

# Short- and long-term responses of leaf day respiration to elevated atmospheric CO2

Yan Ran Sun, Wei Ting Ma, Yi Ning Xu, Xuming Wang, Lei Li, Guillaume

Tcherkez, Xiao Ying Gong

# ► To cite this version:

Yan Ran Sun, Wei Ting Ma, Yi Ning Xu, Xuming Wang, Lei Li, et al.. Short- and long-term responses of leaf day respiration to elevated atmospheric CO2. Plant Physiology, 2023, 191 (4), pp.2204-2217. 10.1093/plphys/kiac582 . hal-03919109

# HAL Id: hal-03919109 https://hal.inrae.fr/hal-03919109

Submitted on 2 Jan 2023

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

| 1  | Short- and long-term responses of leaf day respiration to elevated                                                                                                   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | atmospheric CO <sub>2</sub>                                                                                                                                          |
| 3  |                                                                                                                                                                      |
| 4  | <b>Running title</b> : CO <sub>2</sub> response of leaf respiration in the light                                                                                     |
| 5  |                                                                                                                                                                      |
| 6  | Yan Ran Sun <sup>1</sup> , Wei Ting Ma <sup>1</sup> , Yi Ning Xu <sup>1</sup> , Xuming Wang <sup>1</sup> , Lei Li <sup>1</sup> , Guillaume Tcherkez <sup>2,3</sup> , |
| 7  | Xiao Ying Gong <sup>1*</sup>                                                                                                                                         |
| 8  | <sup>1</sup> Key Laboratory for Subtropical Mountain Ecology, College of Geographical Sciences, Fujian                                                               |
| 9  | Normal University, Fuzhou, 350007, China                                                                                                                             |
| 10 | <sup>2</sup> Research School of Biology, ANU College of Science, Australian National University,                                                                     |
| 11 | Canberra ACT 0200, Australia                                                                                                                                         |
| 12 | <sup>3</sup> Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, 42 rue                                                                   |
| 13 | Georges Morel, 49070 Beaucouzé, France                                                                                                                               |
| 14 |                                                                                                                                                                      |
| 15 | *Corresponding author:                                                                                                                                               |
| 16 | Xiao Ying Gong, Tel: +86 59183465214, Fax: +86 59183465397, Email: xgong@fjnu.edu.cn                                                                                 |
| 17 |                                                                                                                                                                      |
| 18 | ORCIDs: Xiao Ying Gong (0000-0002-4983-5645); Guillaume Tcherkez (0000-0002-3339-                                                                                    |
| 19 | 956X); Xuming Wang (0000-0001-5291-9332)                                                                                                                             |
| 20 |                                                                                                                                                                      |
| 21 | Twitter accounts: Xiao Ying Gong (@gong_xiaoying); Guillaume Tcherkez (@IsoSeed)                                                                                     |
| 22 | The author responsible for distribution of materials integral to the findings presented in this                                                                      |
| 23 | article in accordance with the policy described in the Instructions for Authors                                                                                      |
| 24 | (https://academic.oup.com/plphys/pages/General-Instructions) is Xiao Ying Gong.                                                                                      |
| 25 |                                                                                                                                                                      |

© American Society of Plant Biologists 2022. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open\_access/ funder\_policies/chorus/standard\_publication\_model)

#### **1 AUTHOR CONTRIBUTIONS**

X.Y.G. designed and planned the research; Y.R.S. and Y.N.X. performed the experiment, Y.R.S.
and W.T.M. analyzed the data and wrote the first draft, and all authors discussed the results and
implications and contributed to the revision.

5

25

#### 6 **ABSTRACT**

Evaluating leaf day respiration rate  $(R_{\rm L})$ , which is believed differ from that in the dark  $(R_{\rm Dk})$ , is 7 essential for predicting global carbon cycles under climate change. Several studies have 8 suggested that atmospheric  $CO_2$  impacts  $R_L$ . However, the magnitude of such an impact and 9 associated mechanisms remain uncertain. To explore the  $CO_2$  effect on  $R_L$ , wheat (Triticum 10 11 aestivum) and sunflower (Helianthus annuus) plants were grown under ambient (410 ppm) and elevated (820 ppm) CO<sub>2</sub> mole fraction ([CO<sub>2</sub>]). R<sub>L</sub> was estimated from combined gas exchange 12 and chlorophyll fluorescence measurements using the Kok method, the Kok-Phi method, and a 13 revised Kok method (Kok- $C_c$  method). We found that elevated growth [CO<sub>2</sub>] led to an 8.4% 14 15 reduction in  $R_{\rm L}$  and a 16.2% reduction in  $R_{\rm Dk}$  in both species, in parallel to decreased leaf N and chlorophyll contents at elevated growth [CO<sub>2</sub>]. We also looked at short-term CO<sub>2</sub> effects during 16 17 gas exchange experiments. Increased  $R_{\rm L}$  or  $R_{\rm L}/R_{\rm Dk}$  at elevated measurement [CO<sub>2</sub>] were found using the Kok and Kok-Phi methods, but not with the Kok- $C_c$  method. This discrepancy was 18 19 attributed to the unaccounted changes in  $C_c$  in the former methods. We found that the Kok and Kok-Phi methods underestimate  $R_{\rm L}$  and overestimate the inhibition of respiration under low 20 irradiance conditions of the Kok curve, and the inhibition of  $R_{\rm L}$  was only 6%, representing 26% 21 of the apparent Kok effect. We found no significant long-term CO<sub>2</sub> effect on  $R_{\rm I}/R_{\rm Dk}$ , originating 22 from concurrent reduction in  $R_L$  and  $R_{Dk}$  at elevated growth [CO<sub>2</sub>], and likely mediated by 23 acclimation of nitrogen metabolism. 24

Keywords: leaf day respiration, Kok method, atmospheric CO<sub>2</sub>, photosynthesis, climate change,
 carbon balance, mesophyll conductance, chlorophyll fluorescence

#### 1 INTRODUCTION

Terrestrial vegetation assimilates ca. 120 pg carbon via photosynthesis but releases about half of 2 3 assimilated carbon via respiration (Gifford, 2003; Dusenge et al., 2019). The balance between plant respiration and photosynthesis is therefore essential for plant productivity and global 4 carbon balance. Despite considerable variations depending on N fertilisation and climatic 5 conditions, the ongoing increase in atmospheric  $CO_2$  mole fraction ([ $CO_2$ ]) promotes leaf 6 photosynthesis and primary production, which is referred to as the "CO<sub>2</sub> fertilization effect" 7 (Drake et al., 1997; Cramer et al., 2001). Although the CO<sub>2</sub> fertilization effect on biomass (but 8 not necessarily yield) is evident from greenhouse and field experiments (Ainsworth and Long, 9 2005; Norby et al., 2005; Walker et al., 2021), the response of plant respiration to [CO<sub>2</sub>] is rather 10 uncertain, limiting our ability to predict future climate change-driven modifications of plant 11 12 physiology.

The respiratory response is complicated by the fact that leaf respiration takes place not 13 only in darkness (the respiration rate is denoted as  $R_{Dk}$ ), but also in the light. In illuminated 14 leaves, respiration is referred to as "respiration in the light" or "day respiration" (denoted as  $R_{\rm L}$ ; 15 here we refer to CO<sub>2</sub> evolution rather than O<sub>2</sub> consumption). Leaf respiration has been shown to 16 be partially inhibited by the light although the magnitude of inhibition varies broadly, with 17 reported  $R_{\rm L}/R_{\rm Dk}$  values ranging from 0.2 to 1.3 (Ayub et al., 2011; Griffin and Turnbull, 2013; 18 Crous et al., 2017; Gong et al., 2018; Way et al., 2019). Given the longer light periods during the 19 20 growing season and higher temperature during the day than at night in most ecosystems,  $R_{\rm L}$  is a key component of plant- and community-scale carbon budgets (Atkin et al., 2007; Gong et al., 21 22 2017). Experimental results revealed that the inhibition of respiration by light (i.e.,  $1-R_{\rm L}/R_{\rm Dk}$ ) also occurs at the stand scale (Gong et al., 2017). Neglecting respiration inhibition might have 23 24 led to considerable errors in estimated gross primary production (Wehr et al., 2016; Gong et al., 2017). Furthermore, the response of  $R_{\rm L}$  to environmental cues are essential to predict carbon 25 26 balance, carbon use efficiency and improve land surface models (Wehr et al., 2016; Atkin et al., 2017; Tcherkez et al., 2017b; Keenan et al., 2019). 27

So far, there is no consensus on the response of  $R_L$  to long-term [CO<sub>2</sub>] increase. Some studies have shown that  $R_L$  is stimulated by elevated growth [CO<sub>2</sub>] (Wang et al., 2001; Shapiro et al., 2004; Crous et al., 2012; Griffin and Turnbull, 2013), and this effect may be related to higher carbohydrate concentrations in leaves (Rogers et al., 2004; Gong et al., 2017). Also, increased 1 leaf respiration at elevated  $[CO_2]$  has been suggested to be associated with a larger mitochondrial 2 number per mesophyll cell (Griffin et al., 2001), indicating cellular and transcriptional (gene 3 regulation) mechanisms of respiratory control (Leakey et al., 2009). Other studies have reported 4 a decrease in  $R_L$  in plants grown under elevated  $[CO_2]$  compared with that grown under ambient 5  $[CO_2]$  (Ayub et al., 2011; Ayub et al., 2014).

The decrease in  $R_{\rm L}$  at elevated [CO<sub>2</sub>] has been suggested to be linked to either 6 photorespiration or nitrogen metabolism. Under elevated CO<sub>2</sub>, there is a reduction in 7 photorespiration rate (and the rate of oxygenation of RuBP,  $v_0$ ), and this could cause an alteration 8 in  $R_{\rm L}$ , as suggested by results obtained on short-term changes in respiratory metabolism under 9 varying CO<sub>2</sub> mole fraction. In effect, using <sup>13</sup>C-enriched substrates to trace decarboxylation 10 processes, Tcherkez et al. (2008) found that decarboxylation decreased when leaves were 11 exposed to elevated [CO<sub>2</sub>] for short periods. Likewise, results obtained using the Kok method 12 suggested there was a linear relationship between photorespiration rate and  $R_{\rm L}$  (Griffin and 13 Turnbull, 2013). However, the mechanism behind this relationship is still unclear. In particular, 14 the Kok effect itself has been shown not to be fully caused by changes in respiration rate 15 (Gauthier et al., 2020) and thus, the relationships between photorespiration and Kok method-16 based  $R_{\rm L}$  are presently uncertain. In addition,  $R_{\rm L}$  has been reported to either decrease (Pinelli and 17 Loreto, 2003; Tcherkez et al., 2008; Griffin and Turnbull, 2013), increase (Yin et al., 2020; Fang 18 et al., 2022) or remain unaffected (Sharp et al., 1984; Tcherkez et al., 2012), in the short-term 19 20 using gas-exchange experiments at elevated [CO<sub>2</sub>]. Thus, conclusions drawn from short-term changes in  $R_L$  caused by instantaneous elevation of [CO<sub>2</sub>] might not be relevant to long-term 21 changes in  $R_{\rm I}$ . 22

The decrease of  $R_{\rm L}$  at elevated [CO<sub>2</sub>] has also been suggested to be linked to nitrogen 23 24 metabolism. It has been observed in many free air CO<sub>2</sub> enrichment (FACE) experiments that elevated [CO<sub>2</sub>] reduces leaf N content, which is accompanied by a down-regulation of 25 26 photosynthetic capacity (Long et al., 2004; Ainsworth and Long, 2005). It is believed that elevated [CO<sub>2</sub>] inhibits N assimilation in leaves via the potential link between photorespiration 27 and nitrate assimilation (Bloom et al., 2010; Bloom et al., 2014; Busch et al., 2018). Given that N 28 29 assimilation in leaves is energy demanding and thus a driving factor for leaf respiration (Amthor, 2000; Reich et al., 2008), it would be important to know whether [CO<sub>2</sub>] affected  $R_L$  and  $R_{Dk}$  via 30

leaf N content. All in all, the response of *R*<sub>L</sub> to elevated [CO<sub>2</sub>] appears to be highly variable and
 mechanisms behind are unclear.

