Rumen microbial genomics: from cells to genes (and back to cells)
Milka Popova, Ibrahim Fakih, Evelyne Forano, Anne Siegel, Rafael Muñoz-Tamayo, Diego Morgavi

To cite this version:
Milka Popova, Ibrahim Fakih, Evelyne Forano, Anne Siegel, Rafael Muñoz-Tamayo, et al.. Rumen microbial genomics: from cells to genes (and back to cells). CAB Reviews Perspectives in Agriculture Veterinary Science Nutrition and Natural Resources, 2022, 2022, 10.1079/cabireviews202217025 . hal-03929845

HAL Id: hal-03929845
https://hal.inrae.fr/hal-03929845
Submitted on 12 Sep 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Rumen microbial genomics: from cells to genes (and back to cells)

Milka Popova1*, Ibraim Fakih2,3, Evelyne Forano2, Anne Siegel4, Rafael Muñoz-Tamayo3, Diego P. Morgavi1

1 Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
2 Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
3 Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 75005, Paris, France
4 Université Rennes, Inria, CNRS, IRISA, Dyliss team, Rennes, France

* Corresponding author milka.popova@inrae.fr

Abstract

The rumen harbours countless bacteria, archaea, ciliated protozoa, fungi, and viruses: various microorganisms that have established multiplicity of relationships to efficiently digest complex plant fibres and polysaccharides to produce volatile fatty acids (VFAs), microbial proteins, and vitamins, essentials for the host’s health, growth and performances. Recent studies using omics-based techniques have revealed that changes in rumen microbiota are associated with changes in ruminants’ production and health parameters such as feed efficiency, methane yield, milk composition and ruminal acidity. However, traditionally, rumen microbes were unveiled using anaerobic culture-based techniques, which are at the origin of most of the basic concepts and understanding of the rumen functioning. Isolating and culturing microbes is frequently more difficult, time-consuming and requires more training than molecular techniques, which explains why culture seems to be abandoned in favour of sequencing. Microbial cultures enable the study of substrate preferences and product output, essential growth requirements, biocide production, and susceptibilities; obtaining a pure culture also enables genome sequencing of these strains. We propose here, after a brief report of published rumen isolates, a comprehensive review of current advances in molecular methods to identify novel rumen microbes and discuss how culturing and mathematics could enhance our understanding of rumen microbiology.

Key words: ruminants, microbiota, pure cultures, modelling, genomics

Review methodology

This review is reported under the PRISMA 2020 guidelines for a systematic review. We conducted a comprehensive Web of Science search, using search terms "rumen" and "isolate" spanning the period 1945-2022 for an overview of
culture-based studies exploring rumen microbiota. Further, we searched academic databases (PubMed, Scopus, Web of Science) to identify articles reporting enhanced genomic and mathematic evaluation of rumen microbiota.

Introduction

Ruminant livestock systems make both positive and negative contributions to the development of sustainable agriculture. Ruminants convert roughages into high-quality proteins for human consumption while adding value to poor or erodable lands. At the same time, ruminant production is criticised for its negative impact on the environment and feeds that can be used for human consumption. Under the menace of climate change, ruminants face the challenges of feed scarcity, reduced productivity and increased health burden.

Ruminants have adapted their digestive systems to eat only plants, and they are most efficient to retrieve energy from the plant cell walls than monogastric herbivores. Their stomach has four separate compartments with a distinctive function, allowing them to digest without thoroughly chewing. The partially chewed plant material is further processed by microbes in the rumen section of the stomach. Microbes break down organic matter and ferment it to produce volatile fatty acids, the ruminants' primary energy source. Rumen microorganisms have a critical role in ruminant nutrition and health, but, on the downside, they generate methane – a potent greenhouse gas and contribute to ammonia emissions. Research in rumen microbiota started with the pioneering work of Robert Edward Hungate more than 50 years ago [1, 2]; the growing evidence of the importance of rumen microbes for sustainable livestock brought researchers to consolidate efforts in 2011 by forming The Rumen Microbial Genomics Network. The network serves as a global collaborative platform for researchers, employing microbial genomics methodologies to understand the rumen microbiome better to address global agricultural concerns. Several international projects underpin the network: Hungate 1000 [3, 4], Global Rumen Census [5], RuminOmics [6, 7], RumenPredict [8], MASTER, and HoloRuminant. These projects contributed to our enhanced comprehension of the rumen microbial ecosystem.

The rumen contains representatives of all domains of life: Bacteria, Archaea, Eucarya. Bacteria are the most abundant and diverse; however, a diverse range of protozoa can also be found. Anaerobic fungi are also widely distributed, and bacteriophages are integral to the microbiota. Archaea are the only group producing methane. Numerous reviews address the composition of rumen microbiota in different ruminant species and at different physiological stages [4, 6-12], with the main focus being on Bacteria and Archaea as of their implication in feed digestion and methane production. But scientists agree that gaps of knowledge remain. This review stresses the limited understanding of individual microbes, as specific species could be the key to improving the sustainability of ruminant production systems. We also discuss research challenges to improve rumen microbial understanding, including opportunities for developing enhanced predictive models of rumen metabolism.

Cultured rumen microbes
In 1959 [13] and later in 1964 [14], it was suggested that most of the functionally important bacterial groups had already been described. Rumen bacteria (and archaea — classified at the time within bacteria) were initially classified according to specific wall staining tests into Gram-negative or Gram-positive species and their ability to grow on certain substrates or produce specific metabolites. Hungate [15] proposed to divide them into cellulolytic, amylolytic, hemicellulolytic, saccharolytic, proteolytic, methanogenic, lipolytic, and bacteria that use the products formed by other microbes. This classification was recently brought back in the spotlight by the proposal of the functional group concept [16], dividing microorganisms into groups based on metabolic inputs and outputs and irrespective of the taxonomy. However, this implies that an in-depth knowledge of microbial physiology is accumulated. The time and effort required to isolate and identify pure rumen microbes in cultures preclude this technique as a tool for cataloguing the complex rumen microbiota; still, the culture of isolates alone or in defined mixtures remain essential for the understanding of critical mechanistic factors governing microbial functionning. Through the growth of pure cultures under conditions similar to those of the rumen, it is possible to infer information on the role of these strains in their complex natural environment. This information derived from pure culture alone or simplified combinations can be used to formulate a hypothesis to be tested in the diverse community of the rumen.

In this context, we conducted a systematic literature survey for microbial isolates from the rumen (Table1). The survey was performed in Web of Science (WoS) (accessed January 2022) with the search terms "rumen" and "isolate", spanning 1945-2022. We examined the resultant titles, abstracts, and full-text for relevance to the topic and extracted the relevant information from each study. However, the WoS search missed some important documents. Therefore, we reviewed the cited references in all relevant publications and journal articles not listed in WoS and extra references known to the authors. In addition, we included all ruminant animal species but excluded isolates from faecal contents.

Following the development of anaerobic techniques for the culture of strictly anaerobic bacteria in the 1950s [17], a renewed interest can be observed in the isolation of representative rumen microbes from the beginning of the 90s (Figure 1). Most of the studies included in the survey employed the classical "most probable number" [18] or the "roll-tube method" developed by R.E. Hungate [19]. In our survey, we counted more than 14 000 isolates. More than 80% of the articles and the large majority of the isolates were Bacteria (Figure 2), anaerobic fungi of the Neocallimastigomycota phylum were the second most reported (348 isolates). In addition, we enumerated 25 Archaea strains, 18 bacteriophages isolated from rumen contents and 15 protozoa.

The most frequently studied bacterial strains belong to the Firmicutes phylum, 22% of all isolates (15% were lactic acid bacteria characterised only by phenotypic screening), Fibrobacter far behind, represented 0.3%. The large majority, 65%, of the bacterial strains remained unclassified compared to only 0.4% of isolated fungi. This can be easily explained by the research strategy adopted in papers reporting many initial bacterial isolates. These pure strains were further screened for relevant phenotypic properties, as enhanced fibre degradation activity, detoxification potential (mainly tannins metabolism), fatty acids metabolism (mainly CLA-related), lactic acid
production or consumption or acetogenesis; from this initial screening, only the best performers were retained and
further characterised morphologically and taxonomically. Regrettfully, non-selected isolates have probably been lost,
and the selected strains’ fate is also uncertain. In addition, not all the isolated strains in “rumen” labs worldwide have
been mentioned in publications, and many strains may still reside in freezers. Nevertheless, such a large panel of
deeply characterised microbes constitutes an excellent point of departure for exploring fundamental microbial
interactions. To improve our understanding of cultured rumen microbes, in 2011, the Hungate1000 project was
launched. Coordinated and led by the RMG network, this initiative aimed at generating a reference set of 1000
microbial genomes cultivated from various ruminant host species [3, 4]. At that time, only 14 bacteria and one
methanogen from the rumen had their genomes sequenced. The project so far has produced more than 500
sequenced genomes, constituting the Hungate genome catalogue [3] (480 are bacterial, 21 are Archaea and 7
Viruses). Additionally, 221 cultured genomes were produced within independent studies [12].

As for the identified isolates, the Hungate1000 database is dominated by bacteria from the Firmicutes
phylum, while Bacteroidetes members are under-represented (Figure 3) [3]. Additionally, there is only one
Fibrobacteres-related strain, *Fibrobacter succinogenes* HM2, while in our survey, we numbered more than 50 strains
isolated from bovine or sheep rumen, 38 of them having already their genomes sequenced [20]. *F. succinogenes* is a
remarkably proficient fibre degrading bacterium whose enzymatic system has been extensively studied [20-24]. *F.
succinogenes* S85 has been shown as an excellent model for exploring the species’ fibrolytic traits, as the strain has
preserved its enzymatic characteristics compared to numerous phylogenetically close isolates [23]. In a comparative
pure culture assay, *F. succinogenes* strains S85 and A3C digested more cellulose than the other two prominent
rumen cellulolytic bacteria: *Ruminococcus albus* and *R. flavefaciens* [25]. Furthermore, a recent in vivo work
showed that *F. succinogenes* S85 was outcompeted by *Ruminococcus* strains in gnotobiotic model lambs [26].

However, the authors noticed a significant decrease in *F. succinogenes* numbers and transcriptional activity using
classical microbiological tools and high throughput sequencing techniques and highlighted different enzymatic
strategies for cellulose degradation. This work was built on previously whole sequenced genomes and the
characterisation, using pure cultures, of genes essential to fibre digestion. Therefore, it remains decidedly clear that
the pure culture approach generates valuable data for precise phylogenetic and phenotypic characterisation of rumen
microbes and for exploring microbial interaction in fully-controlled conditions.

The Hungate collection is far from complete [3]. However, in a comparative study based on the 16S rRNA
gene sequences, the authors estimated that the Hungate dataset covered 75% of the microbial genera retrieved in the
rumen [3]. This is a pretty good achievement regarding that the estimated percentage of rumen prokaryotes that can
be cultured is only 40% [27]. Despite that, Zehavi et al. noticed that less than 4% of their isolates were represented
in the Hungate collection in their considerable isolation effort. In this regard, pursuing the isolation of rumen
microbes for enriching culture collections is a challenge in the domain. Culture collections are critical for the
conservation and long term utilisation of biological resources; they also support research by supplying biological
material. High throughput culturomics approaches could help isolate new bacteria belonging to the rare biosphere or
poorly represented taxa [27].
Metaxonomics of rumen microbes

Amplicon sequencing of the 16S rRNA gene is the most widely used approach to study rumen microbiota. However, scientists employed various primers (targeting variable regions V1, V3, V4, V5) and assigned taxonomy using various databases (GreenGenes, Ribosomal Database Project (RDP), SILVA), and various pipelines (mothur, QIIME, DADA2 …). In 2018, Denman et al. reviewed the limitations of these techniques, from the primer selection through the sequencing error removal and the OTU-clustering step to the accuracy of the databases for taxonomic affiliation. They argued that some of the weaknesses could be explained by the incorrect use of bioinformatics tools. Redoubling our efforts with a more precise application of these technologies will result in a complete and deep understanding of rumen microbes’ compositional and functional capability [28]. The response was not long in coming, as since several research groups undertook the assessment of protocols for sample processing [29] and data analysis [30, 31]. Establishing standard operating procedures for analysing rumen microbiota is also embedded in collaborative projects such as RumenPredict, MASTER, HoloRuminant. A guide for database choice in rumen amplicon studies [31] employed a rumen-specific reference standard to compare 16S rRNA database classifications. This rumen reference standard comprised 16 bacterial and archaeal full-length 16S rRNA and 9 protozoal 18S rRNA, and libraries were prepared following a previously described sample preparation guide [29] with primers targeting the V4 region [32]. Taxonomic classification was performed against RDP (version 11.5), the Genome Taxonomy Database (GTDB; release date 20/11/2018), SILVA (version 132) and RefSeq + RDP (release date 14/05/2018); the latter two giving the more accurate classification at the genus level.

Meanwhile, amplicon sequencing enriched our knowledge of rumen microbial diversity. A meta-analysis of curated 16S rRNA gene sequences showed that Firmicutes, Bacteroidetes and Proteobacteria are the dominant phyla (93% of all sequences) out of 19 detected [33]. For Archaea, the Methanobacteria were the most abundant. The Rumen Microbial Census network conducted an extensive investigation of the rumen microbial community (742 samples from 32 ruminant species from 35 countries) to identify the core microbiota and elucidate variations in the rumen microbiome linked to ruminant species, diet, and geographical location [5]. This large scale survey confirmed the crucial role of the diet in shaping rumen microbial profile, undoubtedly explained by the amount, physical and chemical nature of feeds supplied.

On the other hand, the diet did not affect the methanogens population, with Methanobrevibacter gottschalkii and Methanobrevibacter ruminantium nearly ubiquitous and representing 74% of the archael sequences [5]. This complies with the ecological niche that methanogens occupy in the rumen as they use fermentation end products from other microbial species as an energy source. Reports on fungal and protozoal metataxonomy are more occasional. Neocallimastigomycota actively take part in the plant biomass degradation ingested by the host animal and their divergence time concorded with the shift of ancestral mammals from primarily insectivory to herbivory [34]. Morphological features and complex life cycle have entangle taxonomic classification of anaerobic fungi, but the use of marker genes made this task easier [35]. Kittelmann et al. [36, 37] used the internal transcribed spacer (ITS1) as a taxonomic marker for describing the fungal community in New Zealand ruminants. Neocallimastix, Piromyces and Orpinomyces accounted for 60% of the detected genera, 24% belonging
to novel clades. However, they highlighted that inter-animal variations are as high as 88%, pointing to the strong effect of the host and the diet. The high variations in ITS1 size and sequence questioned its accuracy [38, 39]; the potential of the large 28S rRNA subunit as a phylogenetic marker has also been explored [40].

Microbial profiling using the 16S rRNA amplicon approach provided valuable insights into the rumen ecosystem composition and its relationship with diet, feed efficiency, enteric methane emissions, milk quality, acidosis or its establishment in early life [6-8, 10, 28, 41-43]. A significant step forward in understanding the influence of microbial community structure on animal phenotype was achieved by identifying ruminotypes associated with methane emissions. Three independent studies, one in sheep [44] and two in dairy cattle [45, 46], established the link between high-methane production and species belonging to Ruminococcaceae, Christensenellaceae and Lachnospiraceae. At the same time, low methane emissions ruminotype had higher relative abundances of succinate producing bacteria [44-46]. More specifically, Ramayo-Caldas et al. highlighted that an OTU classified as Succinivibrionaceae_UCG-001 was only present in low emitting cows. In another study, the same OTU increased in abundance after calving, and authors linked it to the observed enhanced fermentations [47]. The abundance of Succinivibrionaceae-family was also positively associated with propionate concentrations, feed efficiency [48] and milk protein [49]. Furthermore, strong positive and negative interactions at the transcripional level were reported between Succinivibrionaceae and other major bacterial and archaeal taxa from the rumen [50]. All of the above studies support the idea that Succinivibrionaceae members play an essential role in the rumen due to their ecological and metabolic functions. However, the Hungate genome catalogue has only two strains from the Succinivibrionaceae family (Ruminobacter amylophilus and Ruminobacter sp. RM87), and in our survey of cultured isolates, we found only one old article reporting the isolation of 7 Succinivibrio strains [51]. The need arises to isolate more representatives of this taxon. The road is almost paved, as using binned metagenomic data and metabolic predictions, Pope et al. in 2011 designed a defined medium for the for the culture of a Succinivibrionaceae sp. that until then could not be grown axenically in the laboratory [52].

Rumen Uncultured Genomes

The amplicon sequencing approach requires prior knowledge for the design of primers and taxonomic affiliation, but accumulated data in this field made it a highly discerning tool for the phylogenetic description of microbial environmental samples [53]. Nevertheless, functional diversity cannot be directly predicted from phylogenetic diversity in microbial communities. Arguably, the emergence and expansion of metagenomics have been one of the most impressive achievements in microbial ecology during the last decade. Metagenomics refers to the study of genomic material found in environmental samples and offers access to the functional gene content of microbial communities, providing a considerably more comprehensive description than metataxonomics. A significant breakthrough of metagenomics is building metagenomic assembled genomes (MAGs). In this approach, sequences are assembled into scaffolds, which are subsequently categorised into potential MAGs based on tetranucleotide frequencies, abundances, related marker genes, taxonomic alignments, and codon use [54]. In doing so, we can identify novel species and get an insight into their contribution to microbial ecosystem dynamics.
Since 2011 with the first report of 446 rumen genome bins (and 15 draft genomes) [55], thousands of novel MAGs were announced (251 by Parks et al. [56], 99 by Svartstrom et al. [57], 79 by Solden et al. [58], 5845 by Stewart et al. [59, 60], 324 by Li et al. [61], 1200 by Wilkinson et al. [62], 391 by Glendinning et al. [63], 2809 by Anderson & Fernando [64], 4960 in buffalos by Tong et al. [65], 719 by Peng et al. [66], 10373 by Xie et al. [12] around the whole gastrointestinal tract and the list is not exhaustive). Close to 34 000 rumen MAGs were retrieved from ten publicly available datasets [67]; 63% were seen in only one of the datasets, and no MAG was common in all datasets. In this work, the author stressed the need to have standardized procedures for MAGs and corresponding metadata description and a common repository for sharing data. This is a sensible comment which complies with the collaborative efforts of the Hungate1000 project and the SOP for metataxonomic analysis for standardized databases and tools for ruminants gut microbiota analysis.

In some of the studies mentioned above, authors mapped the retrieved MAGs to the Hungate1000 genome database. Li et al. [61] reported a mapping rate of 5.4% (similarity ≥ 95%); 3% of the MAGs from Stewart et al. [60] had ≥ 95% protein identity with Hungate genomes, and this figure increased to 5.4% for similarity rates ≥90%; 3.5% of the MAGs from Anderson & Fernando [64] had a similarity rate ≥95% with genomes from the Hungate1000 database. Only eighteen from the 719 high-quality MAGs in Peng et al. [66] were classified as eukaryotes and identified to belong to the fungal subphylum Neocallimastigomycota. Anyway, though this was the first report of rumen fungal MAGs, the authors underlined that these MAGs are only 73% complete. Indeed, it is particularly challenging to reconstruct eukaryotic genomes because of their size (>10 Mbp) and the presence of frequent repeat region with high GC content. Zehavi et al. [27] accentuated that sequencing approaches (metataxonomics was used in their study) target mainly abundant microbes. In contrast, culture can recover abundant and rare microbes, as the ability to culture a microbe does on intrinsic characteristics and not on their abundance [68]. Though this could partially explain the low coverage of the Hungate database by MAGs, the question of whether these are real microbial species remains. In human faecal samples, MAGs recovered only 77% of the core genes (shared by more than 90% of the present microbial species) and 50% of the variable genes (presents in more than 10%, but less than 90% of the population members) [69]. Moreover, human gut MAGs were shown to be systematically depleted for genes encoding essential functions supporting life [70]. MAGs produced from short-read metagenomic datasets do seldom contain 16S genes. The use of long reads sequencing platforms will bridge the gap between MAGs and cultured species, also with metataxonomics and function. Notwithstanding, to confirm the real biological existence of MAGs, returning to culturing seems necessary. This was already done with the Succinivibrionaceae isolate of the wallaby [52], where the genome reconstruction allowed designing appropriate culture media. Genomic analysis is particularly good at identifying genes and determining the functional relationships between microbes. For validating phenotypic predictions based on genetic data, detecting novel microbes, and investigating microbial interactions with precision, culture-based approaches are still required.

An alternative strategy to offset culture limitation is to isolate individual cells from fresh rumen contents as this was recently done for rumen ciliates [71]. Cells were selected based on morphological traits using electron microscope and subjected to whole genome sequencing using multiple displacement amplification or whole transcriptome
amplification. The analysis yielded 52 high quality ciliate genomes and allowed the classification of 22
morphospecies in 13 genera and the of a new family Dasytrichidae [71].

Integrating culture-based approaches into the next generation models of the rumen microbiome

Rumen modelling started in the 70s with empirical and mechanistic developments [72]. Mechanistic rumen models have been consolidated in four modelling structures, namely Molly [73], CNCPS [74], COWPOLL [75] and Karoline [76], which have been incrementally improved over the years. However, the accuracy power to predict the rumen fermentation profile can still be ameliorated [77] by including improvements on physiological components (e.g., VFA absorption) [78], on rumen microbiota representation [79, 80], and the incorporation of thermodynamic, regulation and inhibition factors [81-85].

Kinetic modelling approaches are traditionally used for modelling microbial ecosystems. They are derived from mass-balance principles and have two sets of components: the first defining the mathematical functions representing the kinetic rates of substrate utilization and product formation, and the second containing the parameters that represent the stoichiometry of the reactions. Thus, incorporating data from pure-culture growth experiments in kinetic models detect key parameters, such as the maximal growth rate and the substrate affinity constants, and give insights on ecological properties such as microbial coexistence and exclusion. For example, in work with rumen methanogens, a kinetic modelling approach quantified the metabolic and energetic differences between three species, but the kinetic parameters alone did not explain microbial coexistence. Indeed, adhesion properties played a role in the ecology of methanogens in the rumen [86]. Current rumen fermentation models are in the category of kinetic models. In these models, the rumen microbiota is represented by macroscopic functional groups derived from the study of the main reactions documented in the rumen literature. This representation is then subjected to the modeller's choice and does not integrate data on microbial genomic knowledge.

Alternatively, genome-scale metabolic models (GEMs) allow the integration of microbial genomic information. The core of a GEM of a microorganism is a graph that links the metabolites and biochemical reactions that the organism can perform based on its genetic potential. This graph translates into a stoichiometry matrix of the metabolism. The stoichiometry matrix results from a metabolic reconstruction based on annotation, orthology, gap-filling, and manual curation [87] of the sequenced genome based on a large set of databases and toolboxes (KEGG [88], MetaCyc [89], BiGG [90], Pathway Tools [91], CarveMe [92], KBase [93] and AuReMe [94]). While models of the human gut microbiota already incorporate microbial genomic knowledge [95], genome-scale modelling of the rumen microbiota is at an infant stage [96, 97]. Recently, the GEM approach was used to investigate the interactions between dominant rumen microbial species and their associated phages. Individual GEMs of *Ruminococcus flavefaciens*, *Prevotella ruminicola*, and *M. gottschalkii* were constructed and integrated into a community model using multi-level mathematical frameworks [97]. The model predicted previously unknown interactions among the community members and the complementing role of viral genes in these interactions. In addition, the GEM of a
rumen bacterium involved in lactate metabolism, *Megasphaera elsdenii*, highlighted the high number of metabolic pathways for the production of VFAs [98, 99]. GEMS are often large networks with thousand metabolites and reactions. For example, our preliminary reconstruction study on *F. succinogenes* S85 (Fakhī et al. 2021) resulted in a network with 1567 metabolic reactions and 1588 metabolites.

The next generation of rumen models should build on straightened microbial knowledge, but the systemic understanding of microbial interactions and ruminal fermentation is still lacking. Therefore, *in vitro* culture systems (batch and continuous) are valuable tools to study rumen metabolism, despite their limitations to mimic the rumen ecosystem fully. These mini-consortia are suited for constructing tractable mathematical models with identifiable properties (see, e.g., [101] for a discussion on parameter identifiability). For studying the rumen ecosystem, mini-consortia can be built by selecting microbial species covering the major rumen metabolic cascades [3, 16]. Species selection can be performed from microbial expert knowledge or synthetic ecology approaches targeting specific metabolic functions or microbial interactions [102, 103].

Moreover, species selection can be performed using Metage2Metabo (M2M) [96]. M2M identifies mini-consortia by reconstructing draft GEMs of all members of a microbial community, followed by the identification of the individual and community metabolic potentials, the determination of the cooperation potential (set of metabolites whose production only occur via microbial cooperation), and finally, outputs minimal communities and identifies key species. The originality of M2M is its capability for handling hundreds of genomes and MAGs. M2M was applied to 913 rumen MAGs of the cow rumen [59] and highlighted 127 key species, consisting of 20 essential symbionts and 107 alternative ones [96].

The construction of metabolic networks of key rumen species is an excellent resource for studying the rumen microbial ecosystem via constraint-based reconstruction and analysis (COBRA) methods. COBRA approaches overcome the need to define kinetic rates and their parameters by assuming that internal metabolism operates at steady-state conditions. Genome information and COBRA methods provide analytical tools for (1) assisting the design of cultivation media allowing the study of uncultured gut bacteria [52], (2) designing strategies targeting the inhibition of methanogens in genome-sequenced rumen microbes such as *M. ruminantium* [104], (3) selecting probiotics to enhance rumen function and (4) enhancing our understanding on the robustness of the rumen ecosystem linked to its resilience and functional redundancy [105].

Modelling the rumen microbial ecosystem shares similar challenges to those discussed by [95] and [103] to model human gut microbiota. GEMS are often large networks with thousand metabolites and reactions. Model reductions are needed to construct dynamic parsimonious metabolic models of key rumen microbes within mini-consortia. Individual GEMs can be reduced using dedicated algorithms [106, 107] and exploit transcriptomic data to select active pathways. Reduced GEMs can be further decomposed into their elementary flux modes (EFMs) [108] to derive macroscopic reactions of the rumen fermentation, as it has been in studies on microalgae and yeast metabolism [109, 110]. Rumen modelling can then capitalize on the advances done in other ecosystems (e.g., human...
gut, engineering reactors). Finally, interdisciplinary research is paramount to get the most out of metabolic models and culture systems, implying rumen microbiologists, computational biologists, and mathematical modellers.

Conclusion

Advances in next-generation sequencing technologies coupled with sophisticated metagenomics and phylogenetic methodologies have radically altered our perceptions of microbial diversity. However, our inability to cultivate representatives for many newly identified lineages contrasts with the rapid expansion of genomic data, which has led to a better knowledge of archaeal and bacterial diversity and metabolic requirements. As a result, most of what we now know about rumen microbes comes from a small number of well-studied cultured lineages or reconstructed genomes from uncultured lineages. Even though this period of rapid genome-driven discovery has yielded numerous critical new insights into rumen microbial life, it is critical to isolate and culture species from these uncultured lineages to test genome-based predictions about their cell biology and physiology to comprehend their ecological roles fully.

Acknowledgements

Ibrahim Fakih was the recipient of an INRAE-Lallemand PhD fellowship. The INRAE part of the fellowship was supported by the INRAE metaprogramme Holoflux.

References

100. Fakih I, Got J, Siegel A, Forano E, Muñoz-Tamayo R. Genome-scale network reconstruction of the predominant cellulolytic rumen bacterium Fibrobacter succinogenes S85. 2021 - 12th International Symposium on Gut Microbiology; 2021-10-13; Virtual, France2021.

