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3Inria, INRAE, Pléiade, 33400 Talence, France
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Abstract

Background With the emergence of metagenomic data, multiple links be-
tween the gut microbiome and the host health have been shown. Deciphering
these complex interactions require evolved analysis methods focusing on the
microbial ecosystem functions. Despite the fact that host or diet-derived fibres
are the most abundant nutrients available in the gut, the presence of distinct
functional traits regarding fibre and mucin hydrolysis, fermentation and hy-
drogenotrophic processes has never been investigated.

Results After manually selecting 91 KEGG orthologies and 33 glycoside
hydrolases further aggregated in 101 functional descriptors representative of
fibre and mucin degradation pathways in the gut microbiome, we used non-
negative matrix factorization to mine metagenomic datasets. Four distinct
metabolic profiles were further identified on a training set of 1153 samples and
thoroughly validated on a large database of 2571 unseen samples from 5 ex-
ternal metagenomic cohorts. Profiles 1 and 2 are the main contributors to the
fibre-degradation-related metagenome: they present contrasted involvement in
fibre degradation and sugar metabolism and are differentially linked to dys-
biosis, metabolic disease and inflammation. Profile 1 takes over Profile 2 in
healthy samples, and unbalance of these profiles characterize dysbiotic sam-
ples. Furthermore, high fibre diet favours a healthy balance between Profiles
1 and Profile 2. Profile 3 takes over Profile 2 during Crohn’s disease, inducing
functional reorientations towards unusual metabolism such as fucose and H2S
degradation or propionate, acetone and butanediol production. Profile 4 gath-
ers under-represented functions, like methanogenesis. Two taxonomic makes up
of the profiles were investigated, using either the covariation of 203 prevalent
genomes or metagenomic species, both providing consistent results in line with
their functional characteristics. This taxonomic characterization showed that
Profiles 1 and 2 were respectively mainly composed of bacteria from the phyla
Bacteroidetes and Firmicutes while Profile 3 is representative of Proteobacteria
and Profile 4 of methanogens.

Conclusions Integrating anaerobic microbiology knowledge with statistical
learning can narrow down the metagenomic analysis to investigate functional
profiles. Applying this approach to fibre degradation in the gut ended with
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4 distinct functional profiles that can be easily monitored as markers of diet,
dysbiosis, inflammation and disease.

Background

The generalization of metagenome sequencing 15 years ago has provided ample evi-
dence of the complex interactions between the gut microbiota and its host health [1].
Since then, a large number of new links between the function and composition of the
microbiota and the host health have been consistently discovered. Significant efforts
put into the recruitment of large cohorts to constitute reference datasets made it
possible to explore the high inter-individual variability of the microbial communities
in the gut [2, 3, 4, 5].

Metabarcoding methods have been first popularized. Amplification of universal
taxonomic marker gene before sequencing allows the construction of taxonomic enti-
ties (Operational Taxonomic Units, OTUs [6], or Amplicon Sequence Variants, ASVs
[7]) informing on the phylogenetic composition of the microbial community [8] and
on ecological biomarkers such as diversity indices [9]. Additional analysis can show
co-occurrence networks [10, 11] or dynamical interactions in time-series [12, 13] both
informing on ecological interactions. However, as the functional potential of the mi-
crobial populations remains unknown with metabarcoding techniques, the functional
mechanisms that drive these interactions cannot be identified, even if tools leveraging
reference databases of known genomes partially mitigate this issue [14].

With the development of metagenomic Next Generation Sequencing (mNGS) tech-
niques [15], the entire functional information contained in the metagenomes became
accessible. Shotgun sequencing together with bioinformatics methods identifying con-
tigs between the sequenced fragments [16] and the constitution of massive catalogs
of annotated genes [4] provide decisive tools for the study of the functional ecol-
ogy in the gut microbiome. Multi-omics studies including metatranscriptomics or
metabolomics give complementary information on the microbial functions actually
activated in the gut [3]. Taxonomic and functional ecology can be addressed si-
multaneously with mNGS with the identification of entire microbial genomes in the
metagenomes, such as Metagenomic Species (MGS [17]) or Metagenome-Assembled
Genomes (MAG [18]). Statistical analysis makes it possible to decipher universal
MGS patterns in both metabarcoding and metagenomic cohorts, termed enterotypes,
that are linked to different physiopathological status [19].

However, despite the massive amount of metagenomic data that were gathered by
the microbial ecology community and the sophisticated agnostic data-driven analysis
methods that were developed, the understanding of the mechanisms involved in the
gut microbiota regulation and dynamics remains scarce. This observation calls for
the development of new approaches operating a shift from descriptive ecology towards
functional ecology [20] by leveraging existing knowledge in microbiology to explore
the links between community structure and functions [21].

Dietary and host-derived fibres are the main primary substrate for the gut micro-
biota [22] so that anaerobic hydrolysis and consecutive downstream sugar degradation
towards short-chain fatty acids (SCFAs) are the most common microbial functions in
the colon, the distribution of which reflects the fibre intake [22]. The corresponding
metabolic pathways are very well characterized [23], hence providing suitable can-
didate functions for pattern identification and differential analysis. Considering the
well-defined framework of fibre anaerobic hydrolysis, we hypothesize that (H1) func-
tional invariants can be deciphered, defining ‘universal’ functional profiles shared by
all individuals, describing fibre degradation in the microbiota, (H2) functional and
taxonomic interpretation of these profiles can be obtained and (H3) these profiles
characterize the metagenomic samples and are related to dysbiosis or disease.

In this study, we build on a method proposed in [24], which informs a data-driven
dimension reduction technique termed nonnegative matrix factorization (NMF) with
the well-established knowledge of fibre degradation pathways in the gut to analyse
fibre-degradation-related metagenomic count matrix. The method is trained on a
database of 1152 samples and validated on 5 external databases gathering 2571 unseen
samples, allowing to identify four functional profiles the mixture of which reconstruct
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the metagenomes. Extensive functional and taxonomic characterization of the profiles
is performed and systematic differential analysis is conducted to identify possible
links between the profiles and the sample physiopathological status. The microbiota
simplification provided by the method allows in-depth biological interpretations of
the differential analysis.

Methods

We first introduce the different datasets that are considered in this study. We then
describe the rationale of the function selection and the pooling of the corresponding
genes related to dietary and host-derived fibre degradation pathways, and the subse-
quent bioinformatics, from the samples to the frequencies matrix. We finally detail
the NMF decomposition of the frequencies matrices to identify functional profiles
in the metagenomes. Finally, we present the differential analysis method, based on
profile weights in samples.

Training and external validation datasets

A training set was assembled with ns = 1126 samples covering a balanced mix of
health status, including healthy samples, inflammatory diseases (Crohn Disease -
CD-, Ulcerative Colitis -UC-) and metabolic diseases (obese, type 2 diabetes) taken
from 7 cohorts (accession ID PRJEB1220 [18], PRJEB4336 [25], PRJEB5224[4, 26],
PRJNA48479 [27], PRJNA422434 [28], PRJEB6337 [29], PRJNA375935 [30]) and 5
countries (USA, China, Spain, Denmark, France) to avoid potential study or country
effects. External validation datasets were taken from studies selected for their focus
on a specific effect. We selected two cohorts dedicated to IBD – hmp2 (PRJNA398089
[3], ns = 1266 samples) and CD (PRJEB15371 [31], ns = 119 samples) –, one co-
hort to obesity –metacardis (accession ID PRJEB37249 [32], ns = 883 samples)–,
one cohort to mediterranean diet (accession ID PRJEB33500 [33], ns = 244) and
one to Parkinson disease (accession ID PRJEB17784 [34], ns = 59 samples) since
this disease is associated to a longer transit time and microbial modifications. Note
that 3 and 5 samples, respectively, have been removed from cohorts PRJEB15371
and PRJEB37249 after quality checks. All together, these datasets make it possible
to consider a large variety of co-variables, including Dysbiosis index (DI, see subsec-
tion Statistical treatment), Body Mass Index (BMI) used to define obesity, statin
treatment against hypercholesterolemia, the four enterotypes Bacteroides 1 (Bact1),
Ruminococcaceae (Rum), Prevotella (Prev) and Bacteroides 2 (Bact2) [19, 32] and
Bristol score [35] used to determine stool appearance. Dataset overview can be found
in Table 1. Dataset homogeneity has been assessed by computing intra and inter-
variability of pairwise Bray-Curtis distance (pBCd, see subsection Statistical treat-
ment and Figure 2). The complete list of samples and their corresponding metadata
can be found in Additional file 9 — Dataset count matrices, profile decom-
position and metadata.

A functional view of fibre degradation in metagenomes

Following the method that was previously used in [24], we assembled a simplified view
of the metabolic network of fibre degradation (see Fig. 1.a and Methods sec. GH, PL
and KO Graphical representation). Briefly, the first metabolic step was the hydrolysis
of fibre, performed by specialized multimodular enzymes belonging to the CAZymes
[36, 37]. We selected the main Glycosyl hydrolases (GH) and Pectin Lyases (PL) in-
volved in the catabolism of the main dietary fibre consumed as part of a balanced diet:
cellulose, hemicellulose, xylan, resistant starch and pectin [38, 39, 36, 40, 41, 37, 42].
Furthermore, since mucin can be used as a substrate by both pathogens and commen-
sals, we included the beta-N-acetyl-glucosaminidase (GH84), fucosidase (GH29 and
GH95), Neuraminidase/Sialidase (GH33) that cleave endogenous mucins and release
galactose (GH2), glucose, fucose, or sialic acid moieties [43, 44] (Table 2 and Fig.
1.A). Pectate lyases PL1, PL9 and PL12 were also added. The hydrolysis of fibre
and mucin releases oligosides and sugars that are subsequently subjected to anaero-
bic fermentation. The known fermentation pathways of glucose, fructose, mannose,
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galactose, L-Arabinose, Xylose, L-Fucose and L-Rhamnose were recapitulated using
bibliographic ressources [45, 23, 46] and Metacyc database (https://metacyc.org/)
guided by expertise [47, 48, 49, 50, 51]. We included the Embden-Meyerhoff-Parnas
(EMP), Entner-Doudoroff (ED) and semi-phosphorylative Entner-Doudoroff (SP-ED)
pathways and the Bifidobacterium shunt. The downstream SCFA producing reactions
were added i) the three known propionate pathways, including lactate pathways and
the propanediol one which is not commonly found in commensals ii) butyrate pro-
duced from acetate and lactate-utilizing species, iii) acetate produced through the
main pathways but also by some human GI tract pathogens. Finally, H2S, butane-
diol and acetone production pathways were added, together with the three hydrogen
hydrogenotrophic utilization pathways : methanogenesis, sulfate reduction and the
Wood-Ljundhal pathway of acetate production from H2/CO2 and glucose (see Fig.
1.a). For each pathway, KEGG Orthology (KO) were selected as being representa-
tive (KO not involved in other pathway) and essential (the corresponding function is
needed for the completion of the pathway) to the given metabolism with the method
detailed in [24]. We note that H2S production pathway has been added compared to
[24]. See Additional file 10 — Supplementary materials for additional precisions on
KO selection.

From the IGC 9.9M genes catalog [4], we extracted the resulting 129 352 selected
genes (SG) included in the KO, GH and PL, that were further pooled in aggregated
functional traits (AFT, see Fig. 1.b for a sketch of the selection and aggregation
steps). A final list of 101 AFTs characterizing the fibre degradation process in the
human gut microbiome was obtained, comprising 33 GH and PL and 68 KOs or
KO aggregations (See Table 2 for the complete list of KOs, GHs and PLs that were
conserved, and the file List of Reactions.xlsx in the Additional file 9 — Dataset count
matrices, profile decomposition and metadata for the complete list of reactions).

Metagenomic Data and gene frequencies.

Gene abundance tables were generated with the METEOR software suite [52]. First,
reads were mapped with bowtie2 [53] (parameters: –trim 80 -k 1000) to the integrated
gene catalog (IGC) of the human gut microbiome [4], comprising 9.9 million of genes.
Alignments with nucleotide identity less than 95% were discarded and gene counts
were computed with a two-step procedure previously described that handles multi-
mapped reads[29]. Finally, raw gene counts were normalized according to gene length
and total number of mapped reads per sample, reported in relative frequency (FPKM
normalization).

The IGC KO annotation was used to map the genes to their corresponding AFTs.
The GHs and PLs were re-annotated in the IGC using Hmmer [54] and dbCan version
3 [55] with default parameters, after assessment of dbCan annotation quality on 145
manually annotated protein sequences as previously described [24], and the corre-
sponding genes were mapped to their AFTs. The AFT frequencies were obtained by
summing the FPKMs of all genes with the corresponding annotation, handling for
multiple annotations as previously described [24].

At end, a AFT frequency matrix X
(AFT )
i of dimension ns,i × 101 is built for each

dataset i ∈ {train, hmp2, CD,metacardis,med.diet, Parkinson}, where ns,i is the
number of samples of dataset i. The 9.9M genes frequencies are also used to compute
pBCd between samples at the three aggregation levels, on the 9.9M genes, on the SGs
and on the AFTs as displayed in Fig. 2.c (see Fig. 1.b for a sketch of the different
aggregation levels and Methods sec. Statistical treatment for methods).

GH, PL and KO Graphical representation

GH and PL were distributed according to the dietary fibre type they degrade. Some
GH or PL appear in several arrows because GH or PL CAZymes classification does not
represent a unique substrate uptake and fibre degradation modular enzymes are usu-
ally not substrate specific. KO were represented by directed arrows linking metabo-
lites together on a graph (Fig. 1.a). Note that each array of this graph represent a
full metabolic pathway between metabolites, represented by the specific KOs collected
for this pathway. Reaction cofactors such as CO2, ATP and others, were left out of
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this representation. Extracellular compounds, which micro-organisms can uptake
or excrete, were identified with black contours. Functional modules were identified
from KEGG and expert knowledge. The metabolic network has been displayed with
Pathvisio [56] (Fig. 1.a) and further annotated (functional blocks) with Inkscape [57].

Prevalent genome selection and function frequencies computa-
tion in prevalent genomes.

A list of 203 genomes (see Additional file 9 — Dataset count matrices, profile decom-
position and metadata, Genome list.xlsx ) was built by selecting prevalent genomes
from [26] and [58], taking care that the main phyla are represented. The genes in-
volved in the 101 AFTs were recovered in 191 genomes (see Additional file 9 —
Dataset count matrices, profile decomposition and metadata, Genome list.xlsx for
subset list): KEGG Orthology annotation was carried out using diamond (0.7.11)
[59] and default parameters on the KEGG database from 2016 [60]. If a query was
found to have multiple hits, only the best hit was kept, any hit with bitscore under
60 was discarded [28]. GH and PL annotations were obtained using Hmmer [54]
and dbCan version 3 [55] with default parameters. The resulting presence/absence
annotation is given in (see Additional file 9 — Dataset count matrices, profile decom-
position and metadata, Genome list.xlsx ) and used for clustering in Fig. S7 (see sec.
Statistical treatment).

Taxonomic count matrices

Two different taxonomic informations were derived by counting in the samples either
the 203 PGs through annotation of taxonomic marker genes or metagenomic species.
40 taxonomic marker genes (TMG) [61, 62, 63] were extracted from each 203 gut
microbiota PGs using fetchMG (http://vm-lux.embl.de/~mende/fetchMG/about.
html) [64] with default parameters. These genes were annotated in the IGC catalog
using diamond (0.7.11) [59] and default parameters. Any hit with bitscore, percent
identity or alignment length under respectively 60, 97 and 45 was discarded as indi-
cated in [64] for correct taxonomic annotation. TMGs frequencies in each sample were
pooled by PG to assemble a genome frequency matrix X(PG) (see Additional file 9 —
Dataset count matrices, profile decomposition and metadata, X PG.xlsx ). Metage-
nomic species (MGS) [17] were recovered in the train dataset. Genus abundance was
computed according to MGS abundance in order to assemble a MGS-derived genus
frequency matrix X(mgs) (see Additional file 9 — Dataset count matrices, profile
decomposition and metadata, X mgs.xlsx )

Inference of functional profiles

The inference method was thoroughly detailed in [24]. Briefly, starting from the fre-

quence matrix X
(AFT )
train of the 101 AFTs of the train dataset, we used a constrained

Nonnegative Matrix Factorization (NMF) to decompose X
(AFT )
train as the product of

two nonnegative matrices, the profile matrix H(AFT ) of dimension k × 101 and the

weight matrix W
(AFT )
train of dimension ns,train × k where k is the number of profiles,

an hyperparameter to be tuned (see below). Each line of H(AFT ) represents a func-

tional profile, characterized by a vector of co-varying AFT frequencies: H
(AFT )
i,j is

the frequency of AFT j in profile i. The columns of W
(AFT )
train represent the weights of

the corresponding profiles in the different samples: W
(AFT )
train i,j represents the weight

of profile j in the i-th sample of the train dataset X
(AFT )
train .

Matrices W
(AFT )
train and H(AFT ) are inferred by solving the optimization problem

(W
(AFT )
train , H(AFT )) = argmin

W ≥ 0
H ≥ 0

FHT ≤ 0

∥(X(AFT )
train −WH)D−1∥2F + α

(
∥W∥2F + ∥HD−1∥21,2

)
(1)

In this equation, D is a diagonal scaling matrix, so that Dii = ∥X(AFT )
train i∥2 is the

l2 norm of the i-th column. The matrix F is a constraint matrix designed to favour
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the presence in the profile of complete metabolic pathways linking two extracellular
compounds in Fig. 1.a so that a given profile carries the whole set of reactions needed
for intracellular metabolism (see Additional file 10 — Supplementary materials for
additional precisions on the construction of F , Additional file 9 — Dataset count
matrices, profile decomposition and metadata, F.xlsx for the constraint matrix and
[24] for more details). Finally, 155 constraints were implemented so that F has
dimension 155×101. The parameter α is a tuning parameter that sets up the impact
of the regularization penalties ∥W∥2F+∥HD−1∥21,2 on the NMF. The Froebenius norm
in penalty ∥W∥2F tends to standardize the profile weights in a given sample while the
l1,2 norm on H tends to assign each AFT to a limited number of profiles by inducing
sparsity on the rows of H. The resulting profiles are not exclusive, meaning that a
given AFT can be represented in several profiles.

The selection of the regularization parameter α and the number of profiles k
was performed using the same triple criterion approach as in [24] providing the best
trade-off between internal data reconstruction (reconstruction error criterion), recon-
struction of external samples (bi-cross validation) and profile stability, while avoiding
over-fitting. See Additional file 10 — Supplementary materials for precise definitions
of the hyperparameter selection criteria.

Implementation of the NMF inference in python based on OSQP solver [65] is
available at https://forgemia.inra.fr/nmf4metagenomics/pynmf and is based on
a block coordinate descent algorithm consisting in alternatively solving the nonneg-

ative least-square problems inferring W
(AFT )
train knowing H(AFT ) with

W
(AFT )
train = argmin

W ≥ 0
∥(X(AFT )

train −WH(AFT ))D−1∥2F + α
(
∥W∥2F

)
(2)

and inferring H(AFT ) knowing W
(AFT )
train

H(AFT ) = argmin
H ≥ 0

FHT ≤ 0

∥(X(AFT )
train −W

(AFT )
train H)D−1∥2F + α

(
∥HD−1∥21,2

)
. (3)

Average profile weights W̄
(AFT )
train and AFT counts X̄

(AFT )
train of the training set are

defined. Namely, average profile weights W̄
(AFT )
train = 1

ns

∑ns

i=1 W
(AFT )
train,i are computed

by averaging W on the train set. Average AFT counts X̄
(AFT )
train = 1

ns

∑ns

i=1 X
(AFT )
train,i

are obtained in the same manner.

Profiles validation

The matrix H(AFT ) whose lines are the 4 functional profiles obtained after NMF on

X
(AFT )
train was held fixed, and the positive least square regression (2) was performed on

the validation datasetsX
(AFT )
d , for d ∈ {hmp2, CD,metacardis,med.diet, Parkinson}

to determine the corresponding weight matrices W
(AFT )
d . Relative reconstruction er-

ror distributions ∥X(AFT )
d i

−W
(AFT )
d i

H(AFT )∥F /∥X(AFT )
d i

∥F , for i = 1, . . . , ns,d are
computed for validation assessment.

Genomes and MGS affectation to profiles

To affect genomes to the functional profiles, we assumed that the weights predicting

profile assemblage to reconstruct X
(AFT )
train were also a suitable predictor to reconstruct

genome frequencies. In other words, we search for genomes that co-vary with the func-
tional profiles, with the implicit assumption that the genes included in a functional
profile will vary proportionally with the genomes that carry them. Hence, knowing

the (1153× 4) matrix W
(AFT )
train , the unconstrained positive least square regression (3)

was solved on respectively the prevalent genomes and the MGS frequency matrices

X
(PG)
train and X

(mgs)
train to infer H(PG) the 4 × 203 prevalent genome and H(mgs) the

4 × 217 MGS-derived genus count matrices. Note that the same L1,2 regularization
penalty as in equation (1) was applied to favour unique allocation to the profiles,
together with the same penalty coefficient α.
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Statistical treatment

All the computations and statistics have been performed with custom scripts using
the standard python libraries numpy [66], scipy [67], pandas [68] and matplotlib [69].
Ternary plots, that are plots in barycentric coordinates of normalized W1, W2, and
W3 values, i.e. Wi/(W1 + W2 + W3) for i = 1, 2, 3, are produced with the Ternary
python package [70] (Fig. 6.a, c and e, Fig. 7, Fig. S5.a, c and e, Fig. S8.c and d).

pBCd have been computed with scikit-learn [71] (see fig. 2). Intra-cohort pBCd
refers to dissimilarities obtained with two samples of the same cohort while inter-
cohort pBCd distribution of the dataset i ∈ {train, hmp2, CD,metacardis,med.diet, Parkinson}
refers to dissimilarities obtained with a sample from the dataset i and another sample
from dataset j ̸= i.

Dysbiosis index (DI) has been computed following [3]: a reference set has been
set up with non-IBD samples of the ’hmp2’ cohort obtained after the 20-th weeks
from the patient enrolment and DI is defined as the median pBCd with the reference
dataset, excluding samples from the same individual. A dysbiotic threshold is defined
as the quantile 0.9 of the DI in healthy samples: samples with DI above this threshold
are tagged as dysbiotic [3].

To avoid statistical bias (individual effect) due to over-representations of the same
individuals, only the first time point of each individual is included in differential
analysis involving the ’hmp2’ cohort, i.e. for BMI (Fig. 5.a and b), CD and dysbiosis
analysis (Fig. 6.a to d).

PERMANOVA (fig. 2.d) has been performed on the intra-cohort pBCd matrices
obtained from the different levels of aggregation (9.9M genes, SGs and AFTs, see
Method sec. A functional view of fibre degradation in metagenomes) with scikit-bio
[72] using 10000 permutations and default parameters, respectively to the following
structuring co-variables: individual, sex, age, Body Mass Index (BMI), diagnosis,
study and nationality.

All the statistical tests have been performed with the scipy.stats module [67] (Fig.
5, 6 and S5). Multiple test corrections were made with statsmodels.stats.multitest
[73] (Fig. 7 and S6). In all graphs, significant p-values are indicated with one star if
1e− 2 < p ≤ 5e− 2, 2 stars if 1e− 3 < p ≤ 1e− 2, 3 stars if 1e− 4 < p ≤ 5e− 3 and 4
stars if p ≤ 1e− 4, non significant p-values are indicated with n.s.. The test name is
indicated with the significance level. MW stands for the ’two-sided’ Mann-Withney
U test, levene for the levene test for the variance.

Support Vector Machine (SVM) classification has been made with scikit-learn
[71] using ’rbf’ kernel after cross-validation of the hyperparameters C and γ and min-
max scaling normalization. The SVM classifier was trained on the ’hmp2’ cohort, by
classifying CD against healthy samples (Fig. S6).

Hierarchical clustering has been performed with the package scipy.cluster.hierarchy
using a pairwise Jaccard distance matrix computed on the AFT presence-absence in
the 191 genomes and the 4 profiles(see Prevalent genome selection and function fre-
quencies computation in prevalent genomes), Ward algorithm and 4 clusters (Fig.
S7).

Results

Assessment of dataset and gene selection

Upstream to any data analysis, we first assess that the training set is representative
of the whole set of metagenomes included in the study by computing pBCd on the
9.9M genes, focusing on intra and inter-cohort distributions (see Methods Statistical
treatment). The training set shows nearly identical intra- and inter-cohort pBCd
distributions, that are also very close to the pBCd distribution obtained when the
whole set of sample pairs are pooled (Fig. 2.a, dashed and plain blue curves super-
imposed with dotted red curve), indicating that the training set is representative of
the gene diversity observed in the metagenomes of the different datasets. The intra-
and inter-cohort pBCd of the CD cohort show a pick of high dissimilarities (Fig. 2.a,
red curve), showing a higher prevalence of dissimilar samples in agreement with the
over-representation of dysbiotic samples in this cohort (Fig. 2.b, red). A similar ob-
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servation can be done for the hmp2 cohort, with slighter effects, that can be related
to the over-representation of inflammatory bowel diseases (IBD) in these cohorts. On
the contrary, the Mediterranean diet cohort presents a higher fraction of samples with
low dysbiosis index (Fig. 2.b, purple).

We next check that the functional simplification operated in this study by selecting
genes related to fibre degradation does not strongly bias the functional variability
observed in the metagenome. Indeed, as fibres are the main substrate in the gut,
fibre-related pathways are expected to be observed in all the metagenomes, inducing
less variable counts that could impair sample differentiation. We then assess the
impact of the different levels of aggregation and simplification of the metagenome
performed in the study (see Fig. 1.b and Sec. A functional view of fibre degradation in
metagenomes). The pBCd obtained on the SG frequencies (Fig.2.c, plain lines) show
very similar distributions to the pBCd computed on the 9.9M genes (Fig.2.c, dotted
lines), indicating that the functional simplification resulting from the gene selection
allows to reproduce the same sample stratification as the one obtained from the whole
metagenome. As expected, dissimilarities are strongly reduced when pooling the SGs
in AFTs shifting pBCd towards lower values (Fig. 2.c, colored distributions), but
AFT-based pBCd captures the over-representation of dissimilar samples in the CD
and hmp2 cohorts. Furthermore, PERMANOVA shows that the main part of dataset
structures with respect to co-variables are correctly reproduced by AFT-based pBCd
(Fig. 2.d), indicating that the functions related to fibre degradation selected for the
AFTs are suitable to capture stratifications observed in the whole metagenome.

Fibre degradation process is accurately described by 4 universal
functional profiles

Statistical inference of the functional profiles.

Co-varying AFTs are identified in the training dataset using the NMF method (see
Methods sec. Inference of functional profiles), resulting in 4 distinct functional pro-

files (matrixH(AFT )) whose wheighted mixture with weightsW
(AFT )
train allows to recon-

struct the training AFT counts X
(AFT )
train : X

(AFT )
train ≃ W

(AFT )
train H (mean relative error :

17 %, see Fig. S1.a). We recall that the NMF method was specifically constrained by
a metabolic-based constraint F favouring in practice the clustering in the same profile
of AFTs belonging to the same metabolic pathways [24]. This constraint results in
the distribution of the different metabolic pathways of the fibre degradation network
among the 4 profiles.

Validation on external datasets

To assess the ability of the profiles to reconstruct external datasets, i.e. to validate
the universality of the functional profiles, the nonnegative least square regressions (2)

is performed on the AFT count matrixX
(AFT )
d in order to identify the best weight ma-

trixW
(AFT )
d so thatX

(AFT )
d ≃ W

(AFT )
d H(AFT ) with d ∈ {hmp2, CD,metacardis,med.diet, Parkinson}.

The relative reconstruction error distributions are very homogeneous across datasets,
except for the CD dataset where increased reconstruction errors are observed (Fig.
S1.a). This is probably induced by an over-representation of dysbiotic and CD sam-
ples in this dataset, that are less acurately reconstructed (Fig. S1 d and g). Stuc-
turing variables such as study, health or weight status, drug administration, diet or
dysbiosys do not strongly affect reconstructions (Fig. S1). In the worst case (dys-
biotic samples), the mean relative error is kept under 27 % and the 0.95 quantile is
kept under a relative error of 44 %.

We note a strong discrepancy in the four profile weights in the samples (Fig. S1
j). The weights W1 and W2 of profiles 1 and 2 are significantly higher than W3 and
W4 in all datasets (paired t-test, p< 1e− 6). This observation suggests that Profiles
1 and 2 carry characteristic gut microbiota fibre degradation functions dominant in
the majority of metagenomes whereas Profiles 3 and 4 indicate specific functional
variations.

To investigate the contribution of the different profiles to metagenome reconstruc-
tion, we compare the pBCd obtained on reconstructed counts with AFT-based pBCd
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when the number of profiles is increased. Namely, we compute the reconstructed

count matrices
∑K

m=1 W
(AFT )
d,m H

(AFT )
m for K = 1 to 4, and compared the resulting

AFT-based pBCd with the AFT-based pBCd computed on the original count matrix

X
(AFT )
d , for d ∈ {hmp2, CD,metacardis,med.diet, Parkinson} (Fig. 2. e). We can

see that the first profile alone does not provide an accurate reconstruction of the pBCd
distribution. Interestingly, adding the second profile allows to reconstruct the main
part of the pBCd distributions (until approximatively the 80th centile in the worst
case, Fig. 2.e, CD, orange line), except when the dataset involves over-representation
of highly dissimilar samples (HMP2 and CD datasets, Fig. 2, c, orange and red dis-
tributions). However, in these cases, adding the third profile (and even the fourth for
the hmp2 dataset, Fig. 2.e, HMP2, green and pink lines) makes it possible to recon-
struct higher pBCds. These observations suggest that Profiles 1 and 2 carry sufficient
information to describe the AFT-related metagenomic variability in the main part of
the population, except in dysbiotic situations, that are correctly rendered by adding
Profiles 3 and 4 in the reconstruction. We also note that the reconstructed pBCds
are slightly uniformly underestimated, the qq-plot lying slightly under the bisector
line.

The four profiles present contrasted functional characteristics

To dig into the intrinsic functional characteristics of the different profiles, we plot their
AFTs distributions (Fig. 3.a and S2). We first observe that the different profiles do
not exhibit the same balance between GHs, i.e. AFTs involved in complex molecule
cleavage like fibres, and KOs, i.e. AFTs taking in charge the downstream part of
fibre degradation, from simple sugars to end products (Fig 1.a). Profile 1 carries the
largest set of GH (70%), reflecting a very broad capacity to breakdown fibre, resistant
starch and diverse plant cell wall polymers, unlike Profile 2 (38%), Profile 3 (23%)
and Profile 4 (22%). Profile 1 main GHs are related to mucin (GH2, GH43, GH29,
GH95), protein and xylan (GH3), pectin and plant cell wall (GH 43, GH28), and to a
less extent to starch degradation (GH13) as shown in Fig.3.a (GH pie chart) and Fig.
S2. Profiles 2, 3 and 4 are shifted towards sugar fermentation rather than hydrolysis.
They are preponderantly characterized by starch degradation and amylase (GH13),
with secondary GH activity related to protein and xylan degradation (GH3) and
mucin (GH2) for Profile 2, fructan and inulin degradation (GH32) for Profile 3 and
cellulose degradation (GH5) for Profile 4. Profiles 2 and 4 present high proportions
of GH involved in protein degradation. In contrast, Profile 3 has noticeably low
proportions of GH involved in plant cell wall breakdown compared to other profiles,
but presents high proportions of GH2 releasing galactose from N acetyl-galactosamine
moieties and GH29 and GH95 releasing fucose, suggesting a shift from polymers
hydrolysis towards unusual sugar fermentation.

In the downstream part of fibre degradation, Profile 1 and Profile 2 are very
similar (Fig 3.a, KO pie charts and S2). The main differences are related to galactose
pathway (AFT 21 is more present in Profile 2) and in the propanoate pathway where
Profile 1 takes in charge AFT 48 linking lactate to propanoate while Profile 2 is
involved upstream in AFT 47 linking pyruvate to lactate. Profiles 3 and 4 present
more dissimilarities: EMP proportion is reduced in Profile 3 while fucose (AFTs 22,
23 and 24) and propanoate (AFT 48 and 50) pathways are enhanced (Fig. 3.a and
S2). Profile 3 is also the unique profile providing AFT 19 in galactose pathway.
Profile 4 is characterized by a higher proportion of AFTs of the pyruvate pathway
and the presence of the methanogenesis.

Profile contribution to the microbiota functional potential

These intrinsic characteristics functionally characterize each profile, but do not give
insight into its importance in the metagenomes. We assess the relative contribution

of each Profile i to the total count of AFT j by computing W̄
(AFT )
train,iH

(AFT )
ij /X̄

(AFT )
train,j ,

where W̄
(AFT )
train and X̄

(AFT )
train are the average weights and counts in the training set

as defined in Methods sec. Inference of functional profiles. The four profiles have
different ecological contributions in the metagenomes (Fig. 3.b and S3.a). As ex-
pected, Profile 1 is the main provider of GH counts, except for GH with the lowest
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counts (GH44 and 48 for plant cell wall degradation, GH 101 and 129 for protein
cleavage). It is also particularly involved in some pathways such as bifidobacterium
shunt, butyrate production, WL, SPED, EMP, ED, fructose and fucose pathways.
Profile 2 has a major contribution in the pyruvate, butanoate, acetone pathway and
some specific KOs (K00882 and K01786 in the fructose pathway, K00965 for galactose
metabolism, K13788 for acetate pathway). Profile 3 is the unique provider of some
KOs such as K03080 in the fructose pathway, K01690 in ED or K04020 in acetate
production. It is also particularly present in galactose, fucose, SPED and propionate
production. Profile 4 is the main contributor for methanogenesis, and has otherwise
small to marginal contributions in EMP, pyruvate or sulfur pathways.

Taxonomic make up of the 4 profiles

A natural question at this point is to wonder which taxonomic units could provide the
AFT of each functional profiles. We selected 203 genomes among the top-prevalent
strains in metagenomes, covering the main phyla found in the gut microbiota (see
Methods sec. Prevalent genome selection and function frequencies computation in
prevalent genomes) and assembled TMG count matrixX(PG) for the different metage-
nomic datasets (see Methods sec. Taxonomic count matrices). Under the assumption

that a genome providing a specific AFT in a functional profile H
(AFT )
i , i = 1, · · · , 4,

should co-vary with the profile, we search by nonnegative inference the best H(PG)

so that X
(PG)
train ≃ W

(AFT )
train H(PG). In this equation, W

(AFT )
train is the weight matrix of

the functional profiles (see Fig. 1.b and Methods sec. Genomes and MGS affectation
to profiles). Hence, if H(PG) is consistent, we should also have for each external

dataset d ∈ {hmp2, CD,metacardis,med.diet, Parkinson} X
(PG)
d ≃ W

(AFT )
d H(PG).

This is actually the case since the reconstruction errors at the phyla levels (Fig. S4)
follow similar characteristics to the reconstruction of the AFT counts (Fig. S1). The
same inference procedure is performed to reconstruct the training MGS count matrix

X
(mgs)
train resulting in the MGS profile matrix H(mgs) with similar reconstruction error

distributions (Fig. S4.j).

Marked taxonomic structure of the profiles

The taxonomic profiling obtained with the MGS or the 203 PGs are particularly con-
sistent (Fig 4.a and 4.b). Profile 1 is dominated by Bacteroidetes species belonging
to the genera Bacteroides and Prevotella. In contrast, Profile 2 has a high diversity
of Firmicutes species, with butyrate-producing species from the Cluster IV Faecal-
ibacterium prausnitzii species, Roseburia intestinalis, Ruminococcus bromii which is
a mucin degrader, and cluster XIVa Eubacterium rectale such as Eubacterium eligens.
Anaerostipes putredinis is the main representer of the Bacteroidetes phylum. Acti-
nobacteria, including the bifidobacteria and the Verromicrobia species Akkermansia
muciniphila are also present in Profile 2. Profile 3 is strikingly distinct from the
two first profiles. It has a major proportion of commensals of the Proteobacteria
phylum (Escherichia coli K12 and Klebsiella pneumoniae) but also marginaly the
multi-drug resistant Escherichia coli SMS-3-5 strain and Citrobacter sp. The mucin
degrader Ruminococcus gnavus is the main representer of the Firmicutes. Within
the Bacteroidetes, the main fibre hydrolysing species are not contributing but the
Bacteroides fragilis are dominant. Bifidobacteria and Akkermansia muciniphila are
also part of Profile 3 taxonomic contribution but more marginally. Profile 4, is signif-
icantly distinct regarding its taxonomic representation. The Euryarchaeota domain,
and specifically with hydrogenotrophic methanogenic strains from Methanobrevibac-
ter smithii species, are over-represented. Then follow Firmicutes, Verrucomicrobia
(Akkermansia Muciniphila), Bacteroidetes and Actinoacteria. The MGS profiling of
Profile 4 is rather different: it also includes the methanogens but otherwise gathers
unclassified genus. These discrepancies can be related to the low amount of signal
carried by Profile 4 (Fig. S1.j).

We now wonder how consistent are the profiles with the enterotypes obtained
from the analysis of the taxonomic compositions of large metagenomic datasets [19,
32]. Profile 1 and 2 present contrasted distribution among enterotypes (fig. S5 c
and d): if Profile 1 is over-represented in Bact2 and Prevotela enterotypes, higher
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weightsW
(AFT )
2 are observed for Bact1 and Ruminoccocus enterotypes. Interestingly,

Profile 3 is almost only observed in Bact2 enterotypes and Profile 4 in Ruminoccocus
enterotype (Fig. S5 d).

The profiles link the taxonomic and functional composition of
the microbiota

Compared to the functional contribution of the profiles (Fig. 3.b), their taxonomic
contribution is very structured (Fig. 4.c-d and S3.b-c). Profile 1 is the main contrib-
utor for Bacteroidetes, Profile 2 for Firmicutes and Actinobacteriota, Profile 3 for the
Proteobacteria and some Firmicutes and Profile 4 for the Euryarchaeota. Repeating
this analysis on MGS clustered by genus (Fig. 4.d and S3.c) leads to consistent re-
sults, despite the very different nature of the taxonomic data, i.e. targeted PGs versus
untargeted MGS. This clear structure is particularly strinking since the taxonomic
profiling is indirect and based on the profile weights obtained on the AFT counts,
indicating that these specific phyla may carry specific AFTs of the different profiles,
linking taxonomic composition and functional contribution to the metagenome.

To check this hypothesis, we blasted the genes involved in the AFTs in 191 PGs
(fig. S7), and clustered the genomes by their similarity in carying AFT genes, adding
the four profiles to the clustering process (see Methods sec. Statistical treatment).
The bacteroidota, main carrier of GH genes, clustered with Profile 1 as expected.
Actinobacteria clustered together, characterized by the Bifidobacterium shunt and
one function involved in acetate production (AFT 60). Firmicutes are splitted in two
groups: the first group characterized by the absence of fucose-related genes and little
presence of fructose and mannose pathways clustered with Profile 4, while the others
clustered with Profile 2 and 3. Profile 3 clustered with the Proteobacteria character-
ized by a strong representation of fucose, fructose, manose and propionate pathways.
This clustering is very consistent with the taxonomic profiling, even though derived
from very different biological signals. This repeated consistency (profiling with tar-
geted PGs, untargeted MGS, clustering based on AFT presence/absence in genomes)
suggests that the functional stratification described by the different profiles actually
reflects co-variations of microbial entities. These covarying taxons, characterized by
within-group functional similarities and between-group functional discrepancies, are
the taxonomic support of the covarying AFTs defining the functional profiles.

Balance of profiles 1 and 2 reflects metabolic status and dys-
biosis.

Profiles 1 and 2 particularly contributing to GH production and sugar metabolism
AFTs, we therefore wondered if Body Mass Index (BMI) structured the samples in

the W1-W2 space (Fig. 5.a). When W
(AFT )
1 is high and W

(AFT )
2 is low, higher

BMIs are preponderant (light green dashed confidence ellipse), whereas lower BMIs

are over-represented in the region defined by low W
(AFT )
1 and high W

(AFT )
2 (green

confidence ellipse). Plotting W
(AFT )
1 and W

(AFT )
2 distributions stratified by obesity

levels (Fig. 5.b) shows that W
(AFT )
1 values are significantly higher and W

(AFT )
2 sig-

nificantly lower for class 3 obesity compared to healthy samples. Interestingly, the
shifts are significantly reversed under statin treatment (Fig. S5.f), a drug used against
hypercholesterolemia, suggesting metabolism-driven modifications of the microbiota.
Statin is known to impact the microbial composition, reducing the prevalence of Bact2
enterotype in patients under treatment [32], consistently with the statin-induced re-

duction of W
(AFT )
1 since Profile 1 is over-represented in Bact2 enterotype (Fig. S5

d).
As profiles 1 and 2 are preponderant in the samples, we investigated if their

respective weights are impacted during dysbiosis. To quantify the balance between
profiles 1 and 2 in the microbiota, we introduce the barycentric coordinate W ∗ =

W
(AFT )
2 /(W

(AFT )
1 + W

(AFT )
2 ) that we plot with stratification by Dysbiosis Index

(DI, see Sec. Statistical treatment for DI definition). For balanced microbiota (Fig.
5.c, blue, DI < dysbiotic threshold), the barycentric coordinates are tightened around
an average ratio of 0.2, meaning that Profile 1 and 2 are mixed with a respective ratio
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4:1 in non dysbiotic samples. On the contrary, W ∗ is significantly higher in dysbiotic
samples (DI>dysbiotic threshold, orange, p < 1e−5, two-sided Mann-Withney (MW)
test), with significantly increased dispersion around the mean (p < 1e−5, levene test).
Shrinkage around W ∗ = 0.2 is enhanced for the first DI decile (gray) and W ∗ is more
dispersed in the last decile (pink) compared to the set of dysbiotic samples. All
together, these observations suggest that dysbiosis is characterised by unbalanced
profiles 1 and 2. Furthermore, unbalance is induced by both a significant depletion
of Profile 1 (Fig. S5 b, MW test) and a significant increase of Profile 2 (MW test).

Profile 1 main characteristic is its preponderant contribution in GH-related AFTs,
involved in fibre cleavage. We then hypothesized that high fibre diet may impact
Profile 1 and 2 balance. In an interventional study comparing mediterranean diet
(considered as a high fibre diet) to a control diet, the distribution of the barycentric
coordinate W ∗ are similar in the mediterranean diet and control groups at baseline
(Fig. 5 d). Four weeks after intervention, W ∗ is tightened around the value 0.2
in the mediterranean diet group and this shrinkage is maintained eight weeks after
intervention, whereas the dispersion is similar to the baseline in the control group (Fig.
5 d). Furthermore, the variance of W ∗ is significantly reduced after intervention in
the mediterranean diet (Fig. 5 e, levene test) unlike the control group. The shift
of W ∗ between four and eight weeks are higher in the control group compared to
the mediterranean diet (Fig. 5 d.) with slight significance (p = 0.06, one-sided MW
test). These observations suggest that the higher fibre intake in the Mediterranean
diet contributes to the stabilization of Profile 1 and 2, particularly equipped with
fibre degradation functions, around a non-dysbiotic ratio.

Profiles 3 is associated to Crohn’s Disease and Profile 4 to slow
transit.

When plotting the weight of the 3 first profiles in a ternary plot in the W1−W2−W3

space (Fig. 6 a), Crohn’s disease (CD) samples (red dots, red line : 95% confidence)
are mainly shifted towards theW1 and theW3 corners whereas healthy samples (green
dots, green line: 95% confidence) are kept near the basis of the triangle, around the
ratio 0.2 between profiles 1 and 2 previously identified as a marker of healthy samples.
This means that Crohn’s disease is characterized by unbalanced profiles 1 and 2 and
over represented Profile 3. Bar plots (Fig. 6 b) shows that the unbalance is driven

by a very significant (MW test) depletion of W
(AFT )
2 in CD samples while W

(AFT )
1

is not significantly modified and a very significant increase of W
(AFT )
3 is observed

(MW test). Hence, in CD samples, a shift in the profile weights occurs from Profile
2 towards Profile 3. This shift carries enough signal to correctly classify CD and
healthy samples using SVM classifier with high accuracy (Fig. S6 e., recall:0.94,
precision:0.81, AUC:0.92 for the unseen test cohort).

This observation is unexpected since dysbiotic samples ought to be over-represented
in CD samples and we just saw that dysbiosis is characterized by an increase of

W
(AFT )
2 (Fig. S5 a and b). We then color-coded dysbiotic and not dysbiotic samples

in the ternary plot (Fig. 6 c) and stratified accordingly the bar plots (Fig. 6 d). In
not dysbiotic samples, the weight of profiles 1 is increased in CD compared to healthy
population whereas Profile 2 drops, with high significance. During dysbiosis, usual

shifts occur: W
(AFT )
1 is reduced while W

(AFT )
2 is increased in both CD and normal

populations, but W
(AFT )
2 remains lower for dysbiotic CD compared to healthy dysbi-

otic samples, with high significance (MW test). We also observe that Profile 3 is not
a strong marker of dysbiosis since in healthy populations, a dysbiosis only triggers a

limited increase of Profile 3 weight, while CD induces a strong increase of W
(AFT )
3

whatever the dysbiotic status with a strong enhancement during dysbiosis (Fig. 6 d).
Interestingly, Profile 3 is mitigated by mediterranean diet (Fig. 6 f). After 8 weeks of
high fibre diet, Profile 3 is significantly reduced (MW test) together with its variance
(levene test) compared to baseline and to control (MW test p = 3e − 3, levene test
p = 4e − 2) so that samples are kept near the basis of a ternary plot (Fig. 6 e).
Mediterranean diet has been shown to improve the inflammatory status of patients
experiencing an increase of microbial richness after diet change[33], suggesting that

W
(AFT )
3 reduction after intervention could be linked with the inflammation reduc-
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tion. This would be consistent with the taxonomic composition of Profile 3, carrying

Proteobacteria known to bloom during inflammation. The association of W
(AFT )
3

with the CD inflammative disease and the over-representation of higher W
(AFT )
3 in

Bact2 enterotype (Fig. S5 d) are also consistent with the previous identification of
Bact2 as a dysbiotic microbiome [32].

The weight transfer from Profile 2 towards Profile 3 reflects functional shifts in CD
compared to healthy samples. Functional modules are significantly over-represented
in CD samples compared to healthy ones, in particular ED, fucose, galactose GH,
sulfur and propionate pathways (Fig. S6. a and c, fdr 0.05, Benjamini-Hochberg
correction). A closer look to the metabolic pathaways during CD and dysbiosis
indicates a shift towards non typical metabolic pathways in the metagenome (Fig.
7). If some GHs are shifted, mainly involved in cellulose (GHs 44 and 48), xylan
(GH 8) and protein (GH 101) degradations, the most interesting modifications occur
in the KOs. First, the downstream part of fucose pathway including the propane1-2
diol production from L-lactadehyde (AFT 58; K13922) and propionate production
through AFT 59 is particulary marked in CD samples: it is a propionate production
pathway distinct to the usual one based on lactate transformation, which is reduced
in CD (AFT 50). Consistently, the genes involved in acetate production through
AFT 36 (K04020) and 60 (K13788) are non typical for anaerobic pathways and are
over-represented in CD samples. Further shifts are observed during CD presenting
alternatives in sulfur (AFT 62), SP-ED (AFT 9) and pyruvate (AFT 33) pathways.

During dysbiosis, these shifts are further enhanced. Fucose fermentation pathway
is exacerbated with the increase of AFT 23 encoding for fucK which is present in
Proteobacteria and Akkermansia muciniphila genomes (Fig. S7), which complete a
pathway from fucose to propionate and enforces the availability of the correspond-
ing genes. AFT 67 encoding for sulfite and NAPDH from hydrogen sulfide (Fig.
7) driving hydrogen removal from dissimilatory sulfate reduction is also increased:
these functions are characteristic of Proteobacteria and Bacteroidota (Fig. S7) and
are an alternative to AFTs 66 and 68 more present in Firmicutes and Profile 2 in
healthy samples (Fig. 7, S7 and S2). Further modifications occur during dysbiosis and
dysbiotic CD such as AFT 43 (acetone production) or GH 74 (hemicellulose degra-
dation). Alternatively, some shifts are preponderant in healthy dysbiotic samples
but do not belong to the main modifications in dysbiotic CD. Among them, alpha-
galactose fermentation as characterized by AFT 19 (including gene dgoK; 2-dehydro-
3-deoxygalactonokinase [EC:2.7.1.58]) involved in galactose to pyruvate metabolism
is an alternative to galactose transformation towards glucose during dysbiosis. The
alternative ED pathways for glucose fermentation is also enhanced (AFTs 12, 13 and
15) compared to EMP pathway in healthy dysbiotic samples, since these AFTs are
over-represented in Profile 3 (fig. 3.a and Fig. S2).

If the functional count changes are relatively limited (fig S6 c.), the taxonomic
changes are massive (fig S6 d.) supporting the fact that the observed functional
shifts are carried by modifications in the taxonomic composition of the microbiota
during CD. Functional redundancies across micro-organisms (fig. S7) lead to limited
changes in the functional composition of the fibre-related metagenome, with more
marked modifications in a limited number of functions involved in species functional
specialization in alternative pathways. For example, Proteobacteria are characterized
by the presence of propionate-related AFTs (fig S7), which relates the preponder-

ance of Proteobacteria in CD samples (fig S6 d) to the shift towards W
(AFT )
3 in the

distribution of propionate-related AFTs during CD (AFT 58, 59, 50, fig. 7).

Regarding Profile 4, W
(AFT )
4 weight is significantly reduced for higher Bristol

scores (3 to 7), associated to more fluid stools, compared to low Bristol scores (1-2)
associated to hard stools (Fig. S8, a). As fluid stools are often related to lower
retention times in the gut, we wondered if larger retention times would favour Profile
4 and investigated a cohort including patients suffering Parkinson’s disease, a disease
associated to constipation, reported in 80–90% of PD patients [74]. As expected,

W
(AFT )
4 is higher in PD samples compared to control with slight significance (MW

test, p: 5.3e-2, Fig. S8,b). This relation of W
(AFT )
4 with low transit time can be

linked to the taxonomic composition of Profile 4, mainly marked by the presence of
methanogen archae, characterized by low growth rates.
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Discussion

We used the NMF method previously introduced [24] to analyse metagenomic gene
count matrix taking into account prior knowledge on fibre degradation. Our ap-
proach is based on a two-step microbiota simplification. In the first step, functional
marker genes of interest are selected to build the AFT count matrix while providing
a simplified view of the metagenome focused on fibre degradation. In the second step
co-varying AFT are identified using NMF, leading to 4 universal functional profiles
that can be used to reconstruct external samples. This double simplification is cru-
cial to decipher changes among the very high dimensional metagenomic data and to
provide extensive biological interpretations of the different profiles and their shifts
during diseases. This functional viewpoint is supplemented by a taxonomic make up
of the 4 profiles. Several external datasets were further studied and profile weight
variations were linked to obesity, dysbiosis, mediterranean diet, statin intake and
Crohn’s disease.

Screening the profiles weights allows the identification of global shifts in the mi-
crobiota induced by conjoint changes in the co-varying genes of the profiles. We
emphasize that this differential analysis relies on four quantities only (the weights of
the four profiles), representing a dramatic reduction of the dimensionality. Further-
more, as the profiles take in charge specific parts of the metabolic network of fibre
degradation, our framework is very suitable for functional interpretation: the profile
weight variations are directly linked to functional variations that can be mapped to
specific metabolic pathways of the fibre degradation network. Finally, the profile
functional potentials are particularly consistent with their taxonomic composition
and the functional peculiarities of the genomes they include.

In particular, new biomarkers were identified for dysbiosis and CD. A healthy
microbiota is characterized by a balance of Profiles 1 and 2 around a proportion 4:1
while microbiota diverging from this 4:1 proportion are over-represented in dysbiotic
samples. As Profiles 1 and 2 mainly differ by their GHs, these shifts reflect preponder-
antly changes in fibre cleavage. In the same way, Profile 2 and Profile 3 are sufficient
to classify CD samples with high accuracy and reflect functional shift from usual to
unusual pathways for fucose, propionate, H2S, SPED, acetone or butanediol, together
with a bloom of Proteobacteria. These biomarkers give in themselves new insights on
the underlying ecology during these pathological events. However, due to our focus
on fibre degradation, we only capture changes inside fibre cleavage and fermentation
pathways of fibre-derived sugars: our methodology is missing all the functional shifts
outside this scope, which can be important in particular in pathological situations.
This limitation could explain why many samples are tagged as dysbiotic with the
9.9M genes pBCd-derived classification, but display a healthy ratio of 4:1 between
Profiles 1 and 2 for fibre-related genes. Hence, our methodology could be extended
to other metabolic functions, such as respiration functions in micro-aerophilic envi-
ronments during inflammation or protein degradation, or to non-metabolic functions
such as antibiotic production or bile salt hydrolysis.

AFT selection is a crucial step of this methodology. Narrowing down the number
of genes in the metagenome is needed for microbiota simplification. Furthermore, the
careful selection of specific genes allows to link an AFT count to specific metabolic
pathways despite ubiquitous genes: enlarging too much the set of selected genes would
have blurred the biological interpretation by adding genes involved in very different
pathways. However, some of these genes had to be added in the selection to allow
certain degradation pathways. Selection step is then a trade-off between specificity
and completeness of the global network, in the context of ubiquitous enzymes. Again,
this modelling option can be seen as a bias of the present study that could be corrected
by enlarging the functional scope of the method by enrolling other functions. We
consider it as a necessary bias intrinsic to microbiota simplification, a price to pay
for facilitated biological interpretations.

Another ambition of microbiota simplification is to decipher universal pattern,
or functional invariant that can be searched for in a metagenomic sample. In the
present study, four functional profiles are identified, that structure the main part of
the metagenomic samples. In the inference procedure, strong caution has been put in
hyperparameter selection and inference validation, with a particular criterion on the
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stability of the inferred matrix H: the selected hyperparameters reduced the sensitiv-
ity of the inferred H to subsampling of the training set, enforcing the universality of
the inferred profiles. Furthermore, the training set has been carefully constituted by
enrolling a large panel of healthy, inflammatory disease, metabolic disorder, with a
strong caution not to introduce age, sex, study or origin bias. The representativeness
of the training set has been validated a posteriori by checking that its intrinsic pBCd
distribution was identical to the overall pBCd distribution. We also stress that the
ability of the profile to accurately reconstruct external samples has been widely val-
idated by applying them to 2571 unseen samples from 5 external studies. However,
other inference settings such as other regularization penalty, or a different learning
set, could bring slightly different profiles. This drawback is inherent to dimension
reduction strategies, also present in other strategies such as enterotyping: the mi-
crobiota simplification allows to decipher general features but the statistical method
itself comes with intrinsic bias that introduces peculiarities.

The NMF method was previously used for metagenomic data analysis [75, 76, 77].
It can also be related to other dimension reduction or soft clustering techniques. NMF
is comparable from a modelling point of view to mixture models such as DDM, that
were used to identify enterotypes [19]: the metagenomic counts are seen as a mixture
of different populations the composition and weight of which is unknown. The infer-
ence setting is however very different, and NMF suggests a continuous interpretation
of the weights, by comparison to discrete allocation to an enterotype in DMM. NMF
method can also be interpreted as a PCA-like method, constrained by the positive-
ness of the weights and the direction. The very specific added-value of our approach
compared to previous microbiota reduction methods is the inclusion of prior knowl-
edge on microbial physiology and bio-chemistry in the inference process through the
functional constraint F (see eq.(1)). This introduction, deeply discussed in [24], fa-
cilitates the biological interpretation of the profiles, compared to completely agnostic
approaches. We believe that adding such modelling overlay on statistical learning
methods could be decisive in facilitating the integration of the wealth of knowledge
acquired during decades by microbiologists before the omics revolution in the analysis
of the high-throughput data of NGS methods.

Conclusion

In this paper, we analysed a large amount of data coming from various mNGS studies.
From a training dataset with 1153 samples from 7 cohorts, we performed a two step
microbiota simplification method based on AFT selection and NMF dimension reduc-
tion technique. We identified four universal functional profiles that were thoroughly
validated on 2571 external samples from 5 independent studies and further charac-
terized in term of functional capabilities related to fibre degradation and taxonomic
composition. Profile 1 is strongly equipped in GH, making hydrolysis of a large vari-
ety of carbohydrates its main characteristic, and is mainly composed of Bacteroidetes.
By contrast, Profile 2 is more directed towards starch or protein degradation and is
mainly composed of Firmicutes. Profile 1 and 2 balance of roughly 4:1 is associated
with a healthy microbiota while unbalance are associated with dysbiotic events. A
Mediterranean diet can help stabilizing the microbiota around this healthy equilib-
rium. Profiles 1 and 2 unbalances mainly reflect shifts in fibre cleavage towards simple
sugars, GHs distribution being the principal difference between these profiles.

Profile 3 takes over Profile 2 during CD, making shifts between both profiles a
biomarker able to correctly classify CD patients. This ecological unbalance reflects
functional reorientations towards unusual metabolism, in particular for fucose and
H2S degradation and propionate, acetone and butanediol production. These alter-
native pathways are carried by Proteobacteria, the main phylum involved in Profile
3. Profile 4 is mainly marked by rare metabolism, such as methanogenesis, and is
favoured by slow transit.

Integrating anaerobic microbiology knowledge into statistical learning methods
narrows down the metagenomic analysis to investigating ecosystem traits and iden-
tifying functional invariants that can be easily monitored to identify markers of diet,
dysbiosis, inflammation and disease.
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Figure 1: Modeling overview. a) Schematic metabolic network of fibre degradation
in the gut. The metabolic network used to model fibre degradation in the gut is repre-
sented from complex dietary and host-derived fibres to terminal metabolites. Dashed
boxes in the upper part represent fibre pools that are linked to fibre-derived sugars
by GH and PL. Intra- and extra-cellular metabolites are respectively represented by
gray and black boxes. Metabolic pathways linking metabolites are numbered from
1 to 68 (see Table 2): representative KOs are selected for each pathway, checking
for specificity (KO are not involved in other metabolic reactions) and essentialness
(essential reactions for the completion of the pathway). Functional blocks are repre-
sented by coloured shapes. GH Fucose and GH galactose: complex carbohydrate involving respectively fucose

and galactose. ED: Entner-Doudoroff, SP-ED: semi-phosphorylative Entner-Doudoroff, EMP: Embden-Meyerhoff-Parnas,

Bif. shunt: Bifidobacterium shunt, WL: Wood-Ljundhal. Complete list of reactions and abbreviations
can be found in the Additional file 9 — Dataset count matrices, profile decompo-
sition and metadata. b) Gene count aggregation pipelines. The pipelines used to
build the count matrices are sketched. To build X(AFT ), KO, GH and PL are first
selected according to the metabolic network in a), leading to a list of Selected Genes
(SG) that are annotated in the 9.9M gene catalog and pooled into their respective
KO, GH or PL. Some KOs are gathered according to functional proximity, leading
to Aggregated Functional Trait (AFT). This aggregation scheme allows to transform
sample gene frequencies into AFT frequencies in X(AFT ) by pooling SG counts. For
Prevalent Genome (PG) counts, Taxonomic Marker Genes (TMG) are extracted from
the genomes with FetchMg and annotated in the 9.9M catalog: the aggregated TMG
are next counted in the samples to build X(PG). MGS are reconstructed from the
metagenomes, directly counted in the samples and pooled by genus to build X(mgs).
A NMF is performed on X(AFT ) to obtain W (AFT ) (weights) and H(AFT ) (functional
profiles). Then, nonnegative least square inference is conducted on X(PG) and X(mgs)

using W (AFT ) as regressor to obtain H(PG) and H(mgs) (PG and MGS taxonomic
profiles). 23
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Figure 2: Samples representation with AFT. a) Intra and inter datasets pBCd
distributions are computed on the 9.9M genes for each cohort dataset and compared
with pBCd distributions among all samples. Little discrepancies are observed ex-
cept for the Metacardis and Mediterranean diet cohorts, where intra pBCd is shifted
towards lower values, and the CD cohort, where the shift is towards higher values.
b) The dysbiosis index distribution of each dataset is displayed, together with the
dysbiosis threshold (red dotted line). Dysbiotic samples are over-represented in the
CD cohort. c) Comparison of different aggregation levels. pBCd distributions are
displayed for each dataset, computed both on the 9.9M gene counts, on the subset of
SGs or on the AFT counts (see Figure 1.b). pBCd with AFT are strongly decreased.
HMP2 and CD distributions are wider than other datasets for all aggregation levels.
d) Permanova p-values after variance decomposition analysis of pBCd matrices re-
spectively to structuring co-variables. The permanova was performed for the different
levels of aggregation and for the WH reconstruction. We can see that significance
tends to decrease for higher aggregation levels, but the same level of significance is
kept between AFT and WH, indicating that the same level of structure is kept af-
ter NMF decomposition. e) Qq-plots of AFT and reconstructed pBCd distributions.
The dots indicate the distribution centiles. The reconstructed pBCd are computed on
WH reconstructions including 1 (WH1 = W

(AFT )
1 H

(AFT )
1 ), 2 (WH12 =

∑2
i=1 W

(AFT )
i

H
(AFT )
i

),
3 (WH123 =

∑3
i=1 W

(AFT )
i

H
(AFT )
i

) or the 4 profiles (WH1234 =
∑4

i=1 W
(AFT )
i

H
(AFT )
i

). The red
line indicates the bisector line. We observe that profile 1 alone is not sufficient to
reconstruct accurate pBCd, but that profiles 1 and 2 together allow the reconstruc-
tion of the main part of the pBCd distribution, for the lowest pBCd values. We can
see that higher pBCd are not correctly rendered by the 2 profiles, especially for the
CD cohort where dysbiotic samples are over represented. Adding the third and the
fourth profile enables a correct reconstruction of the whole distribution, but with a
homogeneous bias among the whole distribution.
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Figure 3: Functional profile characterization. a) KO and GH-related AFT
frequencies are first gathered to show the distribution of KO and GH in each profile
(top central pie chart). Then, the frequency of each AFT is renormalized by KO
or GH/PL total frequency, and displayed in pie-charts for KO (left) and GH/PL
(right) after clustering by functional modules (color coded, name displayed radially
in the outer zone, see Fig. 1.a for the functional modules). The number of the
KO or GH-related AFT is displayed in its corresponding pie-chart sector (radially,
inner zone) when its frequency is higher than 3% in the profile. b) Average profile
contribution in AFT counts. Average profile contribution for AFT j and profile i is
computed as the proportion of average AFT counts provided by the profile i with

W̄
(AFT )
train,iH

(AFT )
ij /X̄

(AFT )
train,j , where W̄

(AFT )
train and X̄

(AFT )
train are introduced in Methods sec.

Inference of functional profiles. Finally, contributions are stacked by AFT in bar plots

and ordered by functional modules. The residual 1−
∑4

i=1 W̄
(AFT )
train,iH

(AFT )
ij /X̄

(AFT )
train,j

is plotted in gray. Dotted gray lines indicate the value of X̄
(AFT )
train,j measuring the

average AFT frequency (y log-scale on the right).
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Figure 4: Taxonomic profile characterization. a) The 203 genomes frequencies
in H(PG) are displayed in pie-charts and clustered by successive taxonomic levels, i.e.
taxa (outer ring), genus, class and phyla (inner ring), color-coded by phyla (phyla
name displayed radially in the outermost zone). Taxa names are displayed radi-
ally when their frequency is higher than 1% in the profile. b) The same procedure
is applied on MGS clustered at the genus level. Taxonomic levels are genus, class
and phyla. c) Average profile contribution in the 203 genomes counts. Namely,

the same average profile weight W̄
(PG)
train as in Fig. 3 is computed together with

X̄
(PG)
train . Then, average profile contribution for genome j and profile i is computed

with W̄
(PG)
train,iH

(PG)
ij /X̄

(PG)
train,j . Finally, contributions are stacked by genome in bar

plots and ordered by phyla. The residual 1−
∑4

i=1 W̄
(PG)
train,iH

(PG)
ij /X̄

(PG)
train,j is plotted

in gray. Dotted gray lines indicate the value of X̄
(PG)
train,j measuring the average AFT

frequency (y log-scale on the right). d) The same procedure is repeated on the MGS
clustered at the genus level.
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Figure 5: W1 and W2 profile variations. a) BMI. When BMI is available,
samples are displayed in the W1-W2 space, coloured by BMI. 95% confidence ellipse
are indicated for BMI lower and higher than 35 (class 2, severe obesity threshold).
b) Obesity status. Boxplot of W1 and W2 levels structured by obesity status. We
can observe that for highest obesity classes, W1 is significantly higher whereas W2
is significantly lower (MW = Mann-Withney test). This shift can be also observed
in the confidence ellipse centroid in subfigure a. c) Dysbiosis index. All samples are
displayed in barycentric coordinates in the W1-W2 space. Barycentric coordinates are

equivalent to compute W ∗ = W
(AFT )
2 /(W

(AFT )
1 +W

(AFT )
2 ). The extremity W

(AFT )
1

corresponds to W ∗ = 0, i.e. when only Profile 1 is present in the sample, and

the extremity W
(AFT )
2 corresponds to W ∗ = 1, i.e. when only Profile 2 is present.

Samples are stratified by DI: the first DI decile (gray), non dysbiotic samples (blue,
DI<dysbiosis threshold), dysbiotic samples (orange, DI>dysbiosis threshold) and last
DI decile (pink) are displayed. The red ticks indicate the group mean, and confidence
interval (mean +/- 2*standard deviation) is displayed with a coloured bar. The
dotted red line indicate the value W ∗ = 0.2. We note a higher W1 −W2 unbalance
for increasingly dysbiotic groups. d) Mediterranean diet. Samples are displayed in
barycentric coordinates in the W1 − W2 space for the Mediterranean Diet cohort
at baseline (circles) , 4 weeks (trianges) and 8 weeks (stars) after intervention for
control (mauve) and Mediterranean diet (brown). The mean of each category is
displayed with a red vertical line and confidence intervals are indicated as in plot
c). The dotted red line indicate the value W ∗ = 0.2. We can observe that sample
variability around the mean is strongly shrunk for the Mediterranean diet group
after 4 weeks. e) Mediterranean diet stabilises the microbiota. The variance of
W2/(W1+W2) in the control and Mediterranean diet groups is displayed at baseline,
4 weeks and 8 weeks. The variance decreases for Mediterranean diet after 4 and
8 weeks is significant (levene test). e) Time shifts of W ∗. Time shifts, defined as
the difference of W ∗ = W2/(W1 +W2) between 4 weeks and 8 weeks, are displayed
with boxplots, for the Mediterranean and control diet groups. Time shifts are reduced
after intervention for the Mediterranean group, with low significance (p = 0.06, Mann-
Withney one-sided test).
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Figure 6: W3 profile variations associated to inflammatory status. a) Crohn’s
disease. Ternary plot in the W1−W2−W3 space of samples coloured by disease status
(red: Crohn’s disease (CD), green: Non-CD). 95% confidence area of each category
are displayed with plain lines. b) Boxplot of W1, W2 and W3 levels, structured by
disease status. We can observe that CD samples have no marked difference in W1

levels, but are characterized by significantly lower W2 and strongly higher W3 levels.
This pattern differs from dysbiotic samples where W2 were over-represented. This
observation corroborates the shift of the confidence area in the ternary plot c). c)
Unraveling dysbiotic and CD profiles. CD and non-CD (N) dysbiotic samples (left
panel) and CD dysbiotic and not dysbiotic samples (right panel) are displayed in a
ternary plot in the W1 − W2 − W3 space. d) Boxplot of the W1, W2 and W3 lev-
els, structured by dysbiotic and CD status. e) Mediterranean diet. Ternary plots
in the W1 − W2 − W3 space of samples of the Mediterranean diet cohort. Control
and Mediterranean diet groups are displayed in separated ternary plots. For a same
individual, samples at baseline (circles) and 8 weeks after intervention (stars) are rep-
resented and linked by a line, showing the individual time trajectory. 95% confidence
areas are displayed for baseline and 8 weeks groups. Ternary plots are clipped in the
W3 direction at W3=0.08. f) Boxplots of W3 levels in the control and Mediterranean
diet groups at baseline, 4 weeks and 8 weeks after intervention. W3 mean and vari-
ance are significantly reduced after 8 weeks of Mediterranean diet.
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Figure 7: Variation of profile contributions in healthy vs CD, and dysbi-
otic vs not dysbiotic samples. The metabolic network of fibre degradation is
displayed, and profile contribution in GH/PL and KO counts is colour coded on the
corresponding arrows of the network. Profile contributions are displayed for healthy
(N, left panel) and CD (right panel) samples, and dysbiotic (lower panel) and not
dysbiotic (upper panel) samples. Namely, we compute CD and healthy average pro-

files weight W̄
(AFT )
train,g by averaging W

(AFT )
train on the sample group g (N and dysbiotic,

N and not dysbiotic, CD and dysbiotic, CD and not dysbiotic). Average AFT counts

X̄
(AFT )
train,g are obtained in the same manner for each group. Then, average profile con-

tribution for AFT j and profile i is computed with W̄
(AFT )
train,g,iH

(AFT )
ij /X̄

(AFT )
train,g,j . The

respective relative contribution of Profile 1, 2 and 3 is then mapped into a ternary
colour map (central triangle) and displayed on the corresponding arrow or GH/PL
box. Black arrows indicate AFT the main contribution of which is given by Profile

4. Arrow widths are proportional to AFT counts in X̄
(AFT )
train,g. For N & Not dysbiotic

graph, all the AFTs are represented (control situation). For the other graph, the
AFTs that significantly changed compared to N & Not dysbiotic group (t-test and
Benjamini Hochberg correction with FDR < 0.05) were filtered; we then ordered
AFTs by compositional changes compared to N&Not Dysbiotic group (L2 difference

on W̄
(AFT )
train,g,iH

(AFT )
ij /X̄

(AFT )
train,g,j computed on both groups) and kept the top 20 AFTs

in order to highlight the main changes in microbiota composition.
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Tables

Table 1: Dataset overview. We indicate for each dataset the number of samples
ns, individuals ni, and if the dataset is used for DI, BMI, CD, statin, enterotypes,
bristol score, diet or Parkinson studies.

tr
a
in

h
m
p
2

C
D

m
e
ta

c
a
rd

is

m
e
d
.d
ie
t

P
a
rk

in
.

ns 1126 1266 119 883 244 59
ni 1126 106 119 883 82 59
DI x x x x x x
BMI x x x x
CD x x x

statin x
enter. x
Bristol x
diet x

Parkin. x
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Additional Files

Additional file 1 — reconstruction error distribution of the
AFTs
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Figure S1: AFT reconstruction error distribution and weight distri-
bution. The relative reconstruction error distribution among samples defined as

∥X(AFT )
g,i –W

(AFT )
g,i H(AFT )∥/∥X(AFT )

g,i ∥ is displayed, and structured according to the
different groups g encountered along the study i.e. a) datasets, b) obesity status, c)
enterotypes, d) dysbiotic status, e) statin intake, f) Bristol score, g) Crohn disease
status, h) mediterranean or control diet and i) parkinson disease. For comparison,
the distribution observed in the train dataset is displayed in all graphs (gray dash
lines), together with its mean relative reconstruction error (red dashed line). The
mean and quantile 90% of each distribution are displayed with the vertical red and
black lines. We can see that the relative reconstruction error distributions are very
homogenenous along every structuring variables, except for dysbiotic and CD sam-
ples and Prevotela enterotypes, where relative reconstruction error is increased, but
keeping the 95% quantile under 44% of reconstruction error. All together, the func-
tional profiles allow to reconstruct the large majority of external samples with a level
of accuracy comparable to the training dataset reconstruction, with a higher bias for

dysbiotic, CD and Prevotela samples. j) The distribution of the weights W
(AFT )
i

are displayed for each dataset, with violin plots in log scale. Profiles 1 and 2 are
preponderant, and Profile 3 and 4 are associated with lower weights.
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Table 2: KO, GH, PL lists and dataset characteristics. The list of reactions corre-
sponding to Figure 1 is displayed (top), with their corresponding KO (KEGG nomen-
clature). Then, GH and PL are listed (bottom).

Id KO

1 K01809
2 K00882
3 K06859
4 K01810
5 K01803
6 K00150
7 K00134
8 K00927
9 K00131
10 K01834
11 K01689
12 K00036
13 K01057
14 K07404
15 K01690
16 K00874
17 K00041
18 K01685
19 K00883
20 K00849
21 K00965
22 K01818
23 K00879
24 K01628
25 K01813
26 K01804
27 K01786
28 K03077
29 K03080
30 K00854
31 K01621

32
K00169, K00170, K00171,
K00172

33 K00627
34 K03737
35 K00656

Id KO

36 K04020

37 K00625

38 K00925

39 K00626

40 K01034, K01035

41 K00634

42 K00929

43 K01574

44 K01938, K00288, K01491

45 K00297

46 K00004, K03366

47 K00016

48 K01847

49 K01848, K01849

50 K01026

51 K00672

52 K01499

53 K00319

54 K13942

55 K00320

56
K00577, K00578, K00579,
K00580, K00581, K00582,
K00583, K00584

57 K00399, K00401, K00402

58 K01699, K13919, K13920

59 K13922

60 K13788

61 K15024

62 K00955

63 K00956, K00957

64 K00958

65 K00394, K00395

66 K11180, K11181

67 K00380, K00381

68 K00385

GH/PL

GH2 GH3 GH5

GH8 GH9 GH10

GH13 GH16 GH26

GH28 GH29 GH30

GH32 GH33 GH35

GH39 GH43 GH44

GH48 GH51 GH74

GH84 GH91 GH94

GH95 GH101 GH115

GH120 GH127 GH129

PL1 PL9 PL1132



Additional file 2 — within-profile AFT frequencies.
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Figure S2: Within-profile KO and GH frequencies mapped on the metabolic
network. For each profile, i.e. each row of the profile matrix H(AFT ), we dis-
play the within-profile AFT frequencies, expressed for profile i and AFT j as

H
(AFT )
ij /

∑
k∈KO H

(AFT )
ik or H

(AFT )
ij /

∑
k∈GH H

(AFT )
ik depending if j is a KO or a

GH. The resulting value is plotted in green and blue color scales for GH and KO
respectively, with edge width proportional to the value. These plots represent the
intrinsic functional potential of the different profiles, like Fig. 3.a and unlike Fig. S3
or 3.b which represent the profile contributions to the metagenome.
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Additional file 3 — Top functional and taxonomic profile con-
tribution to metagenome.
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Figure S3: Top functional and taxonomic profile contribution to
metagenome. The top 50 relative profile contribution to a) AFTs b) PGs and
c) MGS-derived genus reconstruction are displayed. Namely, we compute for pro-

file i and AFT or genome j the profile contribution W̄
(AFT )
train,iH

(AFT )
j /X̄

(AFT )
train,j where

W̄
(AFT )
train and X̄

(AFT )
train are averaged among the training samples. Then, contributions

are sorted and top 50 contributions are kept and colorcoded by KO or GH for AFT,
and phylum for PGs and MGS clustered by genus. Profile 1 is characterized by an
over-representation of GH and Bacteroidetes, while Profile 2 is characterized by more
KOs, and Firmicutes and Actinobacteriota.

34



Additional file 4 — Phyla-level reconstruction error distribu-
tion.
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Figure S4: Phyla reconstruction error distribution when reconstructing the
PG counts. The phyla relative reconstruction error distribution among samples de-

fined as ∥(X(PG)
i –W

(AFT )
i H(PG)).Aphyla∥/∥X(PG)

i .Aphyla∥ is displayed, whereX(PG)

is the count matrix of the 203 representative genomes and Aphyla is an allocation ma-
trix of each genome to its phyla, and structured according to the different classes
encountered along the study, i.e. a) datasets, b) obesity status, c) enterotypes,
d) dysbiotic status, e) statin intake, f) Bristol score, g) Chron disease status, h)
mediterranean or control diet and i) parkinson disease. For comparison, the dis-
tribution observed in the train dataset is displayed in all graphs (gray dash lines),
together with its mean relative reconstruction error (red dashed line). The mean
and quantile 90% of each distribution are displayed with the vertical red and black
lines. We can see that the relative reconstruction error distributions of the phyla
are very homogenenous along every structuring variables, except for dysbiotic, CD
and Parkinson disease samples, where relative reconstruction error is increased. Like
for AFTs, the functional profiles allow to reconstruct the taxonomic composition of
the large majority of external samples at the phyla level with a level of accuracy
comparable to the training dataset reconstruction. j) MGS. The same procedure is

repeated with MGS. Namely, ∥(X(mgs)
i –W

(AFT )
i H(mgs)).Aphyla∥/∥X(mgs)

i .Aphyla∥ is
displayed, where X(mgs) is the MGS count matrix and Aphyla is an allocation matrix
of each MGS to its phyla and structured according to the different classes encountered
in the ’train’ test, i.e. k) dysbiotic status and l) Chron disease status. The MGS
count matrix are correctly reconstructed, whatever the structuring variable.
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Additional file 5 — Characterization of dysbiosis, enterotypes
and statin related samples using the profiles.
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Figure S5: Characterization of dysbiosis, enterotypes and statin related
samples. a) Dysbiosis. Ternary plot in the W1−W2−W3 space of samples coloured
by dysbiotic status. We also display the 95% confidence area for each category

(coloured line). b) Boxplot of W
(AFT )
1 , W

(AFT )
2 and W

(AFT )
3 levels, structured by

dysbiotic status. We can observe that dysbiotic samples are characterized by sig-

nificantly lower W
(AFT )
1 , higher W

(AFT )
2 and strongly higher W

(AFT )
3 levels. This

information corroborates the much wider confidence area for dysbiotic samples in
the ternary plot a). c) Enterotypes. Samples are displayed in a ternary plot in
the W1 − W2 − W3 space, coloured by enterotype, when available. 95% confidence

ellipses of each class are displayed. d) Boxplot of W
(AFT )
1 , W

(AFT )
2 and W

(AFT )
3

levels, structured by enterotypes. We can observe that Ruminococcus enterotype is

overrepresented for higher W
(AFT )
2 and lower W

(AFT )
1 . The reverse observation can

be made for Bact2 enterotype. To a lower extent, Bact1 enterotype is more prevalent

for lower W
(AFT )
1 and higher W

(AFT )
2 , which is the inverse of Prevotella enterotype.

High W
(AFT )
3 counts are related to Bact2 enterotype. e) Statin. Ternary plot in

the W1 − W2 − W3 space, coloured by statin intake, together with 95% confidence

ellipses. f) Boxplot of W
(AFT )
1 , W

(AFT )
2 and W

(AFT )
3 levels structured by statin in-

take. W
(AFT )
1 is significantly lower for statin intake, whereas W

(AFT )
2 is significantly

higher. No significant shift is observed for W
(AFT )
3 .
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Additional file 6 — CD-related profile characterization.
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Figure S6: CD-related profile characterization. a) Functional differential anal-
ysis between CD and healthy samples (N). Average profile contribution in the sig-
nificantly different functional module frequencies for CD and N groups. Functional
modules are defined in fig. 1. a. We averaged the L1 normalized W (AFT ) (resp.

X(AFT )) for the CD and N groups of the train dataset, noted W̄
(AFT )
train,L1,g

(resp.

X̄
(AFT )
train,L1,g

) for g = CD or N , and computed W̄
(AFT )
train,L1,g

H(AFT ). We then gathered

the columns of X̄
(AFT )
train,L1,g

by functional modules and filtered functions with significant
changes (t-test, 0.05 fdr Benjamini-hochberg correction) between N and CD groups.

For selected modules, we computed W̄
(AFT )
train,L1,g,I

HIj/
∑

i W̄
(AFT )
train,L1,g,i

Hij , for profile
I, group g = CD or N , and functional module j, displayed in barplots, in order to dis-
play profile contribution for each functional module. b) Taxonomic differential analy-
sis between CD and healthy samples. The same procedure is repeated on phyla counts.

After computing X̄
(PG)
train,L1,g

and pooled representative genome counts by phyla, the
significantly varying phyla (t-test, 0.05 fdr Benjamini-hochberg correction) between

N and CD groups are filtered. Then, W̄
(PG)
train,L1,g,I

H
(PG)
Ij /

∑
i W̄

(PG)
train,L1,g,i

HPGij , for
profile I, group g = CD or N , and functional module j, is displayed in barplots, in
order to display the profile contribution to the reconstruction of each phyla. c) Log2
ratio between CD and N groups of filtered functional groups are displayed. d) Log2
ratio between CD and N groups of filtered phyla are displayed. Whereas functional
variations are limited, taxonomic variations are more acute. e) Classification of CD
samples. The SVM classifier for CD/N, trained on the hmp2 cohort, is displayed in
the W2 −W3 space (normalised with min-max scaling). The black line separates the
negative (green) and the positive region (red). The samples of the ’hmp2’ (train,
crosses) and ’CD’ (test, circles) cohorts are displayed, coloured by disease status. We
observe that W2 −W3 variations for CD samples are strong enough to capture this
signal with a classifier (recall: 0.94, precision: 0.81, AUC: 0.92 for the CD unseen
cohort).
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Additional file 7 — Prevalent genomes functional profiling.
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Figure S7: Prevalent genomes functional profiling. Selected AFTs are anno-
tated in the prevalent genomes and presence/absence is displayed (middle panel),
sorted by functional blocks (top). The genome names are indicated (short name and
NCBI ID, right panel), colorcoded by phylum, and the the taxonomic allocation of
the genomes in profiles is indicated by the presence/absence matrix in H(PG) (right
panel, taxo. alloc. Profile i is the i-th column of this matrix). The 4 profiles are
added to the genome list and displayed with presence/absence tags (a KO is assumed
present in the profile if its frequence is higher than 1e − 3). Hierarchical clustering
is performed (k = 4 clusters), based on pairwise-Jaccard distance computed on AFT
presence/absence matrix (corresponding dendogram in the left panel), and genomes
are sorted accordingly in the middle and right panels. We note that the 4 profiles
are clustered at the same time than the genomes. Bacteroidetes and Actinobacteria
are gathered into their own cluster (orange and green clusters), whereas Firmicutes
are splitted in two clusters: the main part is clustered with Proteobacteria (red),
while the others are clustered with less prevalent phyla such as Desulfobacterota or
Euryarchaeota (purple), the separation being based on difference in presence of ED
and SPED-related AFTs. Profile 1 clusters with Bacteroidetes, consistantly with its
taxonomic profiling (Fig. 4). This cluster is marked by higher presence of GH and
PL, consistantly with its functional profiling (Fig. 3). Profile 2 and 3 cluster with
Firmicutes (red cluster), Profile 3 being included in a sub-cluster involving Proteobac-
teria, again consistantly with their respective taxonomic profiling (Fig. 4). Profile 4
clusters with methanogens (Euryarchaeota) as expected. This last cluster is charac-
terised by lower presence of GH/PL in the genomes.
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Additional file 8 — Profile 4 association with Bristol score and
Parkinson’s disease.
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Figure S8: Profile 4 association with Bristol score and Parkinson’s disease.

a) Bristol score. Boxplot of W
(AFT )
4 levels, structured by Bristol stool score. b)

Parkinson’s disease. Boxplot of W
(AFT )
4 levels in PD and healthy control samples.

We can observe that the significance of the difference between groups is slight (p =
5.3e− 2, MW test) c) Ternary plot in the W1 −W2 −W4 space, coloured by Bristol
stool score. 95% confidence ellipses of each class are displayed. d) Ternary plot in
the W1 −W2 −W4 space of PD and healthy control samples. 95% confidence ellipses
of each class are displayed.
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Additional file 9 — Dataset count matrices, profile decomposi-
tion and metadata.

The input data needed for the analysis are provided.

• Metadata.xlsx : excel file containing the metadata of all the datasets used in the
analysis. Field definition:

– Sample ID : internal ID.

– ProjectID : study accession number

– SRA : SRA sample accession ID

– Patient ID : internal patient ID

– Nationality, sex, age, BMI : patient nationality, sex, age and BMI.

– Diagnosis : internal diagnosis code. N = healthy, CD = Crohn’s dis-
ease, UC = Ulcerative colitis, Control = Control sample, ObCIII = class
3 obesity, ObCII = class 2 obesity, ObCI= class 1 obesity, OW = over-
weight (but not obese), UW = underweight, PD = Parkinson disease, HC
= healthy control, Diab = diabetis, ankylosing spondylitis = ankylosing
spondylitis

– Dysbiosis index : dysbiosis index computed from HMP2 samples (see ma-
terial and methods), Is dysbiotic = above or under dysbiotic threshold (see
material and methods).

– Study : internal study ID.

– reference : doi of the related publication.

– alias : internal alias of the sample (HMP2 dataset only).

– enterotype : sample enterotypes (metacardis dataset only)

– Statin : statin intake (metacardis dataset only).

– Bristol : Bristol score (metacardis dataset only).

– Diet : diet taken by the patient (control or Mediterranean diet, med diet
dataset only).

– Timepoint : baseline, 4 weeks, 8 weeks (med diet dataset only).

• W.xlsx : weight matrix for the different datasets.

• X AFT.xlsx : AFT count matrix for the different datasets. The header indicates
the AFT names as in Table 2.

• X mgs.xlsx : MGS count matrix at the genus level (train dataset only).

• X pg.xlsx : Prevalent genomes count matrix for the different datasets. The
first sheet indicates the NCBI taxonomy ID and the name of the 203 prevalent
genomes included in the study.

• Genome list.xlsx : list of the 203 genomes included in the study.

• H.xlsx : matrices H(AFT ), H(PG) and H(mgs).

• List of Reactions.xlsx : List of reactions as indicated in Fig. 1 and Table 2, with
complete aggregated biochemical reaction, and reactant names.

• F.xlsx : matrix of metabolic constraints used during NMF.
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Additional file 10 — Supplementary materials.

This document recapitulates additional precisions on the material and methods in-
volved in this study.

Additional methodological details

We further detail here methodological steps of the method.

KO selection

We recall here the method presented in [24]. From the pathways selected, a list of
putative reactions was compiled. For each reaction, a KEGG database reaction entry
was retrieved. Since each reaction is catalyzed by enzymes linked to KO, a list of
putative KO was obtained. The manual curation of the KO candidates followed the
rules: (1) a KO not found in the IGC annotation was ignored, (2) a reaction that
was not linked to a KO was ignored, (3) when an enzyme from a KO could catalyze
more than one reaction, because we could not accurately link a KO frequency to a
target reaction, all the KO associated to the target reaction were ignored. Exceptions
were made regarding key-reactions. Multiple KO associated to a unique reaction
were kept since they correspond to different enzymes catalyzing the same chemical
reaction in different species (L-ribulose to G-Gly 3 Phosphate, Acetyl-CoA to Acetyl-
Phosphate, Lactate to propionate) or different subunits of the same enzyme, such
as K01034 and K01035. Reactions associated with microorganisms unlikely present
in the gut microbiomes, such as aerobes from soil, halophilic extremophiles, were
excluded. Reactions associated to micro-aerophilic or facultative anaerobes were
kept. KO from very low abundant microorganism from the gut microbiome were
kept.

Rationale and assemblage for the constraint matrix F

The metabolites in the model were parted between those that were known to be
extracellular (gathered in a set noted E, and displayed with bold box in Fig. 1.A)
and the others (not known to be extracellular, gathered in a set NE, and gathered
with gray box in Fig.1.A). For a metabolite m ∈ NE, we considered all the reactions
in our list that could produce m and gathered all the associated traits in a set called
Pm. In the same way, all the traits involved in reactions that could consume m were
gathered in a set called Cm. Each profile (line of H) was constrained so that the total
sum of producing and consuming can not be simultaneously null. Namely, for profile
number l, we state that

∑
j∈Cm

Hlj ≤ α+
m

 ∑
j∈Pm

Hlj

 (4)

∑
j∈Pm

Hlj ≤ α−
m

 ∑
j∈Cm

Hlj

 (5)

for given coefficients α+
m and α−

m to be defined.
The rationale of these constraints is to prevent the accumulation of intracellu-

lar compounds, and therefore if there is a potential in the profile for producing a
metabolite, the same profile should also carry a functional potential for using it,
and conversely. The bounds α+

m and α−
m were derived from the analysis of the 190

prevalent genomes. In a nutshell, metabolites were constrained only if bounds α+
m

or α−
m could be found such that Eq. 4 or 5 are satisfied for more than 95% of the

190 genomes when replacing the Hlj by the corresponding KO frequencies in each
genomes. Moreover, a security margin was taken on the values of α+

m and α−
m to

account for a possible discrepancy between the 190 representative genomes and the
full microbiota. See [24] for extended justification of these constraints and a study of
their impact on a toy model and a real case study.
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Hyper-parameter selection procedure

Following [24], we follow a three-step hyperparameter selection procedure based on
(1) a reconstruction error criteria, (2) a bi-cross validation and (3) a criteria based
on the stability of the inferred H.

Reconstruction error. The relative reconstruction error criteria measures the pro-
portion of information recovered by the NMF decomposition

Crec.err. =
∥X(AFT )

train −WtrainH
(AFT )∥F

∥X(AFT )
train ∥F

.

This criteria mechanically decreases with the number of profiles k, thus a slope dis-
continuity on the graph is searched for, indicating that additional profiles carry less
information and mainly approximate noise.

Bi-cross validation criteria. Starting from X
(AFT )
train of size ns = 1126 samples

times nAFT = 101 AFTs, we set a 5-fold random splitting ls and lAFT of respectively
the set of samples and AFTs. Taking I ∈ ls and J ∈ lAFT two index subsets taken
from the 5-fold splitting, we note

XIJ
11 = (X

(AFT )
train kl)k∈I,l∈J , XIJ

12 = (X
(AFT )
train kl)k∈I,l/∈J ,

XIJ
21 = (X

(AFT )
train kl)k/∈I,l∈J , XIJ

22 = (X
(AFT )
train kl)k/∈I,l/∈J ,

We then note W IJ
1 , HIJ

1 the solution of the NMF decomposition of XIJ
11

(W IJ
1 , HIJ

1 ) = argmin
W ≥ 0
H ≥ 0

∥(XIJ
11 −WH)D−1∥2F + α

(
∥W∥2F + ∥HD−1∥21,2

)
We note that this NMF is unconstrained since the undersampling breaks up the
structure of the constraints.

We note W IJ
2 and HIJ

2 the respective non-negative least-square regression of XIJ
21

and XIJ
12 of the (unconstrained) problems

W IJ
2 = argmin

W ≥ 0

∥(XIJ
21 −WH1)D

−1∥2F + α
(
∥W∥2F

)
and

HIJ
2 = argmin

H ≥ 0

∥(XIJ
12 −W1H)D−1∥2F + α

(
∥HD−1∥21,2

)
The criteria is the average over I and J of the relative reconstruction error of XIJ

22

Cbi−cross =
1

|ls| × |lAFT |
∑
I∈ls

∑
J∈lAFT

∥XIJ
22 −W IJ

2 HIJ
2 ∥F

∥XIJ
22 ∥F

Stability. After splitting the training set in two balanced random subsets XJ
1 and

XJ
2 of X

(AFT )
train , 1 ≤ J ≤ 20 being the index of the splitting in 20 splitting repetition,

a constrained NMF is performed on XJ
1 and XJ

2 to get (W J
1 , H

J
1 ) and (W J

2 , H
J
2 ). To

assess the similarity between profiles, we compute the similarity matrix for I = 1, 2
of dimension nAFT × nAFT

SJ
I lm =

∑k
i=1 H

J
I ilH

J
I im(∑k

i=1 H
J
I
2

il

)1/2 (∑k
i=1 H

J
I
2

im

)1/2
, for 1 ≤ l,m ≤ NAFT

The criteria is finally

Cstability = 1− 1

20
√
nAFT (nAFT − 1)

20∑
J=1

∥SJ
1 − SJ

2 ∥F

Next, we compute the different criteria in a grid with α ∈ {0.001, 0.01, 0.03162, 0.1, 1}
and k ∈ {2, 4, 6, 8, 11} (see S9) and selected α = 0.03162, providing the minimal value
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for the bi-cross validation and equivalent values for the other criteria. Next, in order
to have a deeper accuracy on the selection ot the number of profiles, we computed
the criteria for α = 0.03162 and k = 2, · · · , 12. We selected k = 4 due to the clear
slope break for the stability criteria and un-degraded accuracy for the other criteria.
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Figure S9: Hyperparameter selection. The results of the hyperparameter selec-
tion procedure are displayed for α selection (upper panel) and the number k of profiles
(lower panel) for the reconstruction error, the bi-cross validation and the H stability
criteria. This procedure leads to select k = 4 profiles and a value of α = 0.03162
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