3 Another uncertainty associated with  $R_{\rm L}$  and how it varies is technological. In fact, there are several methods to estimate  $R_L$ , but none of them can measure  $R_L$  directly (for a review see 4 (Tcherkez et al., 2017b)). The Kok method (Kok, 1949) and the Laisk method (Laisk, 1977), the 5 two most commonly used methods, require manipulation of net CO<sub>2</sub> assimilation rates (A) at low 6 irradiances ( $I_{inc} < 150 \ \mu mol m^{-2} s^{-1}$ ) (Kok) or low CO<sub>2</sub> (Laisk). Another method, the <sup>13</sup>C isotopic 7 disequilibrium method, uses two CO<sub>2</sub> sources with different  $\delta^{13}$ C values to disentangle R<sub>L</sub> and 8 photosynthesis under physiologically relevant environmental conditions without the need to 9 manipulate A (Gong et al., 2015; Gong et al., 2018). The <sup>13</sup>C disequilibrium method is valuable 10 since it does not require the use of low irradiance or low  $CO_2$  and can be performed at any  $CO_2$ 11 mole fraction, and therefore, is suitable to study  $CO_2$  effects on  $R_L$ . It is, however, technically 12 demanding (isotopic CO<sub>2</sub> sources, mass spectrometers). The Laisk method is, by definition, not 13 suitable for studying CO<sub>2</sub> effects because it manipulates [CO<sub>2</sub>] at sub-ambient levels. So far, the 14 response of  $R_{\rm L}$  to [CO<sub>2</sub>] has mainly been estimated using the Kok method. However, as 15 mentioned above, the Kok method has been questioned since the Kok effect is not exclusively 16 caused by a decrease in respiration rates (Gauthier et al., 2020). Several studies showed that the 17 Kok method has conceptual uncertainties (Farguhar and Busch, 2017; Tcherkez et al., 2017a; 18 Tcherkez et al., 2017b; Yin et al., 2020). First, the Kok method assumes a constant 19 photochemical efficiency of PS II ( $\Phi_2$ ) along the A- $I_{inc}$  curve (i.e. the Kok curve, see *Theory*). To 20 address this issue, Yin et al. (2009) suggested to use measured  $\Phi_2$  to improve the  $R_{\rm L}$  estimation. 21 Second, the Kok method usually disregards variation in chloroplastic  $[CO_2]$  ( $C_c$ ) along the A- $I_{inc}$ 22 curve, which could bias the estimates of  $R_{\rm L}$  according to recent studies based on model analysis 23 (Farquhar and Busch, 2017; Yin et al., 2020). Estimating C<sub>c</sub> along the A-I<sub>inc</sub> curve requires 24 measurements of mesophyll conductance  $(g_m)$ . Measuring  $g_m$  is challenging and this is 25 26 particularly true when measurements are performed at low irradiance (Pons et al., 2009; Gu and Sun, 2014; Gong et al., 2015). So far, the uncertainty associated with  $C_c$  has not been fully 27 solved. 28

Taken as a whole, neither long-term nor short-term responses of  $R_L$  to CO<sub>2</sub> mole fraction are well-known, and technologies used to measure  $R_L$  may be problematic. Here, we intend to address the following questions: 1) how do short-, medium- and long-term CO<sub>2</sub> enrichment

affect  $R_{\rm L}$  in C<sub>3</sub> leaves? 2) do the original- and revised Kok methods provide similar estimations 1 of  $R_{\rm L}$ ? To this end, we combine gas exchange and chlorophyll fluorescence (ChF) measurements 2 3 to study the response of  $R_{\rm L}$  of wheat (Triticum aestivum L.) and sunflower (Helianthus annuus L.) plants grown under ambient (410 ppm) and elevated [CO<sub>2</sub>] (820 ppm). We assessed the 4 medium-to-long term CO<sub>2</sub> response (days to months) by comparing parameters of plants at 5 different growth [CO<sub>2</sub>], and the short-term CO<sub>2</sub> response (minutes) by measuring the same leaves 6 at 410 and 820 ppm of  $[CO_2]$ . We compared  $R_{\rm L}$  estimated by the Kok method, the Yin method 7 (i.e. the Kok-Phi method) and a revised Kok method (i.e. the Kok- $C_c$  method) which takes the 8 influence of  $\Phi_2$  and  $C_c$  into account. 9

10

# 11 **RESULTS**

# 12 Effects of growth $CO_2$ on photosynthetic parameters and leaf traits

Growth at elevated  $[CO_2]$  led to a reduction in net  $CO_2$  assimilation (A) for both species, when A 13 values were compared at the same intercellular  $CO_2$  concentration ( $C_i$ ) levels (Fig. 1AB). 14 Sunflower plants grown at elevated [CO<sub>2</sub>] exhibited lower E and  $g_{sw}$  compared with that grown 15 at ambient CO<sub>2</sub> (Fig. 1DF). This effect on water vapour exchange was minor in wheat (Fig. 16 1CE). In order to assess the long-term growth CO<sub>2</sub> effect on common grounds, gas exchange 17 parameters of leaves were compared at their respective growth [CO<sub>2</sub>] (indicated by the subscript 18 'growth'). Net CO<sub>2</sub> assimilation rate (Agrowth), intrinsic water-use efficiency (iWUEgrowth) and leaf 19 carbon-use efficiency (CUE<sub>L</sub>) of plants grown under elevated [CO<sub>2</sub>] were significantly higher 20 than those of plants grown under ambient [CO<sub>2</sub>] in both species (Table 1). Averaged across 21 22 species, growth at elevated [CO<sub>2</sub>] led to 5.6% reduction in  $A_{\text{max}}$ , 7.9% reduction in  $V_{\text{cmax}}$ , and 8.0% in J, indicating a decline in photosynthesis capacity. The ratio of  $g_{sc}$  to  $g_m$  was not 23 24 significantly affected by growth  $[CO_2]$  or species.  $R_{Dk}$  of both species was lower at elevated [CO<sub>2</sub>] but this decrease differed between species (20% for wheat and 11% for sunflower). 25

Leaf chlorophyll content was significantly lower at elevated  $[CO_2]$  compared with ambient [CO<sub>2</sub>]. Similarly, elevated  $[CO_2]$  led to 6.7% reduction (averaged across species) in nitrogen elemental content (N%) and 12% reduction in nitrogen content per surface area (N<sub>area</sub>) on average, but the effect of CO<sub>2</sub> was not significant at a *p*-level of 0.05. SLA was significantly different between species but not affected by growth  $[CO_2]$  (Table 1).

#### 1 $CO_2$ response of $R_L$ estimated by different methods

 $\Phi_2$ ,  $C_c$ , and  $\gamma$ , the key parameters associated with assumptions in both original and revised Kok 2 3 methods, were found to decrease along the Kok curve in all species and treatments (Fig. 2). With the increase of  $I_{inc}$  from 40 to 100  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>,  $\Phi_2$  decreased by 3.1% for wheat and 2.4% for 4 sunflower and this trend was not substantially influenced by growth [CO<sub>2</sub>] (long term effect) and 5 measurement  $[CO_2]$  (short-term effect). A short-term  $CO_2$  effect on  $\gamma$  was detected, i.e.,  $\gamma$ 6 decreased more strongly at measurement [CO<sub>2</sub>] of 410 ppm (by 5.2%) than that at measurement 7  $[CO_2]$  of 820 ppm (by 3.0%, averaged across species) with the increase in  $I_{inc}$  (Fig. S1). That is, 8 under our conditions, terms  $(\gamma f_{aet} \Phi_2 \rho_2 \alpha)$  in Eqn 3 and  $(\gamma f_{aet} \rho_2 \alpha)$  in Eqn 4 were not constant along a 9 Kok curve, causing errors in  $R_{\rm L}$  estimated by the Kok and the Kok-Phi method, respectively. 10

Applying the Kok, the Kok-Phi and the Kok- $C_c$  method, A was plotted against  $I_{inc}$ ,  $\Phi_2 I_{inc}$ , 11 and  $\gamma \Phi_2 I_{inc}$ , respectively (Fig. 3). Both growth [CO<sub>2</sub>] and measurement [CO<sub>2</sub>] had impacts on A-12  $I_{\rm inc}$  and  $A-\Phi_2 I_{\rm inc}$  response curves (Fig. 3A-D). As a result, growth at elevated [CO<sub>2</sub>] led to a 13 significant decrease in  $R_{L \text{ Kok}}$  and  $R_{L \text{ Kok-Phi}}$ . The same was true for  $R_{L \text{ Kok-Cc}}$  on average but it was 14 only significant with a *p*-value of 0.06 (Fig. 4, Table 2). There was a clear, although statistically 15 insignificant (p>0.05), tendency for elevated measurement [CO<sub>2</sub>] to increase both  $R_{\rm L \ Kok}$  and  $R_{\rm L}$ 16 <sub>Kok-Phi</sub> (Fig. 3 and Fig. 4) in both species. By contrast,  $A - \gamma \Phi_2 I_{inc}$  curves obtained under different 17 measurement [CO<sub>2</sub>] seemed to coincide perfectly (Fig. 3EF), in agreement with the insignificant 18 effect of measurement [CO<sub>2</sub>] on  $R_{LKok-Cc}$ . 19

20

## 21 $CO_2$ response of $R_L/R_{Dk}$ estimated by different methods

We found no significant long-term CO<sub>2</sub> effect on  $R_L/R_{Dk}$  estimated via all three methods (Table 22 3). There is a tendency that  $R_{\rm L}/R_{\rm Dk}$  of wheat increased with the growth [CO<sub>2</sub>] for all three 23 24 methods (comparing aCO<sub>2</sub>-410 and eCO<sub>2</sub>-820), while that tendency was not found in sunflower. That is, the long-term CO<sub>2</sub> effect on  $R_L/R_{Dk}$  is not conclusive. Under elevated measurement 25 26 [CO<sub>2</sub>], significant increases in  $R_{\rm L \ Kok}/R_{\rm Dk}$  and  $R_{\rm L \ Kok-Phi}/R_{\rm Dk}$  were observed, but this short-term response was not observed using the Kok- $C_c$  method (Fig. 5). These results indicate that short-27 term CO<sub>2</sub> effect on  $R_{L \text{ Kok}}$  and  $R_{L\text{Kok-Phi}}$  could result from a technical bias simply due to 28 neglecting the change in  $C_c$  along the Kok curve. 29

When pooling all data across species and treatments together,  $R_{\text{Dk}}$  was positively correlated to  $R_{\text{L Kok}}$  ( $r^2$ =0.82, p<0.05),  $R_{\text{L Kok-Phi}}$  ( $r^2$ =0.82, p<0.05) and  $R_{\text{L Kok-Cc}}$  ( $r^2$ =0.77, p<0.05) (Fig. 6). 5

#### 6 **DISCUSSION**

#### 7 Growth at elevated $CO_2$ leads to reduction in $R_L$

8 This study showed that  $R_L$  of plants grown at elevated [CO<sub>2</sub>] was lower than that at ambient 9 [CO<sub>2</sub>], and this result was confirmed by all three methods: Kok, Kok-Phi and Kok- $C_c$ . On 10 average, elevated [CO<sub>2</sub>] led to an 8.4% reduction in  $R_L$ , regardless of the method. This is in 11 agreement with previous findings that leaf  $R_L$  of plants grown at elevated [CO<sub>2</sub>] is lower (Ayub 12 et al., 2014) despite opposite findings (Wang et al., 2001, Shapiro et al., 2004).

Interestingly, although a long-term  $CO_2$  effect on  $R_L$  was evident, elevated  $[CO_2]$  had no 13 influence on the  $R_{\rm L}/R_{\rm Dk}$  ratio, because  $R_{\rm Dk}$  was also significantly lower at elevated [CO<sub>2</sub>]. Similar 14 to our study, there was no significant long-term CO<sub>2</sub> effect on  $R_L/R_{Dk}$  in Sydney blue gum 15 (Eucalyptus saligna) (Ayub et al., 2011; Crous et al., 2012). However, Wang et al. (2001), 16 Shapiro et al. (2004) and (Gong et al., 2017) found that non proportional changes in  $R_L$  and  $R_{Dk}$ 17 18 led to higher  $R_{\rm L}/R_{\rm Dk}$  ratio in common cocklebur (Xanthium strumarium) leaves and sunflower stands grown at elevated [CO<sub>2</sub>]. By contrast,  $R_L/R_{Dk}$  was reduced by elevated growth [CO<sub>2</sub>] in 19 20 wheat because  $R_L$  declined (Ayub et al., 2014) or  $R_{Dk}$  increased (Griffin and Turnbull, 2013). Presumably, variations in the response to growth CO<sub>2</sub> between species and conditions might be 21 linked to differences in nutrient content, metabolism, protein content, etc. which are all related to 22 respiration. 23

24

#### 25 The long-term response of $R_{\rm L}$ to $\rm CO_2$ is associated with changes in leaf N status

Leaf N has long been suggested to be a key parameter influencing respiration rate, and used to estimate leaf respiration in vegetation models (Atkin et al., 2017). In our study, the reduction in  $R_L$  and  $R_{Dk}$  was associated with a decrease in N<sub>area</sub> and chlorophyll content, suggesting that leaf N effectively drives the respiration rate. Nitrate reduction and maintenance of proteins are energy consuming (Wullschleger et al., 1997). Lower N content implies lower energy requirements and thus lower growth and maintenance respiration.

It has often been found in FACE or growth cabinet experiments that leaf N content was 1 lower at elevated [CO<sub>2</sub>]. This has been explained by different mechanisms. For example, 2 3 elevated [CO<sub>2</sub>] was shown to cause a decrease in stomatal conductance of leaves, leading to decreasing transpiration rates (Ainsworth and Rogers, 2007) and thus, lower transpiration-driven 4 mass flow of soil N to roots and stems (so-called transpiration mechanism (McGrath and Lobell, 5 2013; Feng et al., 2015)). Another mechanism is associated with photorespiration. Generally N 6 assimilation is believed to be lower due to lower photorespiration (Bloom et al., 2010), which is 7 accompanied by the reduced reductant supplied via photorespiration at elevated  $[CO_2]$  (Taub and 8 Wang, 2008). Furthermore, a 'dilution effect' could occur whereby N uptake does not increase 9 proportionally to the increase of biomass at elevated  $[CO_2]$  (Feng et al., 2015). 10

The decreased leaf N content at elevated  $[CO_2]$  has also consequences on photosynthetic 11 capacity (i.e.  $V_{cmax}$ ). It was reported that species grown under elevated [CO<sub>2</sub>] had lower 12 maximum apparent carboxylation velocity  $(V_{cmax})$  and carboxylation efficiency (Ainsworth and 13 Long, 2005). Finally, elevated [CO<sub>2</sub>] significantly increased CUE<sub>L</sub> by enhancing photosynthetic 14 rate and reducing dark respiration. Gong et al. (2017) reported that CUE of sunflower stands was 15 higher at 200 ppm growth [CO<sub>2</sub>] than that of 1000 ppm growth [CO<sub>2</sub>]. This results thus could not 16 be explained by the response of CUE<sub>L</sub> itself since at the leaf level, CUE<sub>L</sub> likely increased at 17 elevated growth [CO<sub>2</sub>]. We speculate that the reduction of whole plant CUE in their study was 18 mainly due to enhanced respiration of heterotrophic organs or exudation. 19

20

## 21 Changes in $\Phi_2$ and $C_c$ are involved in the Kok effect and impact on $R_L$ estimates

Our study found a short-term  $CO_2$  effect on  $R_L$  estimated using the Kok and Kok-Phi method, but 22 no effect using the Kok-C<sub>c</sub> method. In fact, both Kok and Kok-Phi methods showed an increase 23 24 in  $R_{\rm L}$  when measured at elevated [CO<sub>2</sub>]. This short-term response was in agreement with the finding of Yin et al. (2020) and Fang et al. (2021), but is not supported by the findings of other 25 26 studies (Tcherkez et al., 2008; Griffin and Turnbull, 2013). We believe discrepancies in shortterm  $CO_2$  effect on  $R_L$  is mostly associated with methodological differences. As shown in the 27 Theory section, the classical Kok method has conceptual uncertainty with the assumption that  $\Phi_2$ 28 remains constant across the Kok curve. This assumption must be rejected as  $\Phi_2$  decreases with 29 increasing  $I_{inc}$  (Fig. 2). However, this short-term CO<sub>2</sub> effect on  $R_L$  cannot be explained by 30 changes in  $\Phi_2$  because (i) the decrease in  $\Phi_2$  along Kok curve was similar at both measurement 31

3 Another assumption that has been made for both the Kok and Kok-Phi method is that  $\gamma$ (determined by  $\Gamma^*/C_c$ ) remains constant throughout the Kok curve. This assumption has also 4 been challenged in recent model analyses (Buckley et al., 2017; Farquhar and Busch, 2017), but 5 the question is how to quantify the change in  $C_c$  as this requires  $g_m$  estimates. Here, we used 6 species-specific  $g_{sc}/g_m$  ratios to calculate  $C_c$ , suggesting that  $C_c$  and  $\gamma$  decreased with increasing 7  $I_{\rm inc}$ . Importantly, measurement CO<sub>2</sub> influenced the trend of y with increasing  $I_{\rm inc}$ , which might be 8 the origin of this short-term CO<sub>2</sub> effect on  $R_{\rm L Kok}$  and  $R_{\rm L Kok-Phi}$ . When changes in  $\gamma$  (or  $\Gamma^*/C_c$ ) are 9 accounted for, the apparent short-term effect of  $CO_2$  on  $R_L$ , as found with the Kok and Kok-Phi 10 methods, became insignificant (see also Fig. 3, 4). 11

12

# 13 Kok- and Kok-Phi based estimates of *R*<sub>L</sub> suppression are overestimates

The inhibition of  $R_{\rm L}$  by light is supported by biochemical evidence. Utilizing <sup>13</sup>C labelling, flux 14 calculations suggest that decarboxylation rates associated to glucose catabolism and activation of 15 malic enzyme increase with decreasing irradiance in the irradiance region where the Kok effect 16 occurs (Gauthier et al., 2020). Recently, how much of the Kok effect is associated with 17 respiration has been under debate (Farquhar and Busch, 2017; Gauthier et al., 2020; Yin et al., 18 2020). Indeed, the methods used in the present study show different levels of inhibition of 19 20 respiration by light. The average  $R_{\rm L}/R_{\rm Dk}$  was 0.74 for the Kok method, 0.81 for the Kok-Phi method and 0.93 for the Kok- $C_c$  method. That is, the change in  $\Phi_2$ ,  $\gamma$  (or  $\Gamma^*/C_c$ ), and real light 21 22 inhibition of  $R_{\rm L}$  explained c. 27, 46 and 27% of the apparent Kok effect (i.e. the apparent 26%inhibition of  $R_1$  found with the classical Kok method), respectively. This is in agreement with the 23 24 results of previous model analyses which show that the Kok effect is not purely respiratory (Farquhar and Busch, 2017; Yin et al., 2020), and both the Kok method and the Kok-Phi method 25 26 underestimated  $R_{\rm L}$  and overestimated the inhibition of  $R_{\rm L}$  (Yin et al., 2020).

The real light inhibition of  $R_L$  (as revealed by the Kok- $C_c$  method) was only 6%, which is close to the mean inhibition of 8% of several herbaceous species determined using the <sup>13</sup>C disequilibrium method (Gong et al., 2018) and the mean inhibition of 10% in wheat leaves determined using a nonrectangular hyperbolic model to interactively solve  $g_m$  and  $R_L$  (Fang et al.,

3 The Kok- $C_c$  method developed here requires  $g_{sc}/g_m$  to estimate  $C_c$  along a Kok curve since  $C_{\rm c}$  cannot be directly measured. Estimating  $g_{\rm m}$  under low light remains technically very 4 challenging. We used species specific  $g_{sc}/g_m$  values measured under the growth condition to 5 estimate  $g_m$  at each step of Kok curves. Similar approach has been applied to estimate  $C_c$  to 6 improve the Laisk method (Gong et al., 2018; Way et al., 2019). These calculations assume that 7  $g_{\rm sc}/g_{\rm m}$  was the same under the measurement condition of the Kok method and the growth 8 condition. In another word,  $g_{sc}$  and  $g_m$  should decrease similarly with the decrease of PPFD. This 9 assumption is supported by experimental results (Flexas et al., 2008; Douthe et al., 2011; Xiong 10 et al., 2015). Estimating  $g_m$  from species specific  $g_{sc}/g_m$  ratio is supported by the robust 11 12 relationship between  $g_{sc}$  and  $g_m$  observed in different species under manipulated CO<sub>2</sub>, irradiance, and drought stress (Flexas et al., 2008; Ma et al., 2021; Gong et al., 2022). Although the  $g_{sc}/g_m$ 13 ratio estimated here could have a certain level of uncertainty due to methodological issues 14 associated with g<sub>m</sub> estimation (Pons et al., 2009; Gu and Sun, 2014; Gong et al., 2015), R<sub>L Kok-Cc</sub> 15 was not very sensitive to  $g_{sc}/g_m$ . Importantly, the factor that directly influences  $R_{L \text{ Kok-Cc}}$ 16 estimation is the decreasing rate of y with the increase of  $I_{inc}$  (d y/d  $I_{inc}$ ) but not absolute values of 17  $g_{\rm m}$  or  $C_{\rm c}$ . Varying  $g_{\rm sc}/g_{\rm m}$  by  $\pm 0.4$  or assuming a constant  $g_{\rm m}$  has little effect on d  $\gamma/d$   $I_{\rm inc}$  and a 18 negative d y/d Iinc was evident in all cases (Fig. S1, S2). In effect, our sensitivity tests showed 19 20 that varying  $g_{sc}/g_m$  by  $\pm 0.4$  has a minor influence on both  $R_L$  estimates and the CO<sub>2</sub> effect (Fig. S3). However,  $R_L/R_{Dk}$  is sensitive to small variations in  $R_L$  and thus is affected by  $g_{sc}/g_m$  (Fig. 21 S4). Adjusting  $g_{sc}/g_m$  ( $\pm 0.4$  units) leads to changes of mean light inhibition from 4% to 10%. 22 These results highlighted that accounting for d  $\gamma/d I_{inc}$  is essential for estimating  $R_{\rm L}$  (Farquhar 23 24 and Busch, 2017), and the uncertainty associated with the accuracy of d  $\gamma/d I_{inc}$  is much less than assuming a constant  $\gamma$  along a Kok curve. The Kok- $C_c$  based estimates of  $R_L$  suppression could 25 be further improved if a new method is developed to precisely estimate  $g_m$  at very low light. 26 27 Taken as a whole, neither the Kok nor Kok-Phi method seem suitable to quantify the inhibition of respiration by light (as also suggested by Yin et al. 2020 and Tcherkez et al. 2017a, 2017b), 28 29 and the inhibition of  $R_{\rm L}$  at the operating PPFDs of this study should be lower than 10%.

30

#### **1** Conclusions and Perspectives

2 This study showed that elevated growth  $[CO_2]$  reduced  $R_L$  and  $R_{Dk}$  likely as a result of decreasing 3 leaf N status and chlorophyll content. We found no significant long-term CO<sub>2</sub> effect on  $R_L/R_{Dk}$ , indicating a concurrent response of  $R_{\rm L}$  and  $R_{\rm Dk}$  to elevated growth [CO<sub>2</sub>], mediated by the 4 adjustment of nitrogen metabolism in leaves. These results shed light into the incorporation of  $R_{\rm L}$ 5 into the carbon cycling models. We revisited the theoretical basis of the Kok method, revised 6 Kok methods and discussed their respective limitations. Using Kok and Kok-Phi methods, we 7 found that  $R_{\rm L}$  were stimulated by short-term CO<sub>2</sub> enrichment, while the effect was not supported 8 by the data of the Kok- $C_c$  method. We attributed this short-term CO<sub>2</sub> effect to methodological 9 uncertainty associated with unaccounted changes in  $\gamma$  (or  $\Gamma^*/C_c$ ) along a Kok curve. Accounting 10 for those effects, we found that the Kok and Kok-Phi method underestimate  $R_{\rm L}$  and overestimate 11 the inhibition of respiration under low irradiance conditions of the Kok method, and the 12 inhibition of  $R_{\rm L}$  is only 6±4%, which represents 26% of the Kok effect (i.e. of the apparent 13 inhibition of  $R_{\rm L}$  found using the classical Kok method). Although the Kok- $C_{\rm c}$  method has less 14 theoretical uncertainty and is thus in principle more reliable, we are aware that all three methods 15 have operating PPFD much lower than usual, ambient irradiance encountered by plants. 16 However, estimated  $R_L$  could vary with irradiance. Earlier studies have showed a decrease of  $R_L$ 17 with the increase of operating PPFD (Brooks and Farquhar, 1985; Atkin et al., 1998; Atkin et al., 18 2000) by using the Laisk method which also has the uncertainty associated with the unaccounted 19 changes in  $C_c$  (Farquhar and Busch 2017). To date, the effect of irradiance on  $R_L$  is poorly 20 known and this should be addressed in subsequent studies. 21

22

# 23 MATERIALS AND METHODS

#### 24 **Theory**

When estimating  $R_L$  with the Kok method, *A* should be measured at low irradiance, where *A* is limited by the light-dependent electron transport rate. According to the equation of the electron transport-limited photosynthesis (Farquhar et al., 1980), *A* at low light is described as:

28 
$$A = J \frac{1 - \Gamma^* / C_c}{4 + 8 \Gamma^* / C_c} - R_L$$
 Eqn 1

where *J* is the electron transport rate that is used for CO<sub>2</sub> fixation and photorespiration,  $\Gamma^*$  is the *C*<sub>c</sub>-based CO<sub>2</sub> compensation point in the absence of mitochondrial respiration (37.4 µmol mol<sup>-1</sup> at 25°C, (Silva-Perez et al., 2017)). According to the theoretical evaluations of Yin et al. (2011,

Eqn 2

Eqn 4

2020), Eqn 1 forms the theoretical basis of the Kok method, and is useful for evaluating
 methodological uncertainties.

In this equation, J can be replaced by f<sub>aet</sub>Φ<sub>2</sub>ρ<sub>2</sub>αI<sub>inc</sub>, where f<sub>aet</sub> is the fraction of electron
transport for photosynthesis, ρ<sub>2</sub> is the fraction of absorbed irradiance partitioned to PS II, α is the
absorptance by leaf photosynthetic pigments and I<sub>inc</sub> is incident irradiance (Yin et al., 2011).
Here, we define the term 1-Γ<sup>\*</sup>/C<sub>c</sub>/4+8Γ<sup>\*</sup>/C<sub>c</sub> as γ, so that Equation (1) becomes:

$$A = \gamma f_{\text{aet}} \Phi_2 \rho_2 \alpha I_{\text{inc}} - R_{\text{L}}$$

8 With the Kok method, net CO<sub>2</sub> assimilation rates are plotted against  $I_{inc}$  and datapoints that 9 fall above the breakpoint are used to extrapolate A up the y-axis and thereby estimate  $R_L$ . In fact, 10 if the term  $\gamma f_{aet} \Phi_2 \rho_2 \alpha$  is assumed to be constant, thus the intercept of this linear relation provides 11 the estimate of  $R_{L Kok}$ . In terms of equation, this can be written as:

 $A = (\gamma f_{aet} \Phi_2 \rho_2 \alpha) \cdot I_{inc} - R_{L \text{ Kok}}$  Eqn 3

However, it has been shown that  $\Phi_2$  could decrease with increasing  $I_{inc}$  even within the range of low irradiance (Genty and Harbinson, 1996; Yin et al., 2020). Alternatively,  $\Phi_2$  can be obtained from chlorophyll fluorescence measurements. Yin et al. (2009) thus suggested to plot *A* against  $\Phi_2 I_{inc}$  as:

 $A = (\gamma f_{aet} \rho_2 \alpha) \Phi_2 I_{inc} - R_{L \text{ Kok-Phi}}$ 

The Yin et al. (2011) method can be considered as a revised Kok method with variation in  $\Phi_2$  accounted for, and thus it is renamed as the 'Kok-Phi' method here to highlight the modification. This method assumes that  $\gamma$  is constant across Kok curve, which is obviously not true under photorespiratory conditions, i.e. under ambient conditions where  $O_2$  mole fraction is about 21% (Yin et al., 2014). Theoretically, the Kok-Phi method is applicable for measuring  $C_3$ leaves at nonphotorespiratory conditions or  $C_4$  leaves (Yin et al., 2011; 2020; Fang et al., 2021).

On the basis of these two methods, we propose a revised Kok method, named 'Kok- $C_c$ ' method, accounting for variations in  $\gamma$  caused by the decrease in  $C_c$  along the Kok curve. In the Kok- $C_c$  method, A should be plotted against  $\gamma \Phi_2 I_{inc}$ , the intercept of the linear relation yields the estimation of  $R_L$  ( $R_{L \text{ Kok-Cc}}$ ):

. .

$$A = (f_{aet}\rho_2 \alpha)\gamma \Phi_2 I_{inc} - R_{L \, Kok-Cc}$$
 Eqn 5

This method requires estimates of  $C_c$  at each step of the *A*- $I_{inc}$  curve (see below the section dedicated to  $C_c$  estimation). It is worth noting that in practice all 'Kok type' methods, assume 1 that  $R_{\rm L}$  is not sensitive to changes in  $C_{\rm c}$  along the Kok curve, as they rely on linear 2 extrapolations. To our knowledge, this assumption has not been verified (see *Introduction*).

3

#### 4 Plant material and growth conditions

Sunflower (Helianthus annuus L.) and wheat (Triticum aestivum L.) plants were grown from 5 seed in plastic pots with garden soil and thinned to one plant per pot. Initial nutrient composition 6 of the garden soil (Scotts Miracle-Gro, USA) was 0.68% N, 0.27% P<sub>2</sub>O<sub>5</sub>, and 0.36% K<sub>2</sub>O. Plants 7 were randomly placed in two growth chambers, where  $CO_2$  mole fraction was 410 ppm 8 (ambient) and 820 ppm (elevated [CO<sub>2</sub>]) respectively. In both chambers, air temperature was 9 maintained at 25°C and the relative humidity of the air was 70% for both light and dark periods. 10 The photosynthetic photon flux density (PPFD) was 700  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> for 16-h photoperiod. All 11 plants were watered every 2-3 days to prevent water stress. This experiment had six replicates 12 per treatment, and in total 24 plants were used for measurements. 13

14

# 15 Gas exchange and chlorophyll fluorescence measurements

Photosynthetic gas exchange and ChF parameters were measured when there were 4 fully 16 expanded leaves in each plant (sunflower) or tiller (wheat). Using a portable gas exchange 17 system (LI-6800; Li-Cor Inc., Lincoln, NE, USA), measurements were undertaken on the second 18 youngest fully developed leaves. Light response curves and ChF parameters were measured to 19 20 estimate  $R_{\rm L}$ . When stable gas exchange rates were achieved, we measured A starting at 120  $\mu$ mol  $m^{-2}$  s<sup>-1</sup>, and the PPFD was sequentially reduced to 100, 80, 60, 40, 20 and 0 (i.e., with light 21 source switched off)  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>. ChF measurements were done at PPFD of 120, 100, 80, 60 and 22 40  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> using the multi-phase flash method.  $\Phi_2$  was calculated as 23

24

$$\Phi_2 = (F_{\rm m}' - F_{\rm s})/F_{\rm m}'$$

Eqn 6

where  $F_s$  is the steady-state fluorescence in the light conditions and  $F_m'$  is maximal

fluorescence during short saturating pulses of light. For each leaf, the irradiance response of photosynthesis rates was determined at two atmospheric  $[CO_2]$  (410 and 820 ppm) to assess short-term  $CO_2$  response of  $R_L$ .

All gas exchange parameters have been corrected for the leak effect (i.e.  $CO_2$  diffusion across gaskets of leaf chamber) using the measured leak coefficients of intact leaves (Gong et al., 2015; Gong et al., 2018).  $R_{Dk}$  measured at 410 and 820 ppm [CO<sub>2</sub>] was used to calculate the

cuvette leak coefficient for  $CO_2$  ( $K_{CO2}$ ) with the leaf present in the leaf chamber using the 1 equations in (Gong et al., 2015).  $K_{CO2}$  was not significantly different between species and 2 3 growth [CO<sub>2</sub>], with a mean  $K_{CO2}$  of 0.21 for wheat and 0.30 for sunflower (Fig. S5). Thereafter, the response of A to [CO<sub>2</sub>] (i.e. A-C<sub>i</sub> curve) was determined under an irradiance of 700  $\mu$ mol m<sup>-2</sup> 4 s<sup>-1</sup> and varying CO<sub>2</sub>, using a [CO<sub>2</sub>] sequence of 410, 200, 150, 100, 50, 410, 800 and 1600  $\mu$ mol 5 mol<sup>-1</sup>. ChF parameters were acquired at 200, 410, 800 and 1600  $\mu$ mol mol<sup>-1</sup> CO<sub>2</sub>. Leaf 6 temperature was maintained at 25°C for all gas exchange measurements, there is thus no 7 8 temperature correction needed to compare  $R_{\rm L}$  and  $R_{\rm Dk}$ .

9

27

# 10 Estimation of day respiration and $C_c$

For the Kok method, the data of the linear range of the A:  $I_{inc}$  curve at PPFD levels above the 11 Kok breakpoint (kink) were used to estimate  $R_L$  according to Eqn 3. Each A:  $I_{inc}$  curve was 12 visually inspected to identify the irradiance at the Kok breakpoint, which was 40  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> 13 (Fig. S6). The data measured at PPFD of 120  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> deviated from the linear relation (i.e. 14 the linear domain of assimilation response curve to light between 40-100  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>), thus they 15 were excluded from the dataset used for the estimation of  $R_{\rm L}$  via all methods. Linear regressions 16 were performed using data of the PPFD levels of 40, 60, 80, and 100  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> for all three 17 methods, with the exception of 5 out of 45 curves in which a point that deviated from the linear 18 relation was excluded for the estimation of  $R_{\rm L}$ . For the Kok-Phi method, the data from the same 19 20 PPFD range were used to estimate  $R_{\rm L}$  by plotting A against  $\Phi_2 I_{\rm inc}$  according to Eqn 4. We have not intensively measured A at very low PPFD levels to accurately identify the breakpoint. 21 However, the data at 40  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> PPFD seem to be above the Kok breakpoint and in the 22 linear domain of A: Iinc curves. Our approach is similar to recent studies which compared the Kok 23 24 and the Kok-Phi method (Yin et al., 2011; Fang et al., 2021).

Estimating  $R_L$  from the Kok- $C_c$  method requires estimates of mesophyll conductance  $(g_m)$ . According to the variable *J* method of Harley et al. (1992),  $g_m$  could be calculated as:

$$g_{\rm m} = \frac{A}{C_{\rm i} - \frac{\Gamma^*[J+8(A+R_{\rm L})]}{J-4(A+R_{\rm L})}}$$
 Eqn 7

Here, we used  $R_L$  estimated using the Kok-Phi method to calculate  $g_m$ , given that this method addresses the issue of decreasing  $\Phi_2$  and provides a more reliable estimation of  $R_L$ , compared to the Kok method (Yin et al., 2011). Furthermore, using  $R_{L \text{ Kok}}$  or  $R_{L \text{ Kok-Phi}}$  has minor influence on

4 
$$dC_{c}/dA = 12\Gamma^{*}J/(J - 4(A + R_{L}))^{2}$$
 Eqn 8

5 Most of the data obtained with sunflower met this empirical criterion of  $dC_c/dA$ , while  $dC_c/dA$  of 6 wheat exceeded this range ( $dC_c/dA$ >100) in most cases. Therefore, the *A*-*C*<sub>i</sub> curve-fitting method 7 was used to estimate the  $g_m$  value of each leaf in wheat. Based on the FvCB photosynthesis 8 model (Farquhar et al., 1980), the *A*-*C*<sub>i</sub> curve fitting tool developed by Sharkey et al. (2007) was 9 used to estimate  $g_m$  by minimizing the sum of squared deviations between the observed and 10 modelled data.

11 Recently, it has been found that  $g_m$  and stomatal conductance to CO<sub>2</sub> ( $g_{sc}$ ) are strongly 12 related (Flexas et al., 2012; Ma et al., 2021). A nearly fixed  $g_{sc}/g_m$  ratio across different 13 environments and plant functional groups was shown by Ma et al. (2021), offering a useful 14 solution to estimate  $g_m$ . We first obtained species- and treatment-specific  $g_{sc}/g_m$  using Equation 7 15 (sunflower) or curve fitting (wheat), and then  $g_m$  along the Kok curve was estimated from 16 measured  $g_{sc}$  and previously estimated  $g_{sc}/g_m$ .  $C_c$  was calculated from  $g_m$  as:

17 
$$C_{\rm c} = C_{\rm i} - A/g_{\rm m}$$
 Eqn 9

18 With  $C_c$ ,  $\gamma$  could be calculated and thus  $R_{L \text{ Kok-Cc}}$  could be estimated by plotting A against  $\gamma \Phi_2 I_{\text{inc}}$ 19 using data of the PPFD range of 40-100 µmol m<sup>-2</sup> s<sup>-1</sup> according to Eqn 5. We also tested the 20 sensitivity of  $R_{L \text{ Kok-Cc}}$  to  $g_{\text{sc}}/g_{\text{m}}$  by adjusting obtained species- and treatment-specific  $g_{\text{sc}}/g_{\text{m}}$  (± 21 0.4).

The daily carbon-use efficiency of leaves, the ratio of net carbon gain to assimilated carbon(integrated photosynthesis) was calculated as:

24 
$$CUE_{L} = (\int A - \int R_{Dk}) / (\int A + \int R_{L \text{ Kok-Cc}})$$
Eqn 10

25 Since plants were grown in controlled environments, the daily carbon fluxes were calculated as 26  $\int A = A \times \text{light hours}, \int R_{\text{L Kok-Cc}} = R_{\text{L Kok-Cc}} \times \text{light hours}, \text{ and } \int R_{\text{Dk}} = R_{\text{Dk}} \times \text{dark hours}.$ 

27

## 28 Plant sampling and leaf trait parameters

After gas exchange and ChF measurements, the measured leaves were harvested. We measured leaf area and fresh weight, and the chlorophyll content (Chl) was determined by a chlorophyll meter (SPAD-502 Plus; Konica Minolta Inc., Tokyo, Japan). The chlorophyll content was calculated from the observed SPAD values as Chl = (99 SPAD)/(144 – SPAD)(Cerovic et al.,
2012). All leaves were dried at 70 °C to constant mass after drying to stop enzymatic activity at
105 °C for 1 hour. We measured dry mass of individual leaves, and then the leaves were ground
with a ball mill (Tissuelyser-24, Jingxin Ltd., Shanghai, China). Leaf N content was measured
using an elemental analyzer (VARIO ELIII, Elementar Analysensysteme GmbH, Hanau,
Germany).

7

#### 8 Statistical analysis

9 Statistical analysis was performed using SPSS (v. 25.0, SPSS, Chicago, IL, USA). Leaf traits and

10 photosynthetic parameters were analyzed with two-way ANOVAs to determine the influence of

11 growth [CO<sub>2</sub>], species and their interaction. Besides, ANOVAs were carried out to clarify the

- effect of growth [CO<sub>2</sub>], measurement [CO<sub>2</sub>], their interaction and species on  $R_L$  and  $R_L/R_{Dk}$ . A *p*-
- 13 value lower than 0.05 is considered statistically significant.
- 14

# 15 FUNDING

- 16 This work was supported by the National Natural Science Foundation of China (NSFC
- 17 31870377, 32120103005).
- 18

# 19 DATA AVAILABILITY

All data that support the findings of this study are included in the published article and itsSupplementary Information.

# 1 TABLES

2 Table 1. Leaf traits and photosynthetic parameters of wheat (T. aestivum) and sunflower (H. annuus) grown under ambient or elevated  $CO_2$  (a $CO_2$  or e $CO_2$ ). Leaf trait parameters include: specific leaf area 3 4 (SLA, cm<sup>2</sup> mg<sup>-1</sup>), leaf nitrogen content per dry mass (N%), leaf nitrogen content per area (N<sub>area</sub>, g m<sup>-2</sup>), chlorophyll content (Chl, g m<sup>-2</sup>). Photosynthetic parameters include net CO<sub>2</sub> assimilation rate at the 5 growth CO<sub>2</sub> ( $A_{\text{growth}}$ ,  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>), maximum CO<sub>2</sub> assimilation rate ( $A_{\text{max}}$ ,  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>), respiration rate in 6 the dark ( $R_{\rm Dk}$ ,  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>), intrinsic water-use efficiency (iWUE<sub>growth</sub>,  $\mu$ mol mol<sup>-1</sup>), maximum 7 carboxylation rates by Rubisco ( $V_{cmax}$ ,  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>), electron transport rate (J,  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>), ratio of 8 stomatal conductance for CO<sub>2</sub> to mesophyll conductance  $(g_{sc}/g_m)$ , leaf carbon-use- efficiency (CUE<sub>L</sub>). 9 Data are mean  $\pm$  SE (n=6); significant treatment effects (P<0.05) tested with two-way ANOVAs are 10 11 shown in bold.

|                         |                  |                  |                  |                  | 7         |                 |                             |   |
|-------------------------|------------------|------------------|------------------|------------------|-----------|-----------------|-----------------------------|---|
|                         | T. aestivum      |                  | H. annuus        | Ċ                | Significa | nce             |                             |   |
|                         | aCO <sub>2</sub> | eCO <sub>2</sub> | aCO <sub>2</sub> | eCO <sub>2</sub> | spe       | CO <sub>2</sub> | <i>spe</i> ×CO <sub>2</sub> |   |
| $A_{ m growth}$         | 28.42±0.73       | 32.79±2.01       | 27.27±2.57       | 31.43±2.06       | 0.529     | 0.042           | 0.956                       |   |
| $A_{\max}$              | 37.68±1.29       | 34.04±2.22       | 32.32±2.40       | 31.83±1.73       | 0.068     | 0.304           | 0.430                       |   |
| $R_{\rm Dk}$            | 2.26±0.14        | 1.81±0.17        | 1.48±0.11        | 1.32±0.14        | <0.001    | 0.046           | 0.327                       |   |
| iWUEgrowth              | 52.64±1.30       | 62.25±3.94       | 37.30±10.25      | 102.14±24.99     | 0.380     | 0.013           | 0.057                       |   |
| SLA                     | 0.24±0.01        | 0.27±0.02        | 0.22±0.02        | 0.23±0.02        | 0.038     | 0.252           | 0.511                       |   |
| N%                      | 6.61±0.17        | 6.39±0.11        | 3.51±0.67        | 3.16±0.56        | <0.001    | 0.527           | 0.882                       |   |
| N <sub>area</sub>       | 2.70±0.06        | 2.37±0.10        | 1.53±0.18        | 1.35±0.16        | <0.001    | 0.062           | 0.586                       |   |
| Chl                     | 0.69±0.02        | 0.56±0.03        | 0.49±0.05        | 0.48±0.02        | <0.001    | 0.04            | 0.083                       |   |
| $V_{ m cmax}$           | 160.9±3.2        | 142.7±13.0       | 123.0±11.7       | 117.4±3.3        | 0.002     | 0.203           | 0.493                       |   |
| J                       | 183.4±3.3        | 160.1±9.3        | 164.2±10.4       | 158.9±8.6        | 0.234     | 0.101           | 0.293                       |   |
| <i>g</i> sc/ <i>g</i> m | 0.95±0.03        | $1.16\pm0.07$    | 1.74±0.55        | $1.97 \pm 0.42$  | 0.087     | 0.222           | 0.859                       |   |
| CUEL                    | 0.89±0.01        | $0.92 \pm 0.01$  | $0.92 \pm 0.02$  | 0.94±0.01        | 0.011     | 0.004           | 0.547                       |   |
|                         |                  |                  |                  |                  |           |                 |                             | - |

1 Table 2. ANOVA tests for  $R_{\rm L}$  estimated by the Kok, Kok-Phi and Kok- $C_{\rm c}$  methods. Significant

2 treatment effects (P < 0.05) are shown in bold.

| Source                                                  | df | $R_{ m L \ Kok}$ $R_{ m L \ Kok-Phi}$ $R_{ m L \ Kok-Cc}$ |        |       |        |       |        |
|---------------------------------------------------------|----|-----------------------------------------------------------|--------|-------|--------|-------|--------|
| Source                                                  |    | F                                                         | Р      | F     | Р      | F     | Р      |
| Species                                                 | 1  | 28.36                                                     | <0.001 | 29.74 | <0.001 | 20.06 | <0.001 |
| Growth CO <sub>2</sub>                                  | 1  | 6.681                                                     | 0.013  | 5.777 | 0.021  | 3.921 | 0.055  |
| Measurement CO <sub>2</sub>                             | 1  | 1.227                                                     | 0.275  | 1.714 | 0.198  | 0.198 | 0.658  |
| Growth CO <sub>2</sub> *<br>Measurement CO <sub>2</sub> | 1  | 0.092                                                     | 0.763  | 0.107 | 0.745  | 0.072 | 0.790  |
|                                                         |    |                                                           |        |       |        |       |        |

3

4 Table 3. ANOVA tests for  $R_L/R_{Dk}$  estimated by the Kok, Kok-Phi and Kok- $C_c$  methods.

5 Significant treatment effects (P < 0.05) are shown in bold.

| Source                      | df | $R_{\rm L  Kok}/R$ | Dk    | $R_{\rm L \ Kok-Phi}/R_{\rm Dk}$ | $R_{ m L\ Kok-Cc}$ | $R_{\rm L \ Kok-Cc}/R_{\rm Dk}$ |  |
|-----------------------------|----|--------------------|-------|----------------------------------|--------------------|---------------------------------|--|
| Source                      | u  | F                  | Р     | F P                              | F                  | Р                               |  |
| Species                     | 1  | 2.824              | 0.101 | 1.638 0.208                      | 0.095              | 0.759                           |  |
| Growth CO <sub>2</sub>      | 1  | 2.216              | 0.144 | 0.799 0.377                      | 0.389              | 0.536                           |  |
| Measurement CO <sub>2</sub> | 1  | 7.480              | 0.009 | 10.410 <b>0.003</b>              | 1.140              | 0.292                           |  |
| Growth CO <sub>2</sub> *    | 1  | 0.328              | 0.570 | 0.441 0.511                      | 0.243              | 0.625                           |  |
| Measurement CO <sub>2</sub> | 1  | 0.328              | 0.370 | 0.441 0.311                      | 0.245              | 0.023                           |  |

6

#### 7 FIGURE LEGENDS

**Figure 1**. Net CO<sub>2</sub> assimilation rate (*A*), transpiration rate (*E*) and stomatal conductance for water vapor ( $g_{sw}$ ) in response to short-term variation of intercellular CO<sub>2</sub> concentration ( $C_i$ ) for wheat (*T. aestivum*) and sunflower (*H. annuus*). Blue circles refer to ambient (410 µmol mol<sup>-1</sup>) growth CO<sub>2</sub>, and red squares refer to elevated (820 µmol mol<sup>-1</sup>) growth CO<sub>2</sub>. Data are shown as mean ± SE (n=6).

**Figure 2.** Photochemical efficiency of photosystem II ( $\Phi_2$ ), chloroplastic CO<sub>2</sub> concentration ( $C_c$ ) and  $\gamma$  (the lumped parameter in Eqn 2) in response to incident irradiance ( $I_{inc}$ ) for wheat (T. *aestivum*) and sunflower (H. *annuus*). Plants grown under ambient CO<sub>2</sub> (aCO<sub>2</sub>, blue circles) or elevated CO<sub>2</sub> (eCO<sub>2</sub>, red squares) were measured at gaseous conditions of 410  $\mu$ mol mol<sup>-1</sup> (open symbols) or 820  $\mu$ mol mol<sup>-1</sup> (closed symbols) CO<sub>2</sub> in the leaf chamber. Data are shown as mean  $\pm$  SE (n=6).

**Figure 3**. Net CO<sub>2</sub> assimilation rate (*A*) in response to  $I_{inc}$  (incident irradiance),  $\Phi_2 I_{inc}(\Phi_2, \Phi_2)$  photochemical efficiency of photosystem II) or  $\gamma \Phi_2 I_{inc}(\gamma, \Phi_2, \Phi_2)$  for

- wheat (*T. aestivum*) and sunflower (*H. annuus*). Data are mean  $\pm$  SE (*n*=6). Meaning of symbols
- of different CO<sub>2</sub> treatments and measurement conditions are shown in Fig. 2.
- **Figure 4**. Effects of growth CO<sub>2</sub> treatments (aCO<sub>2</sub> and eCO<sub>2</sub>) and measurement conditions (410
- and 820 ppm CO<sub>2</sub>) on respiration rates in the light ( $R_L$ ) estimated by three methods for wheat (T.

- E) and Kok- $C_c$  (C and F) methods. Data are mean  $\pm$  SE (*n*=5-6). The results of ANOVA tests are
- 3 shown in Table 2.
- **Figure 5**. Effects of growth CO<sub>2</sub> treatments (aCO<sub>2</sub> and eCO<sub>2</sub>) and measurement conditions (410 and 820 ppm) on ratio of respiration in the light to respiration in the dark ( $R_L/R_{Dk}$ ) for wheat (*T. aestivum*) and sunflower (*H. annuus*).  $R_L/R_{Dk}$  was estimated by the Kok (A and D), Kok-Phi (B
- 7 and E) and Kok- $C_c$  (C and F) methods. Data are mean  $\pm$  SE (*n*=5-6). The results of ANOVA
- 8 tests are shown in Table 3.
- 9 **Figure 6**. Correlation between respiration in the dark  $(R_{Dk})$  and respiration in the light  $(R_L)$ .  $R_L$ 10 was measured by the Kok (A), Kok-Phi (B) and Kok- $C_c$  (C) methods. The average  $R_L/R_{Dk}$  ( $\pm$  SE,
- 11 n=45) was calculated by pooling over the data of species (wheat and sunflower) and CO<sub>2</sub>
- 12 treatments. Grey dashed lines give the 1:1 relationship.
- 13

# 14 **REFERENCES**

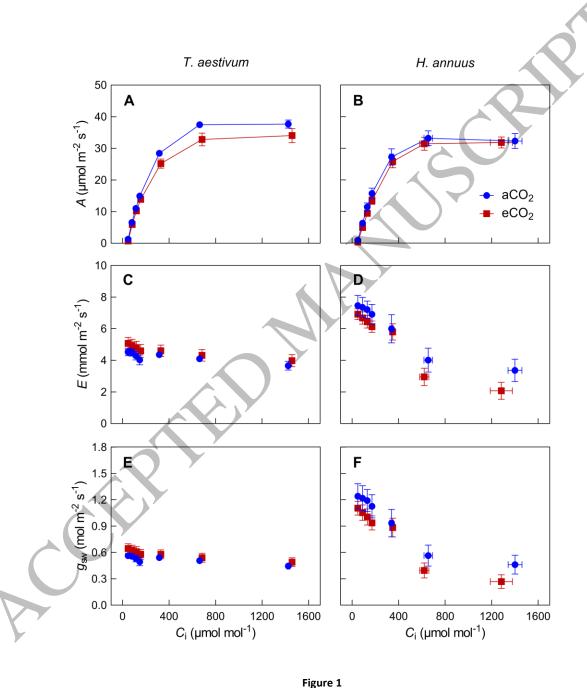
- Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO<sub>2</sub> enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO<sub>2</sub>. New Phytologist 165: 351-371
- Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising
   [CO<sub>2</sub>]: mechanisms and environmental interactions. Plant, Cell and Environment 30: 258-270
- Amthor JS (2000) The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later.
   Annals of Botany 86: 1-20
- Atkin OK, Bahar NHA, Bloomfield KJ, Griffin KL, Heskel MA, Huntingford C, de la Torre AM,
   Turnbull MH (2017) Leaf Respiration in Terrestrial Biosphere Models. *In* Plant Respiration: Metabolic Fluxes and Carbon Balance, pp 107-142
- Atkin OK, Evans JR, Ball MC, Lambers H, Pons TL (2000) Leaf respiration of snow gum in the light and dark. interactions between temperature and irradiance. Plant Physiology 122: 915-923
- Atkin OK, Evans JR, Siebke K (1998) Relationship between the inhibition of leaf respiration by light
   and enhancement of leaf dark respiration following light treatment. Functional Plant Biology 25:
   437-443
- Atkin OK, Scheurwater I, Pons TL (2007) Respiration as a percentage of daily photosynthesis in whole
   plants is homeostatic at moderate, but not high, growth temperatures. New Phytologist 174: 367 380
- Ayub G, Smith RA, Tissue DT, Atkin OK (2011) Impacts of drought on leaf respiration in darkness and
   light in *Eucalyptus saligna* exposed to industrial-age atmospheric CO<sub>2</sub> and growth temperature.
   New Phytologist 190: 1003-1018
- Ayub G, Zaragoza-Castells J, Griffin KL, Atkin OK (2014) Leaf respiration in darkness and in the
   light under pre-industrial, current and elevated atmospheric CO<sub>2</sub> concentrations. Plant Science
   226: 120-130
- Bloom AJ, Burger M, Asensio JSR, Cousins AB (2010) Carbon dioxide enrichment inhibits nitrate
   assimilation in wheat and *Arabidopsis*. Science 328: 899-903
- Bloom AJ, Burger M, Kimball BA, Pinter PJ (2014) Nitrate assimilation is inhibited by elevated CO<sub>2</sub>
   in field-grown wheat. Nature Climate Change 4: 477-480
- Brooks A, Farquhar GD (1985) Effect of temperature on the CO<sub>2</sub>/O<sub>2</sub> specificity of ribulose-1,5 bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta 165: 397-406

- Buckley TN, Vice H, Adams MA (2017) The Kok effect in *Vicia faba* cannot be explained solely by changes in chloroplastic CO<sub>2</sub> concentration. New Phytologist 216: 1064-1071
- Busch FA, Sage RF, Farquhar GD (2018) Plants increase CO<sub>2</sub> uptake by assimilating nitrogen via the photorespiratory pathway. Nature Plants 4: 46-54
- 5 Cerovic ZG, Masdoumier G, Ghozlen NB, Latouche G (2012) A new optical leaf-clip meter for
   6 simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids.
   7 Physiologia Plantarum 146: 251-260
- 8 Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V. Foley
   9 JA, Friend AD, et al. (2001) Global response of terrestrial ecosystem structure and function to
   10 CO<sub>2</sub> and climate change: results from six dynamic global vegetation models. Global Change
   11 Biology 7: 357-373
- Crous KY, Wallin G, Atkin OK, Uddling J, Af Ekenstam A (2017) Acclimation of light and dark
   respiration to experimental and seasonal warming are mediated by changes in leaf nitrogen in
   *Eucalyptus globulus*. Tree Physiology 37: 1069-1083
- Crous KY, Zaragoza-Castells J, Ellsworth DS, Duursma RA, Low M, Tissue DT, Atkin OK (2012)
   Light inhibition of leaf respiration in field-grown *Eucalyptus saligna* in whole-tree chambers
   under elevated atmospheric CO<sub>2</sub> and summer drought. Plant, Cell and Environment 35: 966-981
- Douthe C, Dreyer E, Epron D, Warren CR (2011) Mesophyll conductance to CO<sub>2</sub>, assessed from online TDL-AS records of <sup>13</sup>CO<sub>2</sub> discrimination, displays small but significant short-term responses to CO<sub>2</sub> and irradiance in *Eucalyptus* seedlings. Journal of Experimental Botany 62: 5335-5346
- Drake BG, Gonzàlez-Meler MA, P. LS (1997) More efficient plants: a consequence of rising atmospheric CO<sub>2</sub>? Annual Review of Plant Physiology and Plant Molecular Biology 48: 609-639
- Dusenge ME, Duarte AG, Way DA (2019) Plant carbon metabolism and climate change: elevated CO<sub>2</sub>
   and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist
   221: 32-49
- Fang L, Yin X, van der Putten PEL, Martre P, Struik PC (2022) Drought exerts a greater influence
   than growth temperature on the temperature response of leaf day respiration in wheat (*Triticum aestivum*). Plant, Cell & Environment 45: 2062-2077
- Farquhar GD, Busch FA (2017) Changes in the chloroplastic CO<sub>2</sub> concentration explain much of the
   observed Kok effect: a model. New Phytologist 214: 570-584
- Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO<sub>2</sub>
   assimilation in leaves of C<sub>3</sub> species. Planta 149: 78-90
- Feng Z, Rutting T, Pleijel H, Wallin G, Reich PB, Kammann CI, Newton PC, Kobayashi K, Luo Y,
   Uddling J (2015) Constraints to nitrogen acquisition of terrestrial plants under elevated CO<sub>2</sub>.
   Global Change Biology 21: 3152-3168
- Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriqui M, Diaz-Espejo A, Douthe C, Dreyer E,
   Ferrio JP, Gago J, et al. (2012) Mesophyll diffusion conductance to CO<sub>2</sub>: an unappreciated
   central player in photosynthesis. Plant Science 193-194: 70-84
- Flexas J, Ribas-Carbo M, Diaz-Espejo A, Galmes J, Medrano H (2008) Mesophyll conductance to
   CO<sub>2</sub>: current knowledge and future prospects. Plant, Cell and Environment 31: 602-621
- 42 Gauthier PPG, Saenz N, Griffin KL, Way D, Tcherkez G (2020) Is the Kok effect a respiratory phenomenon? Metabolic insight using <sup>13</sup>C labeling in Helianthus annuus leaves. New Phytologist 228: 1243-1255
- 45 Genty B, Harbinson J (1996) Regulation of Light Utilization for Photosynthetic Electron Transport. *In* 46 Photosynthesis and the Environment, pp 67-99
- 47 Gifford RM (2003) Plant respiration in productivity models: conceptualisation, representation and issues
   48 for global terrestrial carbon-cycle research. Functional Plant Biology 30: 171-186
- 49 Gong XY, Ma WT, Yu YZ, Fang K, Yang Y, Tcherkez G, Adams MA (2022) Overestimated gains in
   50 water-use efficiency by global forests. Global Change Biology 28: 4923-4934

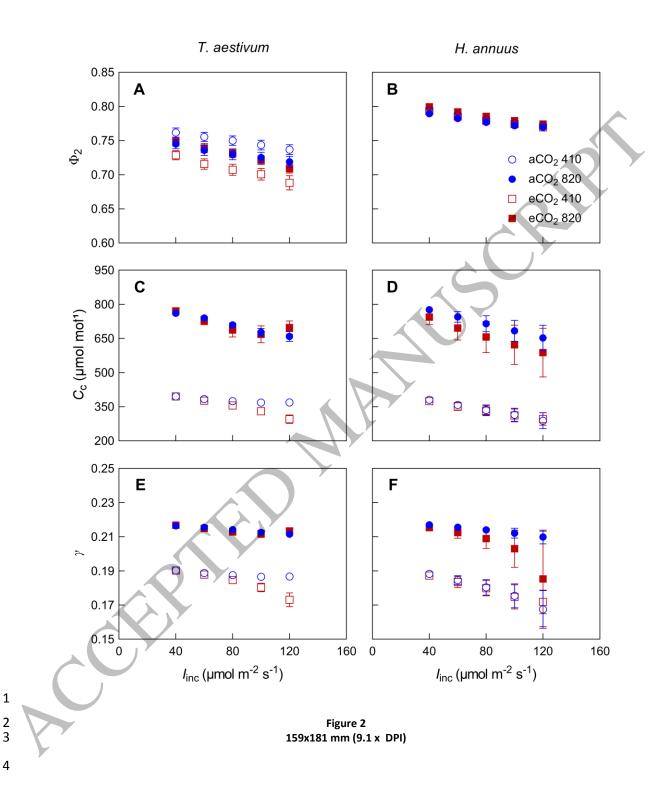
| 1  | Gong XY, Schaufele R, Feneis W, Schnyder H (2015) <sup>13</sup> CO <sub>2</sub> / <sup>12</sup> CO <sub>2</sub> exchange fluxes in a clamp-on least |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | cuvette: disentangling artefacts and flux components. Plant, Cell and Environment 38: 2417-2432                                                     |
| 3  | Gong XY, Schaufele R, Lehmeier CA, Tcherkez G, Schnyder H (2017) Atmospheric CO <sub>2</sub> mole                                                   |
| 4  | fraction affects stand-scale carbon use efficiency of sunflower by stimulating respiration in light                                                 |
| 5  | Plant, Cell and Environment <b>40:</b> 401-412                                                                                                      |
| 6  | Gong XY, Tcherkez G, Wenig J, Schaufele R, Schnyder H (2018) Determination of leaf respiration in                                                   |
| 7  | the light: comparison between an isotopic disequilibrium method and the Laisk method. New                                                           |
| 8  | Phytologist <b>218</b> : 1371-1382                                                                                                                  |
| 9  | Griffin KL, Anderson OR, Gastrich MD, Lewis JD, Lin GH, Schuster W, Seemann JR, Tissue DT                                                           |
| 10 | Turnbull MH, Whitehead D (2001) Plant growth in elevated CO <sub>2</sub> alters mitochondrial number                                                |
| 11 | and chloroplast fine structure. Proceedings of the National Academy of Sciences of the United                                                       |
| 12 | States of America <b>98:</b> 2473-2478                                                                                                              |
| 13 | Griffin KL, Turnbull MH (2013) Light saturated RuBP oxygenation by Rubisco is a robust predictor of                                                 |
| 14 | light inhibition of respiration in Triticum aestivum L. Plant Biology 15: 769-775                                                                   |
| 15 | Gu LH, Sun Y (2014) Artefactual responses of mesophyll conductance to CO <sub>2</sub> and irradiance estimated                                      |
| 16 | with the variable $J$ and online isotope discrimination methods. Plant, Cell and Environment 37                                                     |
| 17 | 1231-1249                                                                                                                                           |
| 18 | Harley PC, Loreto F, Marco GD, Sharkey TD (1992) Theoretical Considerations when Estimating the                                                     |
| 19 | Mesophyll Conductance to $CO_2$ Flux by Analysis of the Response of Photosynthesis to $CO_2$                                                        |
| 20 | Plant Physiology <b>98:</b> 1429-1436                                                                                                               |
| 21 | Keenan TF, Migliavacca M, Papale D, Baldocchi D, Reichstein M, Torn M, Wutzler T (2019)                                                             |
| 22 | Widespread inhibition of daytime ecosystem respiration. Nature Ecology & Evolution 3: 407-415                                                       |
| 23 | Kok B (1949) On the interrelation of respiration and photosynthesis in green plants. Biochimica et                                                  |
| 24 | Biophysica Acta <b>3:</b> 625-631                                                                                                                   |
| 25 | <b>Laisk A</b> (1977) Kinetics of photosynthesis and photorespiration in $C_3$ plants. Moscow, Russia: Nauka                                        |
| 26 | Leakey AD, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO <sub>2</sub> effects                                            |
| 27 | on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of                                                         |
| 28 | Experimental Botany 60: 2859-2876                                                                                                                   |
| 29 | Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE                                                       |
| 30 | the future. Annu Rev Plant Biol <b>55:</b> 591-628                                                                                                  |
| 31 | Ma WT, Tcherkez G, Wang XM, Schaufele R, Schnyder H, Yang Y, Gong XY (2021) Accounting                                                              |
| 32 | for mesophyll conductance substantially improves <sup>13</sup> C-based estimates of intrinsic water-use                                             |
| 33 | efficiency. New Phytologist <b>229:</b> 1326-1338                                                                                                   |
| 34 | McGrath JM, Lobell DB (2013) Reduction of transpiration and altered nutrient allocation contribute to                                               |
| 35 | nutrient decline of crops grown in elevated $CO_2$ concentrations. Plant, Cell & Environment <b>36</b>                                              |
| 36 | 697-705                                                                                                                                             |
| 37 | Norby RG, DeLuciac EH, Gielend B, Calfapietrae C, Giardinaf CP, Kingg JS, Ledforda J                                                                |
| 38 | McCarthyh HR, Moorei DJP, Ceulemansd R (2005) Forest response to elevated CO <sub>2</sub> is                                                        |
| 39 | conserved across a broad range of productivity. Proceedings of the National Academy of                                                              |
| 40 | Sciences, USA <b>102</b> : 18052-18056                                                                                                              |
| 41 | <b>Pinelli P, Loreto F</b> (2003) <sup>12</sup> CO <sub>2</sub> emission from different metabolic pathways measured in illuminated                  |
| 42 | and darkened $C_3$ and $C_4$ leaves at low, atmospheric and elevated $CO_2$ concentration. Journal of                                               |
| 43 | Experimental Botany 54: 1761-1769                                                                                                                   |
| 44 | Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbo M, Brugnoli E (2009)                                                             |
| 45 | Estimating mesophyll conductance to $CO_2$ : methodology, potential errors, and recommendations                                                     |
| 46 | Journal of Experimental Botany <b>60:</b> 2217-2234                                                                                                 |
| 47 | Reich PB, Tjoelker MG, Pregitzer KS, Wright IJ, Oleksyn J, Machado J-L (2008) Scaling of                                                            |
| 48 | respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters 11: 793-                                                  |
| 49 | 801                                                                                                                                                 |
| 50 | Rogers A, Allen DJ, Davey PA, Morgan PB, Ainsworth EA, Bernacchi CJ, Cornic G, Dermody O                                                            |
| 51 | <b>Dohleman FG, Heaton EA, et al.</b> (2004) Leaf photosynthesis and carbohydrate dynamics of                                                       |
| -  | r = r                                                                                                                                               |

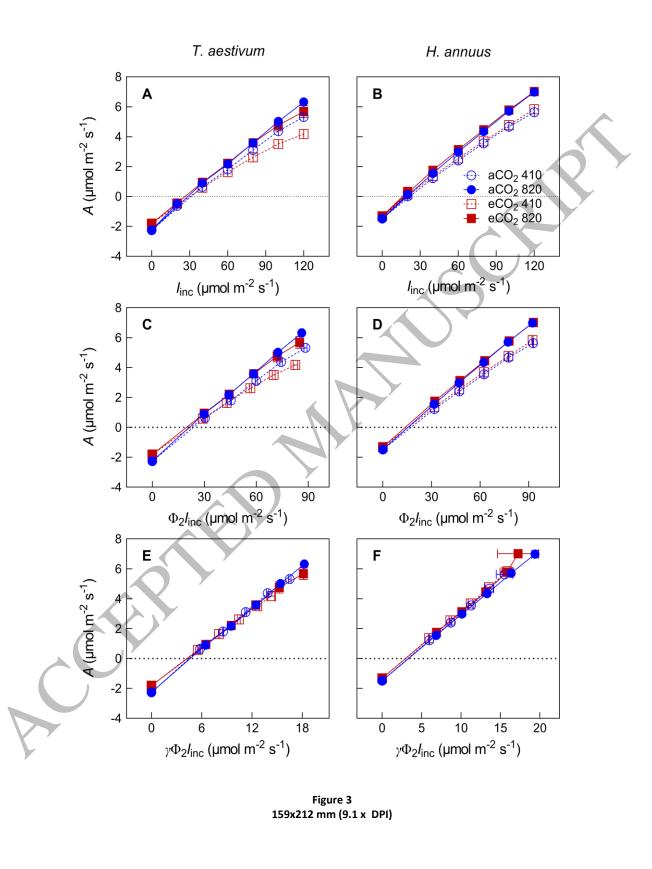
- soybeans grown throughout their life-cycle under Free-Air Carbon dioxide Enrichment. Plant Cell
   and Environment 27: 449-458
- Shapiro JB, Griffin KL, Lewis JD, Tissue DT (2004) Response of *Xanthium strumarium* leaf
   respiration in the light to elevated CO<sub>2</sub> concentration, nitrogen availability and temperature. New
   Phytologist 162: 377-386
- Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide
   response curves for C<sub>3</sub> leaves. Plant, Cell and Environment 30: 1035-1040
- 8 Sharp RE, Matthews MA, Boyer JS (1984) Kok Effect and the Quantum Yield of Photosynthesis. Plant
   9 Physiology 75: 95-101
- Silva-Perez V, Furbank RT, Condon AG, Evans JR (2017) Biochemical model of C<sub>3</sub> photosynthesis applied to wheat at different temperatures. Plant, Cell and Environment 40: 1552-1564
- Taub DR, Wang X (2008) Why are nitrogen concentrations in plant tissues lower under elevated CO<sub>2</sub>? A
   critical examination of the hypotheses. Journal of Integrative Plant Biology 50: 1365-1374
- Tcherkez G, Bligny R, Gout E, Mahé A, Hodges M, Cornic G (2008) Respiratory metabolism of
   illuminated leaves depends on CO<sub>2</sub> and O<sub>2</sub> conditions. Proceedings of the National Academy of
   Sciences, USA 105: 797-802
- Tcherkez G, Gauthier P, Buckley TN, Busch FA, Barbour MM, Bruhn D, Heskel MA, Gong XY,
   Crous KY, Griffin KL, et al. (2017a) Tracking the origins of the Kok effect, 70 years after its discovery. New Phytologist 214: 506-510
- Tcherkez G, Gauthier P, Buckley TN, Busch FA, Barbour MM, Bruhn D, Heskel MA, Gong XY,
   Crous KY, Griffin KL, et al. (2017b) Leaf day respiration: low CO<sub>2</sub> flux but high significance
   for metabolism and carbon balance. New Phytologist 216: 986-1001
- Tcherkez G, Mahe A, Guerard F, Boex-Fontvieille ER, Gout E, Lamothe M, Barbour MM, Bligny
   R (2012) Short-term effects of CO<sub>2</sub> and O<sub>2</sub> on citrate metabolism in illuminated leaves. Plant,
   Cell and Environment 35: 2208-2220
- Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K, Keeling RF, McMahon SM,
   Medlyn BE, Moore DJP, Norby RJ, et al. (2021) Integrating the evidence for a terrestrial
   carbon sink caused by increasing atmospheric CO<sub>2</sub>. New Phytologist 229: 2413-2445
- Wang XZ, Lewis JD, Tissue DT, Seemann JR, Griffin KL (2001) Effects of elevated atmospheric CO<sub>2</sub>
   concentration on leaf dark respiration of *Xanthium strumarium* in light and in darkness.
   Proceedings of the National Academy of Sciences, USA 98: 2479-2434
- Way DA, Aspinwall MJ, Drake JE, Crous KY, Campany CE, Ghannoum O, Tissue DT, Tjoelker
   MG (2019) Responses of respiration in the light to warming in field-grown trees: a comparison of
   the thermal sensitivity of the Kok and Laisk methods. New Phytologist 222: 132-143
- Wehr R, Munger JW, McManus JB, Nelson DD, Zahniser MS, Davidson EA, Wofsy SC, Saleska
   SR (2016) Seasonality of temperate forest photosynthesis and daytime respiration. Nature 534:
   680-683
- Wullschleger SD, Norby RJ, Love JC, Runck C (1997) Energetic costs of tissue construction in
   yellow-poplar and white oak trees exposed to long-term CO<sub>2</sub> enrichment. Annals of Botany 80:
   289-297
- Xiong D, Liu X, Liu L, Douthe C, Li Y, Peng S, Huang J (2015) Rapid responses of mesophyll
   conductance to changes of CO<sub>2</sub> concentration, temperature and irradiance are affected by N
   supplements in rice. Plant, Cell & Environment 38: 2541-2550
- Yin X, Belay DW, van der Putten PE, Struik PC (2014) Accounting for the decrease of photosystem
   photochemical efficiency with increasing irradiance to estimate quantum yield of leaf
   photosynthesis. Photosynth Research 122: 323-335
- 47 Yin X, Niu Y, van der Putten PEL, Struik PC (2020) The Kok effect revisited. New Phytologist 227:
   48 1764-1775
- Yin X, Struik PC, Romero P, Harbinson J, Evers JB, Van Der Putten PEL, Vos J (2009) Using
   combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of
   a biochemical C<sub>3</sub> photosynthesis model: a critical appraisal and a new integrated approach

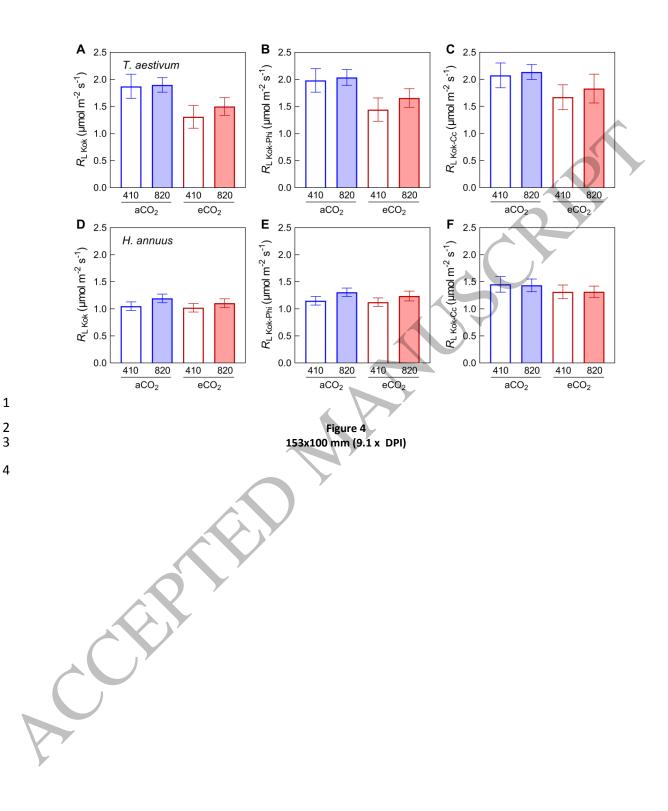
applied to leaves in a wheat (*Triticum aestivum*) canopy. Plant, Cell and Environment 32: 448 464

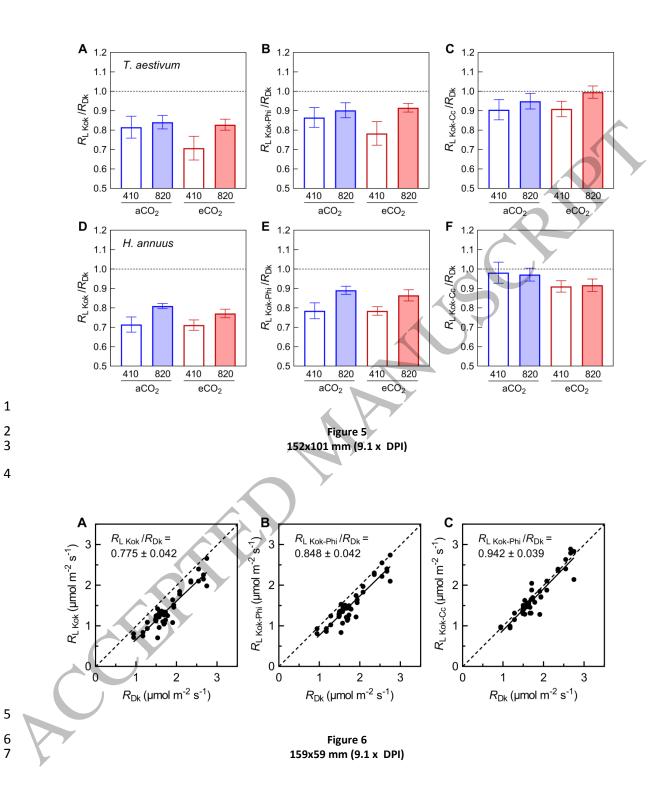

Yin X, Sun Z, Struik PC, Gu J (2011) Evaluating a new method to estimate the rate of leaf respiration
 in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements.
 Journal of Experimental Botany 62: 3489-3499

6


7


8


9




159x182 mm (9.1 x DPI)









Downloaded from https://academic.oup.com/plphys/advance-article/doi/10.1093/plphys/kiac582/6903613 by INRA AVIGNON user on 02 January 2023