Table 1 Studies found in Web of Science with research terms “rumen” and isolates, spanning the period 1947-2022, reporting at least one new microbial isolate characterized phenotypically or phylogenetically.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Article title</th>
<th>Source Title</th>
<th>ISSN</th>
<th>Publication Year</th>
<th>DOI</th>
<th>Date of Export</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryant, MP; Doetsch, RN</td>
<td>A Study of Actively Cellulolytic Rod-Shaped Bacteria of the Bovine Rumen CHARACTERS OF ORGANISMS ISOLATED FROM THE RUMEN OF COWS FED HIGH AND LOW ROUGHAGE RATIONS</td>
<td>J DAIRY SCI</td>
<td>0022</td>
<td>-</td>
<td>-</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Bauman, HE; Foster, EM</td>
<td>The characteristics of strains of selenomonas isolated from bovine rumen contents</td>
<td>J BACTERIOL</td>
<td>9193</td>
<td>1956</td>
<td>10.1128/IB.71.3.333-338.1956</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Bryant, MP; Small, N</td>
<td>Nutrition of lactic acid bacteria isolated from the rumen</td>
<td>J GEN MICROBIOL</td>
<td>1287</td>
<td>1958</td>
<td>10.1099/00221287-18-1-273</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Ford, JE; Perry, KD; Briggs, CAE</td>
<td>The proteolytic system of a gram negative rod isolated from the bovine rumen Degradation and utilization of isolated hemicellulose BY pure cultures of cellulolytic rumen bacteria</td>
<td>J GEN MICROBIOL</td>
<td>1287</td>
<td>1958</td>
<td>10.1128/AEM.1.36-39.1958</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Hunt, WG; Moore, RO</td>
<td>Characterization of several bovine rumen bacteria isolated with a xylan medium</td>
<td>J BACTERIOL</td>
<td>9193</td>
<td>1966</td>
<td>10.1128/IB.91.5.1724-1729.1966</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Journal</td>
<td>Year</td>
<td>DOI</td>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>-----------------------</td>
<td>------</td>
<td>----------------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Sharpe, ME; Latham, MJ; Garvie, EI; Zirngibl, J; Kandler, O</td>
<td>2 new species of lactobacillus isolated from bovine rumen, lactobacillus-ruminis SP-nov and lactobacillus-vitulinus SP-nov</td>
<td>J GEN MICROBIOL</td>
<td>1973</td>
<td>10.1099/00221287-77-1-37</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Coleman, GS; Laurie, JI</td>
<td>Metabolism of starch, glucose, amino-acids, purines, pyrimidines and bacteria BY 3 epidinium spp isolated from rumen</td>
<td>J GEN MICROBIOL</td>
<td>1974</td>
<td>10.1099/00221287-85-2-244</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Huisingh, J; Mcneill, JJ; Matrone, G</td>
<td>Sulfate reduction BY a desulfovibrio-species isolated from sheep rumen Hydrogenation of unsaturated fatty-acids BY 5 bacterial isolates from sheep rumen, including a new species</td>
<td>APPL MICROBIOL</td>
<td>1974</td>
<td>10.1128/AEM.28.3.489-497.1974</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Kemp, P; White, RW; Lander, DJ</td>
<td>Cultivation of cellulolytic protozoa isolated from rumen Effect of carbon-dioxide and oxygen on growth of orange-colored streptococcus-bovis isolated from bovine rumen</td>
<td>J GEN MICROBIOL</td>
<td>1975</td>
<td>10.1099/00221287-90-1-100</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Coleman, GS; Laurie, JI; Bailey, JE; Holdgate, SA</td>
<td>Hydrogenation of unsaturated fatty-acids BY 5 bacterial isolates from sheep rumen, including a new species</td>
<td>J GEN MICROBIOL</td>
<td>1976</td>
<td>10.1099/00221287-95-1-144</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Hayashi, T; Kitahara, K</td>
<td>Biological characteristics of streptococcus-bovis bacteriophages isolated from lysogenic cultures and sheep rumen</td>
<td>J GEN APPL MICROBIOL</td>
<td>1976</td>
<td>10.2323/jgam.22.301</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Tarakanov, BV</td>
<td>Factors affecting uptake and metabolism of soluble carbohydrates BY rumen ciliate dasytricha-ruminantium isolated from ovine rumen contents BY filtration</td>
<td>MICROBIOLOGY</td>
<td>1976</td>
<td>10.1099/00221287-96-1-125</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Williams, AG; Harfoot, CG</td>
<td>Technique for fractionation of bacteria in rumen microbial ecosystem .2. Attachment of bacteria isolated from bovine rumen to cellulose powder invitro and elution of bacteria attached theerfrom Characteristics of a lipolytic and fatty acid requiring butyrivibrio SP isolated from the ovine rumen</td>
<td>J GEN APPL MICROBIOL</td>
<td>1978</td>
<td>10.2323/jgam.24.1</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Minato, H; Suto, T</td>
<td>Technique for fractionation of bacteria in rumen microbial ecosystem .3 . Attachment of bacteria isolated from bovine rumen to starch granules invitro and elution of bacteria attached therefrom Effect of l-alpha-amino-normal-butyric acid on growth and production of extracellular isoleucine and valine BY eubacterium-ruminantium and a related rumen isolate</td>
<td>CAN J MICROBIOL</td>
<td>1979</td>
<td>10.1139/m79-218</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Journal</td>
<td>Volume</td>
<td>Year</td>
<td>DOI</td>
<td>Date</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>------------------------------</td>
<td>--------</td>
<td>------</td>
<td>----------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Cheng, And S H Garrow</td>
<td>Bacteroides succinogenes from the rumen of a cow. Bacillus spp in the rumen ecosystem - hemicellulose depolymerases and glycoside hydrolases of bacillus spp and rumen isolates grown under anaerobic conditions</td>
<td>APPL ENVIRON MICROB</td>
<td>-</td>
<td>1981</td>
<td>-</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Miller, TL; Wolin, MJ; Hongxue, Z; Bryant, MP</td>
<td>Characteristics of strictly anaerobic fungi isolated from the rumen of sheep - preliminary data</td>
<td>REPROD NUTR DEV</td>
<td>5287</td>
<td>1987</td>
<td>10.1051/rnd:19870229</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Fonty, G; Breton, A; Fevre, M; Citron, A; Hebraud, M; Gouet, P</td>
<td>Characteristics of isolates of lactobacillus-fermentum from the rumen of sheep</td>
<td>LETT APPL MICROBIOL</td>
<td>8254</td>
<td>1988</td>
<td>10.1111/j.1472-765X.1988.tb01232.x</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Biavati, B; Mattarelli, P</td>
<td>Anaerobic cellulolytic fungi from cattle rumen Bifidobacterium-ruminantium SP-nov and bifidobacterium-mercyicum SP-nov from the rumens of cattle Characteristics of a rumen clostridium capable of degrading mimosine, 3(oh)-4-(1h)-pyridone and 2,3-dihydroxyypyridine</td>
<td>MICROBIOLOGY</td>
<td>2617</td>
<td>1990</td>
<td>-</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Dominguezbello, MG; Stewart, CS</td>
<td>Identification of isolated gram cellulolytic bacillus in the rumen of cows consuming silage Identification of gram + cellulolytic coccus strains isolated from the rumen of cows consuming poor quality silage Morphology of 3 polycentric rumen fungi and description of a procedure for the induction of zoosporogenesis and release of zoospores in cultures</td>
<td>CUBAN J AGR SCI</td>
<td>0022</td>
<td>1991</td>
<td>-</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Ho, YW; Bauchop, T</td>
<td>Phage resistance and altered growth habit in a strain of streptococcus-bovis</td>
<td>J GEN MICROBIOL</td>
<td>1287</td>
<td>1991</td>
<td>10.1099/00221287-137-1-213</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Klieve, AV; Bauchop, T</td>
<td>Description of 2 anaerobic fungal strains from the bovine rumen and influence of diet on the fungal population invivo</td>
<td>FEMS MICROBIOL LETT</td>
<td>1097</td>
<td>1991</td>
<td>-</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Kostyukovsky, VA; Okunev, ON; Tarakanov, BV</td>
<td>Invitro stress selection of nematophagous fungi for biocontrol of parasitic nematodes in ruminants</td>
<td>J GEN MICROBIOL</td>
<td>1287</td>
<td>1991</td>
<td>10.1099/00221287-137-7-1759</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Kostyukovskii, VA; Okunev, ON; Tarakanov, BV</td>
<td>Identification of strictly anaerobic fungi isolated from the rumen of sheep - preliminary data</td>
<td>INT J SYST BACTERIOL</td>
<td>7713</td>
<td>1991</td>
<td>10.1099/00207713-41-1-163</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Kostyukovsky, VA; Okunev, ON; Tarakanov, BV</td>
<td>Anaerobic cellulolytic fungi from cattle rumen Bifidobacterium-ruminantium SP-nov and bifidobacterium-mercyicum SP-nov from the rumens of cattle Characteristics of a rumen clostridium capable of degrading mimosine, 3(oh)-4-(1h)-pyridone and 2,3-dihydroxyypyridine</td>
<td>MICROBIOLOGY</td>
<td>2617</td>
<td>1990</td>
<td>-</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Biavati, B; Mattarelli, P</td>
<td>Characteristics of a rumen clostridium capable of degrading mimosine, 3(oh)-4-(1h)-pyridone and 2,3-dihydroxyypyridine</td>
<td>SYST APPL MICROBIOL</td>
<td>2020</td>
<td>1991</td>
<td>10.1016/S0723-2020(11)80363-2</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Galindo, J; Elias, A; Menchaca, MA; Piedra, R</td>
<td>Morphology of 3 polycentric rumen fungi and description of a procedure for the induction of zoosporogenesis and release of zoospores in cultures</td>
<td>CUBAN J AGR SCI</td>
<td>0022</td>
<td>1991</td>
<td>-</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Galindo, J; Elias, A; Piedra, R; Cordero, J; Menchaca, M; Riveri, Z; Boucourt, R; Elizarde, S</td>
<td>Identification of gram cellulolytic bacillus in the rumen of cows consuming silage Identification of gram + cellulolytic coccus strains isolated from the rumen of cows consuming poor quality silage Morphology of 3 polycentric rumen fungi and description of a procedure for the induction of zoosporogenesis and release of zoospores in cultures</td>
<td>CUBAN J AGR SCI</td>
<td>0022</td>
<td>1991</td>
<td>-</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Ho, YW; Bauchop, T</td>
<td>Phage resistance and altered growth habit in a strain of streptococcus-bovis</td>
<td>J GEN MICROBIOL</td>
<td>1287</td>
<td>1991</td>
<td>10.1099/00221287-137-1-213</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Klieve, AV; Bauchop, T</td>
<td>Description of 2 anaerobic fungal strains from the bovine rumen and influence of diet on the fungal population invivo</td>
<td>FEMS MICROBIOL LETT</td>
<td>1097</td>
<td>1991</td>
<td>-</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Kostyukovsky, VA; Okunev, ON; Tarakanov, BV</td>
<td>Invitro stress selection of nematophagous fungi for biocontrol of parasitic nematodes in ruminants</td>
<td>J GEN MICROBIOL</td>
<td>1287</td>
<td>1991</td>
<td>10.1099/00221287-137-7-1759</td>
<td>3/1/22</td>
</tr>
</tbody>
</table>
Mukhopadhyay, B; Purwantini, E; Demacario, E; Daniels, L
Characterization of a methanosarcina strain isolated from goat feces, and that grows on h2-co2 only after adaptation
CURR MICROBIOL 8651-0343 1991 10.1007/BF02091977 3/1/2022

Ning, Z; Attwood, GT; Lockington, RA; Brooker, JD
Genetic diversity in ruminal isolates of selenomonas-ruminantium
CURR MICROBIOL 8651-0021 1991 10.1007/BF02091955 3/1/2022

Stevani, J; Grivet, JP; Hannequart, G; Durand, M
Preliminary-observations of interaction between bacteriophages and streptococcus-bovis bacteria on ruminal epithelium

Styriak, I; Galfi, P; Kmet, V
Preliminary-observations of interaction between bacteriophages and streptococcus-bovis bacteria on ruminal epithelium
VET MICROBIOL 1135-0022 1991 10.1016/0378-1135(91)90135-3 3/1/2022

Teunissen, MJ; Dencamp, Hjmo; Orpin, CG; Veld, Jhjhi; Vogels, GD
Comparison of growth-characteristics of anaerobic fungi isolated from ruminant and non-ruminant herbivores during cultivation in a defined medium
J GEN MICROBIOL 1287-0008 1991 10.1099/00221287-137-6-1401 3/1/2022

Wubah, D; Fuller, MS; Akin, DE
Isolation of monocentric and polycentric fungi from the rumen and feces of cows in georgia
CAN J BOT 4026-0266 1991 10.1139/b91-159 3/1/2022
Tabassum, R; Rajoka, MI; Malik, KA
Use of chemostat for enhanced production of beta-glucosidase BY newly isolated anaerobic cellulolytic clostridium strain rt9
APPL BIOCHEM BIOTECH 0273 - 1992 10.1007/BF02920555 3/1/2022

Wachenheim, DE; Patterson, JA
Anaerobic production of extracellular polysaccharide BY butyryvibrio-fibrisolvens nyx

Ziolecki, A; Guczynska, W; Wojciechowicz, M
Some rumen bacteria degrading fructan

Fujimoto, K; Kimoto, H; Shishikura, M; Endo, Y; Ogimoto, K
Biohydrogenation of linoleic acid BY anaerobic bacteria isolated from rumen
BIOSCI BIOTECH BIOCH 8451 1121 - 1993 10.1271/bbb.57.1026 3/1/2022

Laukova, A
The properties of adherent staphylococci isolated from the rumen wall of lambs
VET MED-CZECH 8427 0266 - 1993 3/1/2022

Laukova, A; Marekova, M; Javorsky, P
Detection and antimicrobial spectrum of a bacteriocin-like substance produced BY enterococcus-faecium ccm4231

Brooker, JD; Odonovan, LA; Skene, I; Clarke, K; Blackall, L; Muslera, P
Streptococcus-caprinus SP-nov, a tannin-resistant ruminal bacterium from feral goats

Laukova, A
Antimicrobial susceptibility of ruminal coagulase-negative staphylococci
MICROBIOLOGICA 7138 0971 - 1994 3/1/2022

Laukova, A
Identification of ruminal enterococcal and streptococcal flora of sheep

Attwood, GT; Reilly, K
Identification of proteolytic rumen bacteria isolated from new-zealand cattle

Cummings, BA; Caldwell, DR; Gould, DH; Hamar, DW
Hamar, DW
AM J VET RES 9645 0864 - 1995 3/1/2022

Galindo, J; Geerken, CM; Elias, A; Aranda, N; Piedra, R; Chongo, B; Delgado, D
Bacteria degrading mimosine, the 2,3-dihydroxypiridine and 3-hydroxy-4 pyridone in the rumen
CUBAN J AGR SCI 0408 0175 - 1995 3/1/2022

Hudson, JA; Mackenzie, CAM; Joblin, KN
Conversion of oleic acid to 10-hydroxystearic acid BY two species of ruminal bacteria
APPL MICROBIOL BIOT 7598 0343 - 1995 3/1/2022

Jiang, WH; Patterson, JA; Steenson, LR
Isolation and characterization of a temperate bacteriophage from a ruminal acetogen
CURR MICROBIOL 8651 - 1995 10.1007/BF00294695 3/1/2022
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>DOI</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelson, KE; Pell, AN; Schofield, P; Zinder, S</td>
<td>Isolation and characterization of AN anaerobic ruminal bacterium capable of degrading hydrolyzable tannins</td>
<td>APPL ENVIRON MICROB</td>
<td>61</td>
<td>3293-3298.1995</td>
<td>10.1128/AEM.61.9</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Skene, IK; Brooker, JD</td>
<td>Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium</td>
<td>ANAEROBE</td>
<td>9964</td>
<td>-</td>
<td>10.1006/anae.1995.1034</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Vangylswyk, NO</td>
<td>Isozyme and morphological-characteristics of the anaerobic fungus piromyces mae isolated from the duodenum, rumen and feces of sheep</td>
<td>FEMS MICROBIOL LETT</td>
<td>1097</td>
<td>0378-1097.1995</td>
<td>10.1016/0378-1097(95)00351-5</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Skene, IK; Brooker, JD</td>
<td>Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium</td>
<td>ANAEROBE</td>
<td>9964</td>
<td>-</td>
<td>10.1006/anae.1995.1034</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Vangylswyk, NO</td>
<td>Isozyme and morphological-characteristics of the anaerobic fungus piromyces mae isolated from the duodenum, rumen and feces of sheep</td>
<td>FEMS MICROBIOL LETT</td>
<td>1097</td>
<td>0099-1097.1995</td>
<td>10.1016/0378-1097(95)00351-5</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Skene, IK; Brooker, JD</td>
<td>Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium</td>
<td>ANAEROBE</td>
<td>9964</td>
<td>-</td>
<td>10.1006/anae.1995.1034</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Vangylswyk, NO</td>
<td>Isozyme and morphological-characteristics of the anaerobic fungus piromyces mae isolated from the duodenum, rumen and feces of sheep</td>
<td>FEMS MICROBIOL LETT</td>
<td>1097</td>
<td>0099-1097.1995</td>
<td>10.1016/0378-1097(95)00351-5</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Skene, IK; Brooker, JD</td>
<td>Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium</td>
<td>ANAEROBE</td>
<td>9964</td>
<td>-</td>
<td>10.1006/anae.1995.1034</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Vangylswyk, NO</td>
<td>Isozyme and morphological-characteristics of the anaerobic fungus piromyces mae isolated from the duodenum, rumen and feces of sheep</td>
<td>FEMS MICROBIOL LETT</td>
<td>1097</td>
<td>0099-1097.1995</td>
<td>10.1016/0378-1097(95)00351-5</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Skene, IK; Brooker, JD</td>
<td>Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium</td>
<td>ANAEROBE</td>
<td>9964</td>
<td>-</td>
<td>10.1006/anae.1995.1034</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Vangylswyk, NO</td>
<td>Isozyme and morphological-characteristics of the anaerobic fungus piromyces mae isolated from the duodenum, rumen and feces of sheep</td>
<td>FEMS MICROBIOL LETT</td>
<td>1097</td>
<td>0099-1097.1995</td>
<td>10.1016/0378-1097(95)00351-5</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Skene, IK; Brooker, JD</td>
<td>Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium</td>
<td>ANAEROBE</td>
<td>9964</td>
<td>-</td>
<td>10.1006/anae.1995.1034</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Vangylswyk, NO</td>
<td>Isozyme and morphological-characteristics of the anaerobic fungus piromyces mae isolated from the duodenum, rumen and feces of sheep</td>
<td>FEMS MICROBIOL LETT</td>
<td>1097</td>
<td>0099-1097.1995</td>
<td>10.1016/0378-1097(95)00351-5</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Skene, IK; Brooker, JD</td>
<td>Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium</td>
<td>ANAEROBE</td>
<td>9964</td>
<td>-</td>
<td>10.1006/anae.1995.1034</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Vangylswyk, NO</td>
<td>Isozyme and morphological-characteristics of the anaerobic fungus piromyces mae isolated from the duodenum, rumen and feces of sheep</td>
<td>FEMS MICROBIOL LETT</td>
<td>1097</td>
<td>0099-1097.1995</td>
<td>10.1016/0378-1097(95)00351-5</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Skene, IK; Brooker, JD</td>
<td>Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium</td>
<td>ANAEROBE</td>
<td>9964</td>
<td>-</td>
<td>10.1006/anae.1995.1034</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Vangylswyk, NO</td>
<td>Isozyme and morphological-characteristics of the anaerobic fungus piromyces mae isolated from the duodenum, rumen and feces of sheep</td>
<td>FEMS MICROBIOL LETT</td>
<td>1097</td>
<td>0099-1097.1995</td>
<td>10.1016/0378-1097(95)00351-5</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Skene, IK; Brooker, JD</td>
<td>Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium</td>
<td>ANAEROBE</td>
<td>9964</td>
<td>-</td>
<td>10.1006/anae.1995.1034</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Vangylswyk, NO</td>
<td>Isozyme and morphological-characteristics of the anaerobic fungus piromyces mae isolated from the duodenum, rumen and feces of sheep</td>
<td>FEMS MICROBIOL LETT</td>
<td>1097</td>
<td>0099-1097.1995</td>
<td>10.1016/0378-1097(95)00351-5</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Skene, IK; Brooker, JD</td>
<td>Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium</td>
<td>ANAEROBE</td>
<td>9964</td>
<td>-</td>
<td>10.1006/anae.1995.1034</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Vangylswyk, NO</td>
<td>Isozyme and morphological-characteristics of the anaerobic fungus piromyces mae isolated from the duodenum, rumen and feces of sheep</td>
<td>FEMS MICROBIOL LETT</td>
<td>1097</td>
<td>0099-1097.1995</td>
<td>10.1016/0378-1097(95)00351-5</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Skene, IK; Brooker, JD</td>
<td>Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium</td>
<td>ANAEROBE</td>
<td>9964</td>
<td>-</td>
<td>10.1006/anae.1995.1034</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Vangylswyk, NO</td>
<td>Isozyme and morphological-characteristics of the anaerobic fungus piromyces mae isolated from the duodenum, rumen and feces of sheep</td>
<td>FEMS MICROBIOL LETT</td>
<td>1097</td>
<td>0099-1097.1995</td>
<td>10.1016/0378-1097(95)00351-5</td>
<td>1995-03-18</td>
</tr>
<tr>
<td>Last Name</td>
<td>First Name</td>
<td>Title</td>
<td>Journal</td>
<td>Volume</td>
<td>Issue</td>
<td>Year</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Binder</td>
<td>J</td>
<td>Horvath, EM; Schatzmayr, G; Ellend, N; Danner, H; Kraska, R; Braun, R</td>
<td>Screening for deoxynivalenol-detoxifying anaerobic rumen microorganisms</td>
<td>CEREAL RES COMMUN</td>
<td>0133</td>
<td>1997</td>
</tr>
<tr>
<td>Forster, RJ</td>
<td>Gong, JH; Teather, RM</td>
<td>Group-specific 16S rRNA hybridization probes for determinative and community structure studies of Butyrivibrio fibrisolvens in the rumen</td>
<td>APPL ENVIRON MICROB</td>
<td>2240</td>
<td>1364</td>
<td>1997</td>
</tr>
<tr>
<td>Jarvis, GN</td>
<td>Moore, ERB; Thiele, JH</td>
<td>Formate and ethanol are the major products of glycerol fermentation produced by a Klebsiella planticola strain isolated from red deer</td>
<td>J APPL MICROBIOL</td>
<td>5072</td>
<td>0008</td>
<td>1997</td>
</tr>
<tr>
<td>Jarvis, GN</td>
<td>Strompl, C; Moore, ERB; Thiele, JH</td>
<td>Isolation and characterization of glycerol-fermenting bacteria from the rumen of red deer</td>
<td>CAN J MICROBIOL</td>
<td>4166</td>
<td>0020</td>
<td>1997</td>
</tr>
<tr>
<td>Vangylswyk, NO</td>
<td>Hippe, H; Rainey, FA</td>
<td>Schwartzia succinivorans gen nov, sp nov, another ruminal bacterium utilizing succinate as the sole energy source</td>
<td>INT J SYST BACTERIOL</td>
<td>7713</td>
<td>0168</td>
<td>1997</td>
</tr>
<tr>
<td>Wells, JE</td>
<td>Krause, DO; Callaway, TR; Russell, JB</td>
<td>A bacteriocin-mediated antagonism by ruminal lactobacilli against Streptococcus bovis</td>
<td>FEMS MICROBIOL ECOL</td>
<td>6496</td>
<td>0099</td>
<td>1997</td>
</tr>
<tr>
<td>Attwood, GT</td>
<td>Klieve, AV; Ouwerkerk, D; Patel, BK</td>
<td>Ammonia-hyperproducing bacteria from New Zealand ruminants</td>
<td>APPL ENVIRON MICROB</td>
<td>2240</td>
<td>0367</td>
<td>1998</td>
</tr>
<tr>
<td>Chhabra, A; Kaur, J; Malik, RK; Kaur, H</td>
<td>Isolation and characterization of obligately anaerobic, lipolytic bacteria from the rumen of red deer</td>
<td>SYST APPL MICROBIOL</td>
<td>8401</td>
<td>0008</td>
<td>1998</td>
<td>10.1016/S0723-2020(98)80017-9</td>
</tr>
<tr>
<td>Jarvis, GN</td>
<td>Strompl, C; Moore, ERB; Thiele, JH</td>
<td>Comparison of metabolic activities between Piromyces citronii, and equine fungal species, and Piromyces communis, a ruminal species</td>
<td>ANIM FEED SCI TECH</td>
<td>8401</td>
<td>0008</td>
<td>1998</td>
</tr>
<tr>
<td>Rieu-Lesme, F; Dauga, C; Fonty, G; Dore, J</td>
<td>Cellulolytic bacteria of the genus Ruminococcus from bovine rumen</td>
<td>ANAEROBE</td>
<td>9964</td>
<td>0026</td>
<td>1998</td>
<td>10.1006/anae.1998.0153</td>
</tr>
<tr>
<td>Tarakanov, BV; Lavlinskii, DY</td>
<td>A method for the selective enumeration and isolation of ruminal Lactobacillus and Streptococcus</td>
<td>MICROBIOLOGY</td>
<td>2617</td>
<td>0266</td>
<td>1998</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Yanke, LJ; Cheng, KJ</td>
<td></td>
<td></td>
<td>LETT APPL MICROBIOL</td>
<td>8254</td>
<td>1998</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Journal</td>
<td>Year</td>
<td>DOI</td>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Duncan, SH; Doherty, CJ; Govan, JRW; Neogrady, S; Galfi, P; Stewart, CS</td>
<td>Characteristics of sheep-rumen isolates of Pseudomonas aeruginosa inhibitory to the growth of Escherichia coli O157</td>
<td>FEMS MICROBIOL LETT</td>
<td>1999</td>
<td>10.1016/0378-1097(99)00493-0</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Klieve, AV; Heck, GL; Prance, MA; Shu, Q</td>
<td>Genetic homogeneity and phage susceptibility of ruminal strains of Streptococcus bovis isolated in Australia</td>
<td>APPL ENVIRON MICROB</td>
<td>1999</td>
<td>10.1046/j.1365-2672.1999.00596.x</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Mcsweeney, CS; Palmer, B; Bunch, R; Krause, DO</td>
<td>Isolation and characterization of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus</td>
<td>APPL ENVIRON MICROB</td>
<td>1999</td>
<td>10.1046/j.1365-2672.1999.00596.x</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Morvan, B; Joblin, KN</td>
<td>Lactobacillus sp. isolated from the rumen</td>
<td>ANAEROBE</td>
<td>1999</td>
<td>10.1006/anae.1999.0306</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Brookman, JL; Ozkose, E; Rogers, S; Trinci, APJ; Theodorou, MK</td>
<td>Identification of spores in the polycentric anaerobic gut fungi which enhance their ability to survive</td>
<td>FEMS MICROBIOL ECOL</td>
<td>2000</td>
<td>10.1111/j.1574-6941.2000.tb00692.x</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Cheong, JPE; Brooker, JD</td>
<td>Isolation of a virulent bacteriophage from a Propionibacterium species in the sheep rumen</td>
<td>AUST J AGR RES</td>
<td>2000</td>
<td>10.1071/AR99069</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Jarvis, GN; Strompl, C; Burgess, DM; Skillman, LC; Moore, ERB; Joblin, KN</td>
<td>Isolation and identification of ruminal methanogens from grazing cattle</td>
<td>CURR MICROBIOL</td>
<td>2000</td>
<td>10.1007/s002849910065</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Kopecny, J; Hodrova, B</td>
<td>Chitinolytic enzymes produced by ovine rumen bacteria</td>
<td>FOLIA MICROBIOL</td>
<td>2000</td>
<td>10.1007/BF02817622</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Ambrozic, J; Ferme, D; Grabnar, M; Ravnikar, M; Avgustin, G</td>
<td>The bacteriophages of ruminal prevotellas</td>
<td>FOLIA MICROBIOL</td>
<td>2001</td>
<td>10.1007/BF02825881</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Ha, JH; Lee, SS; Gao, Z; Kim, CH; Kim, SW; Ko, JY; Cheng, KJ</td>
<td>The effect of saturated fatty acids on cellulose digestion BY the rumen anaerobic fungus, Neocallimastix frontalis CS-1</td>
<td>ASIAN AUSTRAL J ANIM</td>
<td>2001</td>
<td>10.5713/ajas.2001.941</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Kopecny, J; Logar, RM; Kobayashi, Y</td>
<td>The antibacterial activity and sensitivity of Streptococcus bovis strains isolated from the rumen of cattle</td>
<td>FEMS MICROBIOL ECOL</td>
<td>2001</td>
<td>10.1016/S0168-6496(01)00166-0</td>
<td>3/1/2022</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Journal</td>
<td>Volume</td>
<td>Pages</td>
<td>Year</td>
<td>DOI</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--------------------------------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Michalowski, T; Rybicka, K; Wereszka, K; Kasperowicz, A</td>
<td>Ability of the rumen ciliate Epidinium ecdautum to digest and use crystalline cellulose and xylan for in vitro growth</td>
<td>ACTA PROTOZOOLO</td>
<td>0065</td>
<td>1075</td>
<td>2001</td>
<td>10.1007/s00284-002-0935-6</td>
</tr>
<tr>
<td>Odenyo, AA; Bishop, R; Asefa, G; Jamnadass, R; Odongo, D; Osuji, P</td>
<td>Characterization of tannin-tolerant bacterial isolates from East African ruminants</td>
<td>ANAEROBE</td>
<td>9964</td>
<td>9008</td>
<td>2001</td>
<td>10.1006/anae.2000.0367</td>
</tr>
<tr>
<td>Ozkose, E; Thomas, BJ; Davies, DR; Griffith, GW; Theodorou, MK</td>
<td>Purification and characterization of a bacteria-in-like compound (Lichenin) produced anaerobically by Bacillus licheniforms isolated from water buffalo</td>
<td>CAN J BOT</td>
<td>0026</td>
<td>4026</td>
<td>2001</td>
<td>10.1139/b01-047</td>
</tr>
<tr>
<td>Pattnaik, P; Kaushik, JK; Grover, S; Batish, VK</td>
<td>Propionibacteria isolated from rumen as possible probiotics together with bifidobacteria</td>
<td>J APPL MICROBIOL</td>
<td>5072</td>
<td>0026</td>
<td>2001</td>
<td>10.1046/j.1365-2672.2001.01429.x</td>
</tr>
<tr>
<td>Rinta-Koski, M; Beasley, S; Montonen, L; Mantere-Alhonen, S; Whitford, MF; Yanke, LJ; Forster, RJ; Teather, RM</td>
<td>The enrichment of a ruminal bacterium (Megasphaera elsdenii Yf-4) that produces the trans-10-cis-12 isomer of conjugated linoleic acid</td>
<td>MILCHWISSENSCHAF</td>
<td>3788</td>
<td>1466</td>
<td>2001</td>
<td>10.1127/0029-0035/2002/0075-0029</td>
</tr>
<tr>
<td>Chen, YC; Hseu, RS</td>
<td>Propionibacteria isolated from rumen as possible probiotics together with bifidobacteria</td>
<td>NOVA HEDWIGIA</td>
<td>5026</td>
<td>0029</td>
<td>2001</td>
<td>10.1127/0029-0035/2002/0075-0049</td>
</tr>
<tr>
<td>Eschenlauer, SCP; McKain, N; Walker, ND; McEwan, NR; Newbold, CJ; Wallace, RJ</td>
<td>Purification and characterization of a bacteria-in-like compound (Lichenin) produced anaerobically by Bacillus licheniforms isolated from water buffalo</td>
<td>APPL ENVIRON MICROB</td>
<td>0099</td>
<td>2240</td>
<td>2002</td>
<td>10.1128/AEM.68.10.4925-4931.2002</td>
</tr>
<tr>
<td>Kim, YJ; Liu, RH; Rychlik, JL; Russell, JB</td>
<td>The enrichment of a ruminal bacterium (Megasphaera elsdenii Yf-4) that produces the trans-10-cis-12 isomer of conjugated linoleic acid</td>
<td>J APPL MICROBIOL</td>
<td>2672</td>
<td>1466</td>
<td>2002</td>
<td>10.1046/j.1365-2672.2002.01610.x</td>
</tr>
<tr>
<td>Lan, GQ; Ho, YW; Abdullah, N</td>
<td>Mitsuokella jalaludini SP nov., from the rumens of cattle in Malaysia</td>
<td>INT J SYST EVOL MICR</td>
<td>5026</td>
<td>0166</td>
<td>2002</td>
<td>10.1099/0029-0035/2002/0075-0049</td>
</tr>
<tr>
<td>Lee, PC; Lee, SY; Hong, SH; Chang, HN</td>
<td>Enumeration of Megasphaera elsdenii in rumen contents BY real-time Taq nuclease assay</td>
<td>APPL ENVIRON MICROB</td>
<td>0014</td>
<td>0136</td>
<td>2002</td>
<td>10.1127/0029-0035/2002/0075-0049</td>
</tr>
<tr>
<td>Ouwerkerk, D; Klieve, AV; Forster, RI</td>
<td>Amino acid deamination By ruminal Megasphaera elsdenii strains</td>
<td>CURR MICROBIOL</td>
<td>8651</td>
<td>0099</td>
<td>2002</td>
<td>10.1007/s00284-002-3743-4</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Journal</td>
<td>Volume</td>
<td>Pages</td>
<td>Year</td>
<td>DOI</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Kopecny, J; Zorec, M; Mrazek, J; Kobayashi, Y; Marinsek-Logar, R; Krause, DO; Smith, WJM; Conlan, LL; Gough, JM; Williamson, MA; Mcsweeney, CS</td>
<td>Butyryrivibrio hungatei SP nov and Pseudobutyryrivibrio xylanivorans SP nov., butyrate-producing bacteria from the rumen Diet influences the ecology of lactic acid bacteria and Escherichia coli along the digestive tract of cattle: neural networks and 16S rDNA Isolation and characterization of solventogenic, cellulose-free xylanolytic Clostridia from cow rumen</td>
<td>INT J SYST EVOL MICR</td>
<td>1466</td>
<td>5026</td>
<td>2003</td>
<td>10.1099/ijs.0.02345-0</td>
</tr>
<tr>
<td>Van DE Vossenberg, JLCM; Joblin, KN</td>
<td>Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen</td>
<td>LETT APPL MICROBIOL</td>
<td>-</td>
<td>8254</td>
<td>2003</td>
<td>10.1046/j.1472-765X.2003.01421.x</td>
</tr>
<tr>
<td>Sankar, M; Delgado, O; Mattiasson, B</td>
<td>Isolation and characterization of solventogenic, cellulase-free xylanolytic Clostridia from cow rumen</td>
<td>WATER SCI TECHNOL</td>
<td>-</td>
<td>1223</td>
<td>2003</td>
<td>10.2166/wst.2003.0251</td>
</tr>
<tr>
<td>Wallace, RJ; Mckain, N; Mcewan, NR; Miyagawa, E; Chaudhary, LC; King, TP; Walker, ND; Apajalahti, JHA; Newbold, CJ</td>
<td>Eubacterium pyruvativorans SP nov., a novel non-saccharolytic anaerobe from the rumen that ferments pyruvate and amino acids, forms caproate and utilizes acetate and propionate</td>
<td>INT J SYST EVOL MICR</td>
<td>1466</td>
<td>5026</td>
<td>2003</td>
<td>10.1099/ijs.0.02110-0</td>
</tr>
<tr>
<td>Cookson, AL; Noel, SJ; Kelly, WJ; Attwood, GT</td>
<td>The use of PCR for the identification and characterisation of bacteriocin genes from bacterial strains isolated from rumen or caecal contents of cattle and sheep Classical and molecular approaches as a powerful tool for the characterization of rumen polycentric fungi</td>
<td>FEMS MICROBIOL ECOL</td>
<td>0168</td>
<td>6496</td>
<td>2004</td>
<td>10.1016/j.femsec.2004.01.003</td>
</tr>
<tr>
<td>Sahu, NP; Kamra, DN; Paul, SS</td>
<td>Effect of cellulose degrading bacteria isolated from wild and domestic ruminants on in vitro dry matter digestibility of feed and enzyme production</td>
<td>ASIAN AUSTRAL J ANIM</td>
<td>-</td>
<td>1011</td>
<td>2004</td>
<td>10.5713/ajas.2004.199</td>
</tr>
<tr>
<td>Shin, HT; Lee, SW; Park, KM; Kim, LT; Son, AH; Lee, JJ</td>
<td>Nutritional requirements of Prevotella SP isolated from the rumen of the goat</td>
<td>BIOTECHNOL BIOPROC E</td>
<td>-</td>
<td>8372</td>
<td>2004</td>
<td>10.1007/BF02942350</td>
</tr>
<tr>
<td>Goel, G; Puniya, AK; Singh, K</td>
<td>Tannic acid resistance in ruminal streptococcal isolates</td>
<td>J BASIC MICROB</td>
<td>111X</td>
<td>111X</td>
<td>2005</td>
<td>10.1002/jobm.200410517</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Journal</td>
<td>Pages</td>
<td>DOI</td>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Keating, AF; Stanton, C; Murphy, JJ; Smith, TJ; Ross, RP; Cairns, MT</td>
<td>Isolation and characterization of the bovine Stearoyl-coa desaturase promoter and analysis of polymorphisms in the promoter region in dairy cows</td>
<td>Mamm Genome</td>
<td>8990</td>
<td>10.1007/s00335-004-2325-0</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Marichamy, S; Yigzaw, Y; Gorton, L; Mattiasson, B</td>
<td>Isolation of obligate anaerobic rumen bacteria capable of degrading the neurotoxin beta-ODAP (beta-N-oxalyl-L-alpha,beta-diaminopropionionic acid) as evaluated by a liquid chromatography/biosensor analysis system</td>
<td>J Sci Food Agr</td>
<td>5142</td>
<td>10.1002/jsfa.2211</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Marrero, Y; Galindo, J; Alvarez, E; Torres, V; Aldama, AI; Boucourt, R; Elias, A; Delgado, DC</td>
<td>Methodology for the isolation and characterization of yeasts from the ruminal ecosystem</td>
<td>Cuban J Agr Sci</td>
<td>0408</td>
<td>-</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Mcsweeney, CS; Blackall, LL; Collins, E; Conlan, LL; Webb, RI; Denman, SE; Krause, DO</td>
<td>Enrichment, isolation and characterisation of ruminal bacteria that degrade non-protein amino acids from the tropical legume Acacia angustissima</td>
<td>Anim Feed Sci Tech</td>
<td>8401</td>
<td>10.1016/j.anifeedsci.2005.02.018</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Ohmiya, K; Sakka, K; Kimura, T</td>
<td>Anaerobic bacterial degradation for the effective utilization of biomass</td>
<td>Biotechnol Bioproc Eng</td>
<td>8372</td>
<td>10.1007/BF02932282</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Singh, R; Singh, M; Nayyar, S</td>
<td>Occurrence of ps86/pef47-related plasmids in Gram-positive cocci</td>
<td>Curr Microbiol</td>
<td>8651</td>
<td>10.1007/s00284-005-4564-z</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Styrjak, I; Spanova, A; Zitnan, R</td>
<td>Partial characterization of two ruminal bacteriophages with similar restriction patterns and different capsids morphology</td>
<td>Arch Tierzucht</td>
<td>9438</td>
<td>10.5194/aab-48-572-2005</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Belzecki, G; Michalowski, T</td>
<td>New species of rumen treponemes</td>
<td>J Anim Feed Sci</td>
<td>1388</td>
<td>-</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Piknova, M; Javorsky, P; Guczynska, W; Kasperowicz, A; Michalowski, T; Pristas, P</td>
<td>Occurrence of ps86/pef47-related plasmids in Gram-positive cocci</td>
<td>Curr Microbiol</td>
<td>8651</td>
<td>10.1007/s00284-005-4564-z</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Wang, AI; Gao, LF; Ren, NQ; Xu, JF; Liu, C</td>
<td>Effects of crude feruloyl and acetyl esterase solutions of Neocallimastix SP YQ1 and Anaeromyces SP YQ3 isolated from Holstein steers on hydrolysis of Chinese wildrye grass hay, wheat bran, maize bran, wheat straw and corn stalks</td>
<td>Anim Feed Sci Tech</td>
<td>8401</td>
<td>10.1016/j.anifeedsci.2009.09.006</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Yang, HJ; Yue, Q; Cao, YC; Zhang, DF; Wang, JQ</td>
<td>Partial characterization of two ruminal bacteriophages with similar restriction patterns and different capsids morphology</td>
<td>Arch Tierzucht</td>
<td>9438</td>
<td>10.5194/aab-48-572-2005</td>
<td>2005</td>
<td></td>
</tr>
</tbody>
</table>

3/1/2022
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>Digital Object Identifier</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ko, KC; Han, Y; Choi, JH; Kim, GJ; Lee, SG; Song, JJ</td>
<td>A novel bifunctional endo-/exo-type cellulase from AN anaerobic ruminal bacterium Olsenella umbonata SP. Nov., a microaerotolerant anaerobic lactic acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of Olsenella, Olsenella uli and Olsenella profusa</td>
<td>APPL MICROBIOL BIOT</td>
<td>-</td>
<td>-</td>
<td>7598</td>
<td>2011</td>
<td>10.1007/s00253-010-2949-9</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Kraatz, M; Wallace, RJ; Svensson, L</td>
<td>In vitro fibrolytic potential of anaerobic rumen fungi from ruminants and non-ruminant herbivores Isolation and characterization of novel sulphate-reducing Fusobacterium SP and their effects on in vitro methane emission and digestion of wheat straw BY rumen fluid from Indian riverine buffaloes</td>
<td>INT J SYST EVOL MICR</td>
<td>0015</td>
<td>-</td>
<td>5026-1340</td>
<td>2011</td>
<td>10.1099/jis.0.022954-0</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Paul, SS; Deb, SM; Singh, D</td>
<td>Sensitivity of ruminal bacteria isolates of sheep, cattle and buffalo to some heavy metals</td>
<td>ANIM FEED SCI TECH</td>
<td>0016</td>
<td>-</td>
<td>8401-0377</td>
<td>2011</td>
<td>10.1016/j.anifeedsci.2011.04.062</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Salem, AZM; Ammar, H; Lopez, S; Gohar, YM; Gonzalez, JS</td>
<td>Isolation, characterization, and quantification of Clostridium kluveri from the bovine rumen Enzymatic characteristics of crude feruloyl and acetyl esterases of rumen fungus Neocallimastix SP YAK11 isolated from yak (Bos grunniens)</td>
<td>ANIM FEED SCI TECH</td>
<td>0016</td>
<td>-</td>
<td>8401-0175</td>
<td>2011</td>
<td>10.1016/j.anifeedsci.2010.10.017</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Weimer, PJ; Stevenson, DM</td>
<td>Sensitivity of ruminal bacteria isolates of sheep, cattle and buffalo to some heavy metals</td>
<td>APPL MICROBIOL BIOT</td>
<td>0016</td>
<td>-</td>
<td>7598</td>
<td>2012</td>
<td>10.1007/s00253-011-3751-z</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Cao, YC; Yang, HJ; Zhang, DF</td>
<td>Isolation of Pseudobutyrylribivo ruminis and Pseudobutyrylribiovorans from rumen of Creole goats fed native forage diet Phenotypic and Phylogenetic Characterization of Cellulose Degrading Bacteria Isolated from Rumen of Buffalo Whole-Transcriptome Shotgun Sequencing (RNA-seq) Screen Reveals Uregulation of Cellulose and Motility Operons of Lactobacillus ruminis L5 during Growth on Tetrasaccharides Derived from Barley beta-Glucan</td>
<td>J ANIM PHYSIOl AN N</td>
<td>0015</td>
<td>-</td>
<td>2439-0015</td>
<td>2013</td>
<td>10.1111/j.1439-0396.2012.01281.x</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Grilli, DJ; Ceron, ME; Paez, S; Egea, V; Schnittger, L; Cravero, S; Escudero, MS; Allegretti, L; Arenas, GN</td>
<td>Oscillibacter ruminantium SP nov., isolated from the rumen of Korean native cattle</td>
<td>FOLIA MICROBIOL</td>
<td>0015</td>
<td>-</td>
<td>5632-0972</td>
<td>2013</td>
<td>10.1007/s12223-012-0219-1</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Kumar, A; Kamra, DN; Agarwal, N; Rikhari, K; Chaudhary, LC</td>
<td>Methanobrevibacter boviskoreani SP nov., isolated from the rumen of Korean native cattle</td>
<td>ANIM NUTR FEED TECHN</td>
<td>0015</td>
<td>-</td>
<td>2963</td>
<td>2013</td>
<td>-</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Lawley, B; Sims, IM; Tannock, GW</td>
<td>Whole-Transcriptome Shotgun Sequencing (RNA-seq) Screen Reveals Uregulation of Cellulose and Motility Operons of Lactobacillus ruminis L5 during Growth on Tetrasaccharides Derived from Barley beta-Glucan</td>
<td>ANIM FEED SCI TECH</td>
<td>-</td>
<td>-</td>
<td>0099</td>
<td>2013</td>
<td>10.1111/j.1439-0396.2012.01281.x</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Lee, GH; Rhee, MS; Chang, DH; Lee, J; Kim, S; Yoon, MH; Kim, BC</td>
<td>Oscillibacter ruminantium SP nov., isolated from the rumen of Korean native cattle</td>
<td>APPL ENVIRON MICROB</td>
<td>0015</td>
<td>-</td>
<td>2240-1466</td>
<td>2013</td>
<td>10.1128/AEM.01887-13</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Lee, JH; Kumar, S; Lee, GH; Chang, DH; Rhee, MS; Yoon, MH; Kim, BC</td>
<td>Methanobrevibacter boviskoreani SP nov., isolated from the rumen of Korean native cattle</td>
<td>INT J SYST EVOL MICR</td>
<td>0015</td>
<td>-</td>
<td>5026-1466</td>
<td>2013</td>
<td>10.1099/jis.0.041749-0</td>
<td>3/1/2022</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Journal</td>
<td>Volume</td>
<td>Year</td>
<td>doi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priji P; Unni KN; Sahith S; Benjaim S</td>
<td>Candida tropicalis BP1, a novel isolate from the rumen of the Malabari goat, is a dual producer of biosurfactant and polyhydroxybutyrate</td>
<td>YEAST</td>
<td>0749</td>
<td>2013</td>
<td>10.1002/yea.2944</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seo JK; Park TS; Kwon IH; Piao MY; Lee CH; Ha JK</td>
<td>Characterization of Cellulolytic and Xylanolytic Enzymes of Bacillus licheniformis K7 isolated from the Rumen of a Native Korean Goat</td>
<td>ASIAN AUSTRAL ANIM</td>
<td>2013</td>
<td>10.5713/ajas.2012.12506</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sirisan V; Pattarajinda V; Vichitphan K; Leesing R; Sirisan V; Chudhury PK; Dagar SS; Punjya AK; Singh D</td>
<td>Isolation, characterization and fibre degradation potential of anaerobic rumen fungi from cattle</td>
<td>LETT APPL MICROBIOL</td>
<td>2013</td>
<td>10.1111/lam.12078</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Williams AG; Withers S; Sutherland AD</td>
<td>The potential of bacteria isolated from ruminal contents of seaweed-eating North Ronaldsay sheep to hydrolyse seaweed components and produce methane by anaerobic digestion in vitro</td>
<td>MICROB BIOTECHNOL</td>
<td>2013</td>
<td>10.1111/1751-7915.12000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL-Dilaimi A; Albersmeier A; Kalinowski J; Ruckert C; Almeida PNM; Freitas CES; Abrao FO; Ribeiro ICO; Vieira EA; Geraseev LC; Duarte ER</td>
<td>Complete genome sequence of Corynebacterium vitaeruminis DSM 20294(T), isolated from the cow rumen as a vitamin B producer</td>
<td>J BIOTECHNOL</td>
<td>2014</td>
<td>10.1016/j.jbiotec.2014.08.036</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arokiyaraj S; Islam VH; Bharanidharan R; Raveendran S; Lee J; Kim DH; Oh YK; Kim EK; Kim KH</td>
<td>Cellulolytic activity of aerobic fungi isolated from dairy cattle fed with forage tropical Antibacterial, anti-inflammatory and probiotic potential of Enterococcus hirae isolated from the rumen of Bos primigenius</td>
<td>REV CAATINGA</td>
<td>2014</td>
<td>10.1016/j.jbiotec.2014.08.036</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen J; Xu LX; Wu Y; Tong J; Chen YX</td>
<td>Production, characterization of acetyl esterase from a rumen bacteria strain RB3, and application potential of the strain in biodegradation of crop residues</td>
<td>WORLD J MICROBIOT</td>
<td>2014</td>
<td>10.1007/s11274-014-1625-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen YC; Chen WT; Liu Jc; Tsai LC; Cheng HI</td>
<td>A highly active beta-glucanase from a new strain of rumen fungus Orpinomyces Y102 exhibits cellobiohydrolase and cellotriohydrolase activities</td>
<td>BIORESOURCE TECHNOL</td>
<td>2014</td>
<td>10.1016/j.biotech.2014.08.016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE Aguiar SC; Zeoula LM; DO Prado OPP; Arcuri PB; Forano E; Fraga M; Perelmutter K; Valencia M; Martinez M; Abin-Carriquiry A; Cajarville C; Zunino P; Gagen EJ; Wang JK; Padmanabha J; Liu J; DE Carvalho IPC; Liu JX; Webb R; Al Jassim R; Morrison M; Denman SE; Mcsweeney CS</td>
<td>Evaluation of native potential probiotic bacteria using AN in vitro ruminal fermentation system</td>
<td>WORLD J MICROBIOT</td>
<td>2014</td>
<td>10.1007/s11274-014-1719-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2014</td>
<td>10.1186/s12866-014-0314-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Journal</td>
<td>Volume</td>
<td>Pages</td>
<td>Digital Object Identifier</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>------------------------</td>
<td>--------</td>
<td>---------</td>
<td>---------------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelly, WJ; Leahy, SC; Li D; Perry, R; Lambie, SC; Attwood, GT; Altermann, E; Leis, S; Dresch, P; Peintner, U; Fliegerova, K; Sandbichler, AM; Insam, H; Podmirseg, SM</td>
<td>The complete genome sequence of the rumen methanogen Methanobacterium formicum BRM9 Finding a robust strain for biomethanation: Anaerobic fungi (Neocallimastigomycota) from the Alpine ibex (Capra ibex) and their associated methanogens Improved culturability of cellulosic rumen bacteria and phylogenetic diversity of culturable cellulosic and xylanolytic bacteria newly isolated from the bovine rumen Effect of rumen bacteria from sheep adapted to a tanniferous diet on in vitro fermentation parameters of pistachio hulls using bovine inoculum</td>
<td>STAND GENOMIC SCI</td>
<td>3277</td>
<td>2014</td>
<td>10.1186/1944-3277-9-15</td>
<td>3/1/2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nyonyo, T; Shinkai, T; Mitsumori, M</td>
<td>Analysis of genotypes from dairy farms Diversity of Clostridium perfringens toxin genotypes from dairy farms</td>
<td>ANAEROBE</td>
<td>9964</td>
<td>2014</td>
<td>10.1016/j.anaerobe.2013.12.002</td>
<td>3/1/2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Babaee, Y; Rouzbehan, Y; Alipour, D; Callaghan, TM; Podmirseg, SM; Hohlweck, DG</td>
<td>A new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces Evaluation of plant cell wall degrading enzyme production by Clostridium thermocellum B8 in the presence of raw agricultural wastes Fibrolytic Bacteria isolated from the Rumen of North American Moose (Alces alces) and Their Use as a Probiotic in Neonatal Lambs</td>
<td>FEMS MICROBIOL</td>
<td>6496</td>
<td>2014</td>
<td>10.1111/1574-6941.12318</td>
<td>3/1/2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ishaq, SL; Kim, CJ; Reis, D; Wright, ADG Lambie, SC; Kelly, WJ; Leahy, SC; Li, D; Reilly, K; Mcallister, TA; Valle, ER; Attwood, GT; Altermann, E Mittko, R; Pietrzak, M; Belzecki, G; Werezka, K; Michalowski, T; Hackstein, JHP</td>
<td>The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1 Isolation and in vitro cultivation of the fibrolytic rumen ciliate Eremoplaxton (Eudiplodinium) dilobum</td>
<td>PLOS ONE</td>
<td>6203</td>
<td>2014</td>
<td>10.1371/journal.pone.0144804</td>
<td>3/1/2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun, WT; Liu, JJ; Xu, H; Li, WJ; Zhang, J Tan, H; Zhang, ZM; Hu, YC; Wu, L; Liao, F; He, J; Luo, B; He, YJ; Zuo, ZC; Ren, ZH; Peng, GN; Deng, JL</td>
<td>L-Lactic acid fermentation BY Enterococcus faecium: a new isolate from bovine rumen Isolation and characterization of Pseudomonas otitidis TH-N1 capable of degrading Zearalenone Isolation, Identification and Molecular Characterization of Cellulolytic Bacteria from Rumen Samples collected from Erzurum Slaughter House, Turkey Effects of Glucose and Starch on Lactate Production BY Newly Isolated Streptococcus bovis S1 from Saanen Goats Diversity of Clostridium perfringens toxin genotypes from dairy farms</td>
<td>BIOTECHNOL LETT</td>
<td>5492</td>
<td>2015</td>
<td>10.1007/s10529-015-1821-5</td>
<td>3/1/2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, LM; Luo, Y; Wang, HR; Liu, SM; Shen, YZ; Wang, MZ Foehler, S; Klein, G; Hoedemaker, M; Scheu, T; Seyboldt, C; Campe, A; Jensen, KC; Abdulmawjood, A</td>
<td></td>
<td>APPL ENVIRON MICROB</td>
<td>2240</td>
<td>2016</td>
<td>10.1128/AEM.01994-16</td>
<td>3/1/2022</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The complete genome sequence of Eubacterium limosum SA11, a metabolically versatile rumen acetogen. STAND GENOMIC SCI 3277 1944 2016 10.1186/s40793-016-0147-9 3/1/2022

Correlation between genomic analyses with metatranscriptomic study reveals various functional pathways of Clostridium sartagoforme AAU1, a buffalo rumen isolate. J APPL ANIM RES 0971 2016 10.1080/09712119.2015.1091346 3/1/2022

New Bacillus thuringiensis strain isolated from the gut of Malabari goat is effective against Tetranychus macfarlanei. J APPL ENTOMOL 0273 2016 10.1111/jen.12235 3/1/2022

Fiber degradation potential of natural and engineered fermentation products. INT J SYST EVOL MIRC 1466 5026 0006 2016 10.1099/ijsem.0.000788 3/1/2022

Pseudomonas aeruginosa strain BUP2, a novel bacterium inhabiting the rumen of Malabari goat, produces AN efficient lipase. BIOLOGIA 3088 2016 10.1515/biolog-2016-0057 3/1/2022

Fibrolytic enzyme production from yaks (Bos grunniens) grazing on the Qinghai Tibetan Plateau. ANAEROBE 9964 2016 10.1016/j.anaerobe.2016.03.005 3/1/2022

Notable fibrolytic enzyme production by Aspergillus spp. Isolates from the gastrointestinal tract of beef cattle fed in lignified pastures. PLOS ONE 6203 1932 2017 10.1371/journal.pone.0183628 3/1/2022

Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction. PLOS ONE 6203 2017 10.1371/journal.pone.0186355 3/1/2022
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Journal/Conference</th>
<th>DOI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharma, R; Singh, B; Varadarajan, AR; Plugge, W; Plugge, CM</td>
<td>Draft Genome Sequence of Actinomyces succincinurcinus Strain Am4(T), Isolated from Cow Rumen Fluid</td>
<td>MICROBIOLOGY RESOURCE</td>
<td>2576</td>
<td>2017.10.1128/genomea.01587-16</td>
</tr>
<tr>
<td>Chun, BH; Lee, HJ; Jeong, SE; Schumann, P; Jeon, CO</td>
<td>Leucobacter ruminantium SP nov., isolated from the bovine rumen</td>
<td>INT J SYST EVOL MICR</td>
<td>1466</td>
<td>2017.10.1099/jisem.0.002003</td>
</tr>
<tr>
<td>Colombo, M; Castro, NPA; Todorov, SD; Nery, LA</td>
<td>Corynebacterium vitaeruminis Strain Isolated from the Cow Rumen</td>
<td>PROBIOTICS ANTIMICRO</td>
<td>1306</td>
<td>2017.10.1007/s12602-017-9263-0</td>
</tr>
<tr>
<td>Gilbert, RA; Kelly, WM; Altermann, E; Leathy, SC; Minchin, C; O'werkerk, D; Klieve, AV</td>
<td>Toward Understanding Phage: Host Interactions in the Rumen; Complete Genome Sequences of Lytic Phages Infecting Rumen Bacteria</td>
<td>FRONT MICROBIOLOGY</td>
<td>0021</td>
<td>2017.10.3389/fmicb.2017.02340</td>
</tr>
<tr>
<td>Harlow, BE; Goodman, JP; Lynn, BC; Flythe, MD; Ji, H; Aiken, GE</td>
<td>Ruminal tryptophan-utilizing bacteria degrade ergovaline from tall fescue seed extract</td>
<td>J ANIM SCI</td>
<td>8812</td>
<td>2017.10.2527/jas.2016.1128</td>
</tr>
<tr>
<td>Henske, JK; Gilmore, SP; Knop, D; Cunningham, FJ; Sexton, JA; Smallwood, CR; Shuttahanandan, V; Evans, JE; Theodorou, MK; O'Malley, MA</td>
<td>Transcriptomic characterization of Caecomyces churrovis: a novel, non-rhizoid-forming lignocellulolytic anaerobic fungus</td>
<td>BIOTECHNOLOGY FUELS</td>
<td>1754</td>
<td>2017.10.1186/s13068-017-0997-4</td>
</tr>
<tr>
<td>Jeon, BS; Kim, S; Sang, BI</td>
<td>Draft Genome Sequence of Actinomyces succincinurcinus Strain Am4(T), Isolated from Cow Rumen Fluid</td>
<td>MICROBIOLOGY RESOURCE</td>
<td>2576</td>
<td>2017.10.1128/genomea.01587-16</td>
</tr>
<tr>
<td>Neumann, AP; Mcromick, CA; Suen, G</td>
<td>Leucobacter ruminantium SP nov., isolated from the bovine rumen</td>
<td>INT J SYST EVOL MICR</td>
<td>1466</td>
<td>2017.10.1099/jisem.0.001888</td>
</tr>
<tr>
<td>Newbrook, K; Staton, GJ; Clegg, SR; Birtles, RJ; Carter, SD; Evans, NJ</td>
<td>Treponema ruminis SP nov., a spirochaete isolated from the bovine rumen</td>
<td>INT J SYST EVOL MICR</td>
<td>1462</td>
<td>2017.10.1099/jisem.0.001812</td>
</tr>
<tr>
<td>Nidhina, N; Bhavya, MI; Bhaskar, N; Muthukumar, SP; Murthy, PS</td>
<td>Aflatoxin production by Aspergillus flavus in rumen liquor and its implications</td>
<td>ENVIRON MICROBIOLOGY</td>
<td>2912</td>
<td>2017.10.1111/1462-2920.13878</td>
</tr>
<tr>
<td>Palevich, N; Kelly, WJ; Leathy, SC; Altermann, E; Rakonjac, J; Attwood, GT</td>
<td>The complete genome sequence of the rumen bacterium Butyrivibrio hangatei MB2003 AN isolated cellulolytic Escherichia coli from bovine rumen produces ethanol and hydrogen from corn straw</td>
<td>STAND GENOMIC SCI</td>
<td>3277</td>
<td>2017.10.1186/s40793-017-0285-8</td>
</tr>
<tr>
<td>Pang, J; Liu, YZ; Hao, M; Zhang, YF; QJ, QS; Podlesny, M; Jarocki, P; Wyrostek, J; Czernicki, T; Kucharska, J; Nowak, A; Targonski, Z</td>
<td>Enterobacter SP LU1 as a novel succinic acid producer - CO-utilization of glycerol and lactose</td>
<td>MICROBIOLOGY BIOFUELS</td>
<td>0233</td>
<td>2017.10.1111/1751-7915.12458</td>
</tr>
<tr>
<td>Priji, P; Sajith, S; Unni, KN; Anderson, RC; Benjamin, S</td>
<td>Degradation of euptox A BY tannase-producing rumen bacteria from migratory goats</td>
<td>J APPL MICROBIOLOGY</td>
<td>5072</td>
<td>2017.10.1111/jam.13563</td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Journal</td>
<td>Year</td>
<td>Digital Object Identifier</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------------------------</td>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Wang, XW; Liu, XZ; Groenewald, JZ</td>
<td>Phylogeny of anaerobic fungi (phylum Neocallimastigomycota), with contributions from yak in China</td>
<td>ANTON LEEUW INT J G</td>
<td>2017</td>
<td>10.1007/s10482-016-0779-1</td>
</tr>
<tr>
<td>Wei, YQ; Yang, HJ; Long, RJ; Wang, ZY; Cao, BB; Ren, QC; Wu, TT</td>
<td>Characterization of natural CO-cultures of Piromyces with Methanobrevibacter ruminantium from yaks grazing on the Qinghai-Tibetan Plateau: a microbial consortium with high potential in plant biomass degradation</td>
<td>AMB EXPRESS</td>
<td>2017</td>
<td>10.1186/s13568-017-0459-1</td>
</tr>
<tr>
<td>Bohra, V; Dafale, NA; Purohit, HJ</td>
<td>Paenibacillus polymyxa ND25: candidate genome for lignocellulosic biomass utilization</td>
<td>3 BIOTECH</td>
<td>2018</td>
<td>10.1007/s13205-018-1274-3</td>
</tr>
<tr>
<td>Boonsaen, P; Kinjo, M; Sawanon, S; Suzuki, Y; Koike, S; Kobayashi, Y</td>
<td>Ruminococcus flavefaciens OS14, newly isolated from the rumen of swamp buffalo</td>
<td>ANIM SCI J</td>
<td>2018</td>
<td>10.1111/asj.12927</td>
</tr>
<tr>
<td>Cipriano-Salazar, M; Rojas-Hernandez, S; Olivares-Perez, J; Jimenez-Guillen, R; Cruz-Lagunas, B; Camacho-Diaz, LM; Ugbo, AE</td>
<td>Antibacterial activities of tannic acid against isolated ruminal bacteria from sheep</td>
<td>MICROB PATHOGENESIS</td>
<td>2018</td>
<td>10.1016/j.micpath.2018.01.045</td>
</tr>
<tr>
<td>Dollhofer, V; Dandikas, V; Dorn-In, S; Bauer, C; Lebuhn, M; Bauer, J</td>
<td>Accelerated biogas production from lignocellulosic biomass after pre-treatment with Neocallimastix frontalis</td>
<td>BIORESOURCE TECHNOL</td>
<td>2018</td>
<td>10.1016/j.biortech.2018.05.068</td>
</tr>
<tr>
<td>Hanafy, RA; Elshahed, MS; Youssef, NH</td>
<td>Hydrogen production samples of wild Barbary sheep and fallow deer</td>
<td>MYCOLOGIA</td>
<td>2018</td>
<td>10.1080/00275514.2018.1466610</td>
</tr>
<tr>
<td>Hoang, VT; Hoang, DH; Pham, ND; Tran, HM; Bui, HTV; Ngo, TA; Hoedt, EC; Parks, DH; Volmer, JG; Rosewarne, CP; Denman, SE; Mcsweeney, CS; Muir, JG; Gibson, PR; Cuiv, PO; Hugenholtz, P; Tyson, GW; Morrison, M</td>
<td>Culture- and metagenomics-enabled analyses of the Methanospira genus reveal their monophyletic origin and differentiation according to genome size</td>
<td>AIMS ENERGY</td>
<td>2018</td>
<td>10.3934/energy.2018.5.846</td>
</tr>
<tr>
<td>Intanoo, M; Kongkeithkajorn, MB; Pattarajinda, V; Bernard, JK; Callaway, TR; Suryasatthaporn, W; Phasuk, Y</td>
<td>Isolation and screening of aflatoxin-detoxifying yeast and bacteria from ruminal fluids to reduce aflatoxin B-1 contamination in dairy cattle feed</td>
<td>ISME JOURNAL</td>
<td>2018</td>
<td>10.1038/s41396-018-0225-7</td>
</tr>
<tr>
<td>Joshi, A; Lanjekar, V; Dhakephalkar, PK; Dagar, SS</td>
<td>Cultivation of multiple genera of hydrogenotrophic methanogens from different environmental niches</td>
<td>J APPL MICROBIOL</td>
<td>2018</td>
<td>10.1111/jam.14060</td>
</tr>
<tr>
<td>Jung, DH; Chung, WH; Seo, DH; Nam, YD; Yoon, S; Park, CS</td>
<td>Complete genome sequence of Bifidobacterium choerinum FMB-1, a resistant starch-degrading bacterium</td>
<td>J BIO TECHNOLOGY</td>
<td>2018</td>
<td>10.1016/j.jbiotec.2018.03.009</td>
</tr>
<tr>
<td>Jung, DH; Seo, DH; Kim, GY; Nam, YD; Song, EJ; Yoon, S; Park, CS</td>
<td>The effect of resistant starch (RS) on the bovine rumen microflora and isolation of RS-degrading bacteria</td>
<td>APPL MICROBIOL BIOT</td>
<td>2018</td>
<td>10.1007/s00253-018-8971-2</td>
</tr>
<tr>
<td>Kalawong, R; Wakayama, M; Anuntalabhochai, S; Wongsawad, C; Sangwijit, K</td>
<td>Comparison and Characterization of Purified Cellulase and Xylanase from Bacillus amyloliquefaciens CX1 and Bacillus subtilis B4</td>
<td>CHIANG MAI J SCI 0125 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim, MK; Kim, ET; Kim, SB; Jeong, HY; Park, BY; Srinivasan, S</td>
<td>Kurthia ruminicola SP nov., isolated from the rumen contents of a Holstein cow Probiotic Potential of Pediococcus pentosaceus LIR1, a Bacteriocinogenic Strain Isolated from Rumen Liquor of Goat (Capra aegagrus hircus) Characterization of Enterococcus faecalis JF85 and Enterococcus faecium YB9 isolated from Tibetan yak (Bos grunniens) for ensiling Pennisetum sinense Molecular cloning, purification, expression, and characterization of beta-1, 4-endoglucanase gene (CelSA) from Eubacterium cellulosolvens SP isolated from Holstein steers’ rumen Genome sequencing of Pediococcus acidilactici (NRCC1), a novel isolate from dromedary camel (Camelus dromedarius) rumen fluid Susceptibility of ruminal bacteria isolated from large and small ruminant to multiple conventional antibiotics Characterization of a xylanolytic bacterial strain C10 isolated from the rumen of a red deer (Cervus elaphus) closely described species Actinomyces succiniciruminis, A-glycerinolitolerans, and A-ruminicola The potential of Bacillus strains isolated from the rumen content of dairy cows as natural antibacterial and antioxidant agents for broilers Isolation and Characterization of N-acyl Homoserine Lactone-Producing Bacteria From Cattle Rumen and Swine Intestines Complete Genome Sequence of Actinobacillus succinogenes GXAS137, a Highly Efficient Producer of Succinic Acid Isolation and characterization of a novel gossypol-degrading bacteria Bacillus subtilis strain Rumen Bacillus Subtilis Administration of Streptococcus bovis isolated from sheep rumen digesta on rumen function and physiology as evaluated in a rumen simulation technique system Isolation and characterization of a new Methanoculleus bourgensis strain KOR-2 from the rumen of Holstein steers</td>
<td>J MICROBIOL 2526 2018 8973 2018 0960 2018 0982 2018 0823 2018 0573 2018 0573 2018 0573 2018 0573 2018 0573 2018 0573</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li, JF; Yuan, XJ; Desta, ST; Dong, ZH; Mugabe, W; Shao, T</td>
<td></td>
<td>FOOD BIOTECHNOL 5436 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, T; Seo, S; Shin, T; Cho, BW; Cho, S; Kim, B; Lee, S; Ha, JK; Seo, J</td>
<td></td>
<td>BIORESOURCE TECHNOLOGY 8524 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranjan, R; Pandit, RJ; Duggirala, SM; Joshi, CG; Sharma, S; Patil, NV Salem, AZM; Khusro, A; Elghandour, MM; Olivares-Perez, J; Rejas-Hernandez, S; Jimenez-Guillen, R</td>
<td></td>
<td>VETERINARY WORLD 8988 2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simunek, J; Killer, J; Sechovcova, H; Simunek, J; Pechar, R; Rada, V; Svec, P; Sediacek, I</td>
<td></td>
<td>ANIM AGR TECHNOL 2367 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugiharto, S; Yudiartiti, T; Isroli, I; Widiatusti, E; Wahyuni, HI; Suprijatna, E</td>
<td></td>
<td>ANIM AGR TECHNOL 2367 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Y; Zhou, MX; Hardwidge, PR; Cui, HM; Zhu, GQ</td>
<td></td>
<td>ANIM AGR TECHNOL 2367 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, HY; Shen, NK; Qin, Y; Zhu, L; Li, Y; Wu, JF; Jiang, MG</td>
<td></td>
<td>ANIM AGR TECHNOL 2367 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, YH; Zhang, ZY; Dai, L; Liu, Y; Cheng, MJ; Chen, LJ</td>
<td></td>
<td>ASIAN AGR TECHNOL 2367 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battumur, U; Lee, M; Bae, GS; Kim, CH</td>
<td></td>
<td>ASIAN AGR TECHNOL 2367 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Journal</td>
<td>Volume</td>
<td>Issue</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>-----------------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Bohra, V; Tikariha, H; Dafale, NA</td>
<td>Genomically Defined Paenibacillus polymyxa ND24 for Efficient Cellulase Production Utilizing Sugarcane Bagasse as a Substrate</td>
<td>APPL BIOCHEM BIOTECH</td>
<td>0273</td>
<td></td>
</tr>
<tr>
<td>Dadheech, T; Jakhesara, S; Chauhan, PS; Pandit, R; Hinsu, A; Kunjadiya, A; Rank, D; Joshi, C</td>
<td>Draft genome analysis of lignocellulolytic enzymes producing Aspergillus terreus with structural insight of beta-glucosidases through molecular docking approach</td>
<td>INT J BIOL MACROMOL</td>
<td>0141</td>
<td></td>
</tr>
<tr>
<td>Dubrovin, A; Dunyashev, T; Ilina, L; Filippova, V; Laishiev, K</td>
<td>Isolation and partial characterization of ruminococcus flavefaciens from the rumen of tamarindus rumen microflora Identification and characterization of yeasts from bovine rumen for potential use as probiotics</td>
<td>RES RURAL DEV</td>
<td>0403</td>
<td></td>
</tr>
<tr>
<td>Fernandes, T; Carvalho, BF; Mantovani, HC; Schwan, RF; Avila, CLS</td>
<td>Isolation and Characterization of Potential Cellulose Degrading Bacteria from Sheep Rumen</td>
<td>J APPL MICROBIOL</td>
<td>0507</td>
<td></td>
</tr>
<tr>
<td>Guder, DG; Krishna, MSR</td>
<td>Isolation, characterization and conjugated linoleic acid production potential of bifidobacterial isolates from ruminal fluid samples of Murrah buffaloes</td>
<td>ANAEROBE MICROBIOLOGY RESOURCE ANNOUNCEMENTS</td>
<td>0964</td>
<td></td>
</tr>
<tr>
<td>Kang, S; Denman, S; Mcsweeney, C</td>
<td>Isolation, characterisation and annotation of Oribacterium SP. Strain C9, isolated from a Cattle Rumen</td>
<td>J PURE APPL MICROBIO</td>
<td>1075</td>
<td></td>
</tr>
<tr>
<td>Liu, JG; Liu, ZY; Liu, YC; Hao, M; Hou, XZ; Lunar, L; Hernandez, D; Silva, HV; Cobos, MA; Gonzalez, SS; Cortez, C; Pinto, R; Ramirez, E; Pinos, JM; Vargas, JM</td>
<td>Draft Genome Sequence and Annotation of Sporanaerobacter acetigenes Strain F-12, isolated from a Cattle Rumen</td>
<td>BIORESOURCES REV COLOMB CIENC PEC</td>
<td>2126</td>
<td></td>
</tr>
<tr>
<td>Miguel, MA; Lee, SS; Mamuad, LL; Choi, Y; Jeong, CD; Son, AR; Cho, KK; Kim, ET; Kim, SB; Suk, S</td>
<td>Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with Clostridium saccharolyticum</td>
<td>J MICROBIOL BIOTECHN</td>
<td>1017</td>
<td></td>
</tr>
<tr>
<td>Pimentel, MFA; Paula, DAJ; Riet-Correa, F; Dutra, V; Nakazato, L</td>
<td>Analysis of Cellulolytic Bacterial Flora in the Rumen of Inner Mongolian Sheep</td>
<td>BIORESOURCES REV COLOMB CIENC PEC</td>
<td>0345</td>
<td></td>
</tr>
<tr>
<td>Raza, A; Bashir, S; Tabassum, R</td>
<td>Evaluation of Cellulases and Xylanases Production from Bacillus spp. Isolated from Buffalo Digestive System</td>
<td>KAFKAS UNIV VET FAK</td>
<td>6045</td>
<td></td>
</tr>
</tbody>
</table>
2020/3/1

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>DOI</th>
<th>Published Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sabino, YNV; Fochat, RC; Lima, JCF; Ribeiro, MT; Arcuri, PB; Carneiro, JD; Machado, MA; Reis, DRD; Machado, ABF; Hungaro, HM; Ribeiro, JB; Paiva, AD</td>
<td>Antibacterial activity and lantibiotic post-translational modification genes in Streptococcus spp. Isolated from ruminal fluid Assessment of probiotic effects of isolated Megasphaera elsdenii strains in Mehraban sheep and Holstein lactating cows</td>
<td>ANN MICROBIOL</td>
<td>10.1007/s13213-018-1407-2</td>
<td>2020/1/3</td>
</tr>
<tr>
<td>Sedighi, R; Alipour, D</td>
<td>Propionibacterium ruminiferarium SP. Nov., isolated from cow rumen fibrous content Isolation and identification of phosphate solubilizing bacteria from indigenous microorganisms (IMO) of cow rumen in East Java, Indonesia as eco-friendly biofertilizer Electricity production of microbial fuel cells BY degrading cellulose coupling with CR(VI) removal</td>
<td>ANIM FEED SCI TECH</td>
<td>10.1016/j.anifeedsci.2019.01.007</td>
<td>2020/1/3</td>
</tr>
<tr>
<td>Vaidya, JD; Horning, BVH; Smidt, H; Edwards, JE; Plugge, CM</td>
<td>The isolation and Genome Sequencing of Five Novel Bacteriophages From the Rumen Active against butyrivibrio fibrisolvens Effects of Lactic Acid Bacteria Isolated From Rumen Fluid and Feces of Dairy Cows on Fermentation Quality, Microbial Community, and in vitro Digestibility of Alfalfa Silage Complete Genome Sequencing and Transcriptome Analysis of Nitrogen Metabolism of saccharinibrio dextrinosolvens strain Z6 Isolated From Dairy Cow Rumen Assessing anaerobic gut fungal diversity in herbivores using16S rDNA subunit sequencing and multi-year isolation Seven new Neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum Complete genome analysis of a novel mucolytic bacterium, Prevotella mucinisolvens SP. Nov., isolated from bovine rumen epithelium Characterization and survey in cattle of a rumen Pyrimadobacter SP. Which degrades the plant toxin fluorooacetate Reductive acetogens isolated from ruminants and their effect on in vitro methane mitigation and milk performance in Holstein cows Low-Carbohydrate Tolerant LAB Strains Identified from Rumen Fluid: Investigation of</td>
<td>JHAZARD MATER</td>
<td>10.1016/j.jhazmat.2020.122184</td>
<td>2020/1/3</td>
</tr>
<tr>
<td>Hailemariam, S; Zhao, SG; Wang, JQ; Hanafy, RA; Johnson, B; Youssef, NH; Elshahed, MS</td>
<td>From Dairy Cow Rumen Assessing anaerobic gut fungal diversity in herbivores using16S rDNA subunit sequencing and multi-year isolation Seven new Neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum Complete genome analysis of a novel mucolytic bacterium, Prevotella mucinisolvens SP. Nov., isolated from bovine rumen epithelium Characterization and survey in cattle of a rumen Pyrimadobacter SP. Which degrades the plant toxin fluorooacetate Reductive acetogens isolated from ruminants and their effect on in vitro methane mitigation and milk performance in Holstein cows Low-Carbohydrate Tolerant LAB Strains Identified from Rumen Fluid: Investigation of</td>
<td>FRONT MICROBIOL</td>
<td>10.3389/fmicb.2020.01826</td>
<td>2020/1/3</td>
</tr>
<tr>
<td>Hanafy, RA; Lanjekar, VB; Dhakephalkar, PK; Callaghan, TM; Dagar, SS; Griffith, GW; Elshahed, MS; Youssef, NH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guo, LN; Yao, DD; Li, DX; Lin, YL; Bureenok, S; Ni, KK; Yang, FY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Journal/Source</td>
<td>Volume/Issue/Publication Date</td>
<td>DOI/ARCID/ISBN</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Probiotic Activity and Legume Silage Fermentation</td>
<td>Li, Y; Guo, BZ; Li, C; Wang, WW; Wu, ZK; Liu, GH; Cai, HY</td>
<td>ANIMALS</td>
<td>2076</td>
<td>10.3390/ani10071144</td>
</tr>
<tr>
<td>Isolation of a Highly Efficient Antigenic-Protein-degrading bacillus amyloliquefaciens and Assessment of Its Safety</td>
<td>Mishra, P; Tulsani, NJ; Jakhesara, SJ; Dafale, NA; Patil, NV; Purohit, HJ; Koringa, PG; Joshi, CG</td>
<td>ARCH MICROBIOL</td>
<td>2615</td>
<td>10.1007/s00203-020-01897-w</td>
</tr>
<tr>
<td>Exploring the eukaryotic diversity in rumen of Indian camel (Camelus dromedarius) using 18S rRNA amplicon sequencing</td>
<td>Peters, M; Wohlfse, P</td>
<td>INTERNATIONAL SYMPOSIUM OF INNOVATIVE BIO-PRODUCTION INDONESIA ON BIOTECHNOLOGY AND BIOENGINEERING 2019</td>
<td>2076</td>
<td>10.1088/1755-1315/439/1/012019</td>
</tr>
<tr>
<td>The deliberate killing of a sheep with a fire extinguisher: a case report and experimental reconstruction study</td>
<td>Ratnakomala, S; Perwitasari, U; Yopi Stabel, M; Hanafy, RA; Schweitzer, T; Greif, M; Aliyu, H; Flad, V; Young, D; Lebuhn, M; Elshahed, MS; Ochsenreither, K; Yousse, NH</td>
<td>MICROORGANISMS</td>
<td>1755</td>
<td>10.3390/microorganisms811734</td>
</tr>
<tr>
<td>The amylase production BY Actinobacteria isolated from rumen fluid Aestipascumycesdupliciliberans gen. Nov, SP. Nov, the First Cultured Representative of the Uncultured SK4 Clade from Aoudad Sheep and Alpaca</td>
<td>Szczerba, H; Komon-Janczara, E; Dudziak, K; Wasko, A; Targonski, Z</td>
<td>BIOTECHNOLOGICAL BIOFUELS</td>
<td>1307</td>
<td>10.1186/s13068-020-01739-3</td>
</tr>
<tr>
<td>A novel biocatalyst Enterobacter aerogeneslu2, for efficient production of succinic acid using whey permeate as a cost-effective carbon source</td>
<td>Tyagi, AK; Kumar, S; Choudhury, PK; Tyagi, B; Tyagi, N</td>
<td>ASIAN AUSTRALIAN JOURNAL OF MICROBIOLOGY</td>
<td>2076</td>
<td>10.5713/ajas.19.0080</td>
</tr>
<tr>
<td>Enzymatic profiles of hydrolysis of lignocellulosic materials from Aspergillus terres strains isolated from the rumen of beef cattle from Brazil</td>
<td>Alves, JMD; Rocha, PJ; Duarte, ER; Maia, HAR; Freitas, CES; Pimenta, MAS; Valerio, HM</td>
<td>BIOTECHNOLOGICAL AGRI-BIOTECH</td>
<td>1754</td>
<td>10.1016/j.bcab.2021.102143</td>
</tr>
<tr>
<td>Buffalo rumen harbours diverse thermotolerant yeasts capable of producing second-generation bioethanol from lignocellullosic biomass</td>
<td>Avchar, R; Lanjekar, V; Khirsagar, P; Dhakephalkar, PK; Dagar, SS; Baghela, A</td>
<td>RENEW ENERG</td>
<td>1878</td>
<td>10.1016/j.renene.2021.04.002</td>
</tr>
<tr>
<td>Biochemical properties of partially purified surfactant-tolerant alkalophilic endo beta-1,4 xylanase and acidophilic beta-mannanase from bacteria resident in ruminants' guts</td>
<td>Badejo, OA; Olaniyi, OO; Ayodeji, AO; Lawal, OT</td>
<td>BIOTECHNOLOGICAL AGRI-BIOTECH</td>
<td>1878</td>
<td>10.1016/j.bcab.2021.101982</td>
</tr>
<tr>
<td>PCR screening reveals abundance of bovicin-like bacteriocins among ruminal Streptococcus spp. Isolated from beef and dairy cattle</td>
<td>DE Sousa, BL; Azevedo, AC; Oliveira, IMF; Bento, CBP; Santana, MF; Bazzolli, DMS; Mantovani, HC</td>
<td>J APPL MICROBIOL</td>
<td>5072</td>
<td>10.1111/jam.15069</td>
</tr>
<tr>
<td>Title</td>
<td>Journal</td>
<td>Volume</td>
<td>Issue</td>
<td>Pages</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Paper Title</td>
<td>Page</td>
<td>Year</td>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Biological Transformation of Zearalenone BY Some Bacterial Isolates</td>
<td>2072</td>
<td>2021</td>
<td>10.3390/toxins13100712</td>
<td></td>
</tr>
<tr>
<td>Associated with Ruminant Isolates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening and Identification of Lactobacillus curvatus Z12 From Rumen Fluid</td>
<td>2297</td>
<td>2021</td>
<td>10.3389/fvets.2021.753527</td>
<td></td>
</tr>
<tr>
<td>of AN Adult Female Sika Deer as a Potential Probiotic for Feed Additives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characterization and identification of cellulose-</td>
<td>1364</td>
<td>2021</td>
<td>10.1080/japMicrobiol.130224</td>
<td></td>
</tr>
<tr>
<td>producing Enterococcus species isolated from Tibetan yak (Bos grunniens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rumen and their application in various forage silages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Dating of the Emergence of Anaerobic Rumen Fungi and the Impact</td>
<td>5072</td>
<td>2019</td>
<td>10.1128/mSystems.00247-19</td>
<td></td>
</tr>
<tr>
<td>of Laterally Acquired Genes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methane fermentation in the rumen of cattle</td>
<td>1385</td>
<td>2021</td>
<td>10.1111/jam.15014</td>
<td></td>
</tr>
<tr>
<td>In Vitro Studies on Methanogenic Rumen Bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanobrevibacter millerae sp. nov. and Methanobrevibacter alleleyae sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n., methanogens from the ovine and bovine rumen that can utilize</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>formate for growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapidly growing rumen methanogenic organism that synthesizes coenzyme M</td>
<td>5026</td>
<td>2007</td>
<td>10.1099/jds.0.63984-0</td>
<td></td>
</tr>
<tr>
<td>and has a high affinity for formate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The complete genome sequence of the methanogenic archaean ISO4-H5 provides</td>
<td>2240</td>
<td>1984</td>
<td>10.1128/aem.48.1.81-87.1984</td>
<td></td>
</tr>
<tr>
<td>insights into the methylophytic lifestyle of a ruminal representative of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the Methanomassiliicoccales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Genome Sequence of Methanogenic Archaeon ISO4-G1, a Member of</td>
<td>1944</td>
<td>2016</td>
<td>10.1186/s40793-016-0183-5</td>
<td></td>
</tr>
<tr>
<td>the Methanomassiliicoccales, isolated from Sheep Rumen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STANDARDS IN GENOMIC SCIENCES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENOMES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANNOUNCEMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- DOI: