectors formed at times t and t+ 1. Like the 
Sethi and Jain method, it assumes that speed and direction vary slightly 
between two consecutive frames. The second one corresponds to speed 
intensities at time t+ 1. It favors small displacements (low speeds) be-
tween two consecutive frames. 

d3t
i,j =

‖ Vt
i − Vt+1

i,j ‖
∑Nt

k=1
∑Nt+1

h=1 ‖ Vt
k − Vt+1

k,h ‖
+

‖ Vt+1
i,j ‖

∑Nt

k=1
∑Nt+1

h=1 ‖ Vt+1
k,h ‖

(3) 

A critical point of these methods comes from the fact that they only 
depend on the last object’s movement. The two main drawbacks are: 
some movements may require more than one registered movement due 
to a non straight motion, and a single detection error quickly makes this 
method unusable. Actually, dealing with more registered points helps to 
smooth the movement and so to keep direction movement information 
whereas few past points have been lost. 

Rather than measuring the distance between two positions in two 
successive frames, it could be more advisable to measure this distance 
with predicted positions computed with more past frames. By using our 
knowledge on past positions, we can estimate the next objects positions 
and then we can deal with shortest distances. Karunasekera [32] defines 
a normalized displacement estimation. The displacement is equal to 0 if 
the difference between the predicted position and the estimated position 
is null. The displacement is equal to 1 if this difference is greater or equal 
to the object’s size. The object’s size is written ndst. It is deduced from the 
dimensions of the region circumscribed to the object, resulting from the 
detection. It implies that between two images, the object’s displacement 
is less than its size. The definition of the distance between the position of 
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the object at Zt+1
i and its estimated position Ẑ

t+1
i is written: 

d4t
i = min

(

1,
‖ Zt+1

i − Ẑ
t+1
i ‖

ndst

)

(4) 

The estimation of Ẑ
t+1
i is based on the following model: 

Vt+1
σt+1(i) = γ0Vt

i +
∑P

s=1
γsVt− s

σ− (t− s+1),− t(i) + ϵt
i (5)  

where ϵi ∼ N (0,Σ)
Unfortunately, the way the author estimated the αS coefficients in 

Eq. (5) is not developed in Karunasekera et al. [32]. He uses integer 
values with a higher weight for most recent velocity vectors. The new 
position estimation is written as follow: 

Ẑ
t+1
i = Zt

i + V̂
t+1
i (6) 

The new velocity vector V̂
t+1
i modeling is defined as: 

V̂i
t+1

=

∑P
a=1aVt− a+1

σ− (t− a),− t(i)

M(M + 1)/2
(7) 

P is set to limit the number of past velocity vectors to use. It assumes 
that only recent velocity vectors are relevant to the new position esti-
mation. According to the author, the optimal value of M is 5, as it is: 
“large enough to get good average for predictions and small enough not to 
drift because of old information” (ref: [32]). We could regret a lack of 
information about the way to set the different parameters: the parameter 
M as it may depend on many factors (number of frame per second, etc. 
...), and the coefficients αi as it limits the model of the Eq. (5) to a 
particular case. We will see later a more global approach. 

Fletcher [33] defines a method whose parameters are set by the 
method of Recursive Least Squares. The model can be expressed as 
follow: 

Zt
i = ΨT xi(t) + ϵt

i (8)  

where  

• ϵ ∼ N (0,Σ)
• x(t) = (Zt− 1

σ− t(i),…,Zt− p
σ− t+p− 1∘…∘σ− t(i)) is the set of past broiler positions.  

• ΨT the R p parameters vector to be estimated 

Zt
i is then a linear combination of past broilers positions. The real 

value of Ψ is unknown. The method seeks to estimate Ψ̂ which is a 
estimator of Ψ. The vector of parameters Ψ̂ is recursively updated based 
on previous estimation errors. 

The error of estimation is noted: 

e(t) = Zt
i − Ψ̂(t)T x(t) (9)  

where Ψ̂(t) is estimated by: 

Ψ̂(t) = Ψ̂(t − 1) + K(t)e(t) (10) 

The vector K(t) is a set of coefficients that manages the speed of 
convergence of Ψ̂(t) to Ψ. Having small coefficients implies a slow 
response to update parameters Ψ̂(t) but it is less sensitive to noise. We 
can find in Godfrey and Jones [34], Bozic [35] different ways of fixing 
K(t) based on the error covariance matrix. 

This method has the advantage to set automatically its parameters 
unlike the Karanusekara one. On the other hand, this method measures 
positions and not movements, which makes the estimation position- 
dependent. The further these positions are from the origin of the 
image, the greater the variation of the estimated point. To get around the 
problem, it is judicious to replace positions by velocity vectors. Velocity 

vectors do not vary as they get away from the origin of the image. 

3. Prediction models 

The method we propose relies on estimating several hundred 
chickens’ movements to predict their future positions. The peculiarity 
here comes from the fact that, unlike a car or a pedestrian, a chicken 
does not move at a constant speed with a well-defined direction. We 

therefore seek to determine an estimator V̂
t+1
σt+1(i) of Vt+1

σt+1(i) such that 

ϵi =‖ V̂
t+1
σt+1(i) − VT+1

σt+1(i) ‖ has the smallest variance. Since hundreds of 
chickens may create many occlusions, the movement predictor has to 
deal with low detection rate. Finally, as the model of detection may not 
be perfect, the method has to deal with motion due to detection 
imprecision. As the chickens position may vary slightly around their 
actual positions, the movement estimation method has to take it into 
account to determine the natural movement of chickens. 

Given what has already been done, the new method must meet 
specific requirements.  

• It must be adapted to the type of object followed to be as precise as 
possible. 

• This method must be independent of the object’s activity. The pa-
rameters must therefore be robust whatever the activity is.  

• The method must be independent of the displacement orientation. 
Rotating the camera should not influence the results.  

• The coefficients used should ideally be known from the start of the 
tracking to manage the incoming objects more easily and limit the 
calculation times during the tracking. 

3.1. Methodology 

In order to estimate the parameters required by the different 
methods, we dispose of several tracking data sets of reference whose 
points position have been manually identified. The results have been 
checked experimentally. When an object seems to disappear from the 
video due to occlusions or poor detection, its velocity vector was set to 
null vector as we did not have any information about the new 
displacement. 

3.1.1. The models 
First model The first model consists in considering the movement of 

the animal as being null. 

Vt+1
σt+1(i) = ϵt

i (11) 

With: ϵt
i ∼ N (0,Σ). This model can be considered as a reference one. 

The matrix ϵ is diagonal, and its terms are inversely proportional to the 
squares of the pixel area. 

Second model The second model is based on the notion of constant 
motion from Sethi and Jain (Section 2.2). It seeks for two same move-
ments in two consecutive frames. 

Vt+1
σt+1(i) = Vt

i + ϵt
i (12) 

With: ϵt
i ∼ N (0,Σ). 

This model is well suited when the frame rate is high and motion 
varies slowly between two consecutive frames. 

Third model This model is the Hasith Karunasekera [32] one. 

Vt+1
σt+1(i) = γ0Vt

i +
∑P

s=1
γsVt− s

σ− (t− s+1),− t(i) + ϵt
i (13)  

where ϵt
i ∼ N (0,Σ) and γs ∈ R, with 0 ≤ γs < 1 
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3.1.2. Motion prediction 
Based on these three models, it is possible to define different motion 

predictions. 
Nearest neighbor This method predicts movement based on the model 

(12). There are no parameters to estimate. 

V̂
t+1
σt+1(i) = 0 (14)  

The estimated position Ẑ
t+1
σt+1(i) is therefore in a region centered in Zt

i and 
whose radius depends on the variance of Vt+1

σt+1(i). 
Regular motion The movement prediction is based on the model (15). 

It does not need any parameters to set either. 

Ẑ
t+1
σt+1(i) = Zt

i + V̂
t+1
σt+1(i) (15) 

In such situation the predicted position is estimated as: 

V̂
t+1
σt+1(i) = Vt

i (16) 

Weighted average This one is based on the model (13). The parameters 
are set as in the same they are presented in the article [32] where the 
model comes from. P is fixed to 5 and γs ∈ 1,2,3,4,5. 

V̂
t+1
σt+1(i) =

1
3
Vt

i +
1
15
∑4

s=1
(5 − s)Vt− s

σ− (t− s+1),− t(i) (17) 

Cartesian least squares It is the same model as the Karunasekera one 
(13), but differs by the way of estimating the model parameters. We 
estimate the parameters M and γs, based on reference data sets. This time 
the estimated position is written as: 

Ẑ
t+1
σt+1(i) = Zt

i +
∑t− 1

s=0
γ̂ sVt− s

σ− (t− s+1),− t(i) (18)  

where γ̂ s is estimated by the least squares method. Proceeding this way, 
the method becomes adapted to the type of object being tracked, and the 
coefficients are determined upstream to work with the most accurate 
coefficients possible from the start of tracking. Since several past points 
are used, this makes it possible to smooth the last displacements and be 
less sensitive to detection imprecision and miss detections. Vt

i has a VX
t
i 

and a VY
t
i components. To ensure a common γs to both of the compo-

nents, Vt
i is then express in the complex domain. Vt

i = VX
t
i + iVY

t
i . The 

estimation problem is reduced to: 

Vt
i =
∑t− 1

s=1
γs

(
VX

t− s
σ− (t− s+1),− t(i) + iVY

t− s
σ− (t− s+1),− t(i)

)
+ ϵt

i (19)  

where ϵ ∼ N (0,Σ) The least squares solution for complex values is given 

by Turetsky [36]. We note A = B + iC ∈ R m,n the input matrix repre-
senting past movement values.    

b = u + iv ∈ R m is the output representing current movement values. 

b = u + iv =


VX

t
1
...

VX
t
m

 + i


VY

t
1
...

VY
t
m


z = x + iy ∈ R n is the vector of parameters to estimate. 

z = x + iy = Re

⎛

⎝
γ1
⋮
γn

⎞

⎠+ iIm

⎛

⎝
γ1
⋮
γn

⎞

⎠

The solution of γ is written under the form: 
(

x
y

)

=

(
BBT + CCT − CT B + BT C

CT B − BT C BBT + CCT

)− 1(BT CT

CT BT

)(
u
v

)

(20) 

Polar least squares This method is based on the model (13). It is the 
equivalent of the method 3.1.2.4 but in polar coordinates, with Vt = (Rt ,

θt). An angle may represent either a direction or a rotation. While it 
makes sense to sum rotation angles (two rotations of π/4 is equivalent to 
one rotation of π/2), the summation of π/2 direction with a − π/2 di-
rection has no physical interpretation. This is why it is better to deal 
with variation of orientation (rotation) referred as ΔΘ in Fig. 3 and not 
directly with velocity vector directions Θ. Dealing with polar 

Fig. 3. nomenclature.  

Fig. 4. Curve corresponding to the speed coherence equation for a fixed value 
of ‖ Vt+1

j ‖. Here ‖ Vt+1
j ‖= 30. 

A = B + iC =


VX

t−1
σ−t(1) . . . VX

t−n
σ−(t−n+1),−t(1)

...
...

VX
t−1
σ−t(m) . . . VX

t−n
σ−(t−n+1),−t(m)

 + i


VY

t−1
σ−t(1) . . . VY

t−n
σ−(t−n+1),−t(1)

...
...

VY
t−1
σ−t(m) . . . VY

t−n
σ−(t−n+1),−t(m)
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coordinates faces to constraints on speeds. In this sense, speeds values R 
are forced to be positives, as variations of orientation are includes in [ −
π,π). 

To ensure a positive speed value, the analysis uses the logarithm of 
the speed value. 
⎛

⎜
⎜
⎝

log
(
Rt

1

)

⋮
log
(
Rt

m

)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

log
(
Rt− 1

1

)
⋯ log

(
Rt− n

1

)

⋮ ⋮
log
(
Rt− 1

1

)
⋯ log

(
Rt− n

1

)

⎞

⎟
⎟
⎠

⎛

⎝
α1
⋮
αn

⎞

⎠

The motion is then estimated as: 

Rt
i =
∏t− 1

s=1

(
Rt− s

σ− (t− s+1),− t(i)

)αs
(21)  

ΔΘt
i =
∑t− 1

s=1
βsΔΘt− s

σ− (t− s+1),− t(i) (22)  

ΔΘt− 1
i = Θt

i − Θt− 1
i (23)  

V̂
t+1
σt+1(i) = R̂

t+1
σt+1(i)

⎛

⎝
cos
(

Θt
i + ΔΘ̂

t+1
σt+1(i)

)

sin
(

Θt
i + ΔΘ̂

t+1
σt+1(i)

)

⎞

⎠ (24) 

Parameters in (21) and (22) are also estimated with least squares 
method on the reference database. 

As said previously, a non detected object would be considered to be 
at the same position as its last measure, since its motion is set as null. It 
means, a null speed but also an undetermined orientation of motion. 
Because undetermined is a number difficult to handle with, we arbitrary 
set it to zero. 

Least squares under constraints In the previous motion estimation 
there is no dependence between speed values and variations of orien-
tation. Thanks to the tracking database created manually (all objects are 
detected, there are no false positive and no tracking error), it is possible 
to check the relationship between the speed and the variation of 
orientation. Variations of orientation are centered around zero. For each 

Fig. 5. Relation between the speed and the variation of orientation.  

Table 1 
Specifications of each video. The first row is the camera field area. The second 
row is the mean number of broilers over each image of the video. The third row 
is the broilers activity intensity. The fourth row is the maximal recorded speed in 
the video. The fifth row is the minimal distance recorded between the closest 
broilers. The sixth row is the broilers largest size median. The seventh row is 
percentage of detected boilers out of the CNN. The last row is the percentage of 
false positive out the CNN.   

21 days of age 26 days of age 37 days of age 

Surface (m2) 3.4 3.8 3.8 
Mean number of broilers 34 64 38 
Activity high low low 
Speed (pixel s− 1) 826 630 544 
Distance intra broilers (pixel) 36.9 32.5 34.4 
Broilers size 106 102 141 
Sensitivity 97 99 99 
Precision 0.2 2.28 1.6  

Fig. 6. 21 days of age.  

Fig. 7. 26 days of age.  
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cell of the 2 dimensional histogram in the Fig. 5, the intensity represents 
the occurrence of couples speed and orientation variation. It can be 
noticed that for small speed the range of orientation variation is large. 
This range decreases as speed increases. It means that a displacement of 
40 pixels/image paired with a π orientation variation is considered as an 
outlier. Based on the maximum recorded speed, two red lines are drawn 
as a first order approximation of the limit of the distribution. The idea is 
not to model exactly the relationship between speeds and variations of 
orientation, but to limit outliers. 

High speed values are therefore accepted when the expected orien-
tation variation is small. On the other hand, if the speed estimator is 
high, constraints are applied on variation orientation in order to limit 
outliers. This approximation of the distribution limit put constraints to 
the speed and to the orientation variation estimation of the model (12). 

Once R̂
t
i and ΔΘ̂

t
i are estimated they are used to constrain new es-

timators R̂′
t
i and Δ̂Θ′

t

i 

R̂′
t

i = R̂
t
i

(

1 − abs
(

ΔΘ̂
t
i

π

))

(25)  

Δ̂Θ′
t

i = min
(

ΔΘ̂
t
i, π
(

1 −
R̂

t
i

max(R)

))

(26) 

The value max(R) is measured from the data base of reference. 
The estimation is then written as: 

Ẑ
t+1
σt+1(i) = Zt

i + V̂
t+1
σt+1(i) (27)  

V̂
t+1
σt+1(i) = R̂′

t+1

σt+1(i)

⎛

⎝
cos
(

Θt
i + Δ̂Θ′

t+1

σt+1(i)

)

sin
(

Θt
i + Δ̂Θ′

t+1

σt+1(i)

)

⎞

⎠ (28)  

3.2. Videos and detections 

Three videos where used to estimate the models parameters. 
When broilers grow up, the rate of detected broilers over total 

number of broilers increases. Here, the activity is referred as the global 
motion of broilers. The more broilers are moving with high speeds the 

higher is the activity. High speed motion is generally accompanied by 
flapping wings. A false positive is detection recorded where no broiler is 
present. The minimal recorded distance between broilers is a threshold 
below which two broilers positions can not be recorded. 

Finally, for each broiler is given its bounding box size. The last row of 
the Table 1 gives the median of the larger bounding box size of all 
broilers. The characteristics of the three videos (see Figs. 6–8) used to 
estimate the model parameters are summarized in Table 1. They differ 
mainly in the age of broilers, in their activity and density (see Table 1). 

The first video corresponds to a twenty one days of age broilers flock. 
This is the video with the higher activity. It is the video with the lower 
rate of detection, only 97% of present broilers are detected. 

Broilers of the next video are 26 days of age. This second video 
corresponds to the most tightly spaced broilers. Broilers trying to clear a 
path in such crowded area may hide other broilers and cause tracking 
errors. The last video corresponds to 37 days of age broilers. Broilers are 
much bigger compare to those in the two previous videos. Even though 
the density and the activity are quite low, occlusions might occur due to 
their biggest size. This being said, this video records the less interactions 
between broilers compare to the two previous videos. 

3.3. Parameters estimations 

Two data sets are associated to each video. The first data set is the 
reference one. A surrounding bounding box has been drawn manually 
around all broilers in order to have a good localization, without any miss 
detection nor false positive detection. The second data set are data 
generated by a convolutional neural network. These data are used to test 
the tracking motion estimation methods. Tracking has been run over the 
reference data set and then over the test data set for the six following 
tracking methods which differs by the way the motion is estimated:  

• Nearest Neighbor (Method 1)  
• Regular motion (Method 2)  
• Weighted Average (Method 3)  
• Cartesian Least Squares (Method 4)  
• Polar Least Squares (Method 5)  
• Least Squares Under Constraints (Method 6) 

The objective is to have common coefficients for all data sets. A 
method has to be robust, to the density and to the broiler activities. As a 
first step, coefficients have been evaluated for each data set of reference 
corresponding to broilers excursively in movement. As most part of them 
are generally resting, the idea is to avoid to have parameters biased by 
too much resting broilers. The objective being to predict motion. The 
Table 2 gives these parameters estimations given by the least squares 
method. An analyze has been initiated in order to determine the 

Fig. 8. 37 days of age.  

Table 2 
Least square parameters estimation .  

Model Parameters Day 21 Day 26 Day 37 

Cartesian γ̂ (0.43 0.31 ) (0.33 0.25 ) ( 0.27 0.17 )

Polar 
(

α̂
β̂

) (
0.38 0.28 0.17
− 0.07 − 0.09 − 0.07

) (
0.35 0.27 0.21
− 0.05 0.03 − 0.02

) (
0.34 0.27 0.18
− 0.06 − 0.04 − 0.007

)

Table 3 
Standard deviation of the absolute difference between measured and estimated 
positions according to the motion estimation method .  

Model Day 21 Day 26 Day 37 

Method 1 13.34 6.71 10.53 
Method 2 11.5 7.13 11.21 
Method 3 10.26 5.75 8.8 
Method 4 9.47 5.77 8.81 
Method 5 6.82 4.18 5.87 
Method 6 5.47 3.47 4.48  

H. Brunet et al.                                                                                                                                                                                                                                  



Smart Agricultural Technology 3 (2023) 100113

8

parameter P in the model (13), which is the number of past relevant 
velocity vectors. By estimating these γs parameters, it turned out that 
they are higher as recorded measures are more recent. The minimum 
parameter value accepted is then defined such that the model does not 
take into account value whose contribution leads to a movement lower 
to one pixel for highest speed values. 

Based on these results, the final parameters used for the test data sets 
are the mean of the three reference data sets. These estimations have not 
been estimated on a whole data set merging those three ones in order to 
avoid that one of them prevail over the two others. 

γ̂ =

(
0.34

0.24

)

(29)  

(
α̂

β̂

)

=

(
0.36 0.27 0.19

− 0.06 − 0.03 − 0.03

)

(30) 

Table 3 gives then a global information on the movement estimation. 
This test consists in measuring the standard deviation of ̂ϵ = V̂

t
− VT for 

each model. Smaller is the variance values, better is the model predic-
tion. It has to be noticed that it is based on reference data sets with 
broilers in movement. The method 1 (Nearest Neighbor) seems to be the 
less adapted one to broilers high speeds and the hybrid the most adapted 
one. However, in data test most of broilers are resting and detection is 
not perfect. 

4. Results and discussion 

One last parameter to take into account is the maximal speed reach 
by broilers. The fact is that if the tracking leads to wrong detections, 
wrong identification assignments occurs. They may appear between 
false positives and miss detected or occluded broilers. There is a 
compromise to be find between to enable large speed displacements in 

Fig. 9. Number of tracking error according to the authorized displacement distance.  
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order to track fast broilers, and to enable only low speed displacement in 
order to avoid wrong assignments with occluded and miss detected 
broilers. Testing all the six methods on the reference data sets (no oc-
clusion nor miss detection) may give an idea of the highest speed 
displacement that can be accepted. The Fig. 5 gives the number of 
tracking error according to the threshold of largest accepted speed. This 
threshold is expressed as a ratio of broilers size. A value of 100% refers to 
the median of the larger bounding box size of every broilers (cf: Table 1). 
The best method is the one which reaches the minimum of error for the 
smallest speed threshold possible. Being able to track broilers with a 
small speed threshold express a good estimation of motion and leads to 
less wrong identification assignments. Where it might be possible to 
correct errors due to too high speeds in post processing, it is quite 
impossible to correct wrong assignment identifications for ID passing 
from one broiler to another due to miss detections. This is why it is really 
important to reach the minimum of error as quickly as possible (Fig. 9). 

4.1. Analyze of performance for each method 

Method 1 Nearest neighbor As expected Nearest Neighbor method is 
one of the worsts as predict high speed motions. Even with the reference 
data (perfect detection), it is one of the last to reach a minimum of er-
rors. Its best performance is found for high density video in test situa-
tion. Method 2 Regular motion based on [11], it was expected to have 
good performances for straight movements and good quality of detec-
tion. Straight movements are mainly presents in the video of 21 days of 
age broilers as speeds are the higher. In practice its best performance is 
effectively find the 21 days of age broilers data test where it reaches 
quickly the minimum of errors. However performances decrease for low 
broiler activities both in reference and test data sets. Method 3 Weighted 
average the Weighted Average method from [32] was expected to be 
robust to miss detection as it uses up to five input variables, however it 
was said it probably does not use the most adapted coefficients. When it 
is compared to other methods, it seems to have better performance for 
reference data set compare to test data test. That means it is dependent 
on the detection quality. Method 4 Cartesian least squares In theory, this 
method should follow the WA method performance as they are based on 
the same model. However, it coefficients have been tuned on reference 
data and it uses less coefficients making it more sensitive to poor 
detection. In practice, the XY method is always among the two fastest 
methods to reach the minimum of error. It looks like the best compro-
mise according to the three situations. Method 5 & 6 Polar least squares 
& least squares under constraints Even though their coefficients have 
been tuned with reference data set, the Polar method remain one of the 
worst one both for reference and test data sets. However these methods 
did present the lowest standard deviation in Table 3. It means they are 
too sensitive to movements due to imprecision of detection. Neverthe-
less, the limit of outliers by the Hybrid method seems really efficient 
when the two methods are compared together. Even though the Hybrid 
method is quite slow to reach the minimum for low densities video (21 
and 37 days of age), it is among those which reach the lowest number of 
tracking errors and seems to reach the best performance for high density 
video. 

A successful method of motion prediction has to be robust to: the 
density of the broilers, to their activities, to motions derived from the 
detection imprecision, to the occlusions and miss detections. In addition, 
it has to reach the best performances for the lowest threshold of 
authorized speed motion. In this sens the XY method seems to be the best 
compromise among all the six methods investigated. 

5. Conclusion 

In this paper, three estimations of motion applied to broilers tracking 
have been presented. They have been compared to three methods of the 
literature through three data sets created by our own. The XY method 
stands out of the group as the best adapted to all situations. However, 

even though one of them seems to be most adapted to all kind of situ-
ation, it is still dependent of maximum authorized speed threshold that 
seems to vary a lot according to the video. An automatic way to fix max 
displacement has to be set in order to have a fully robust method. 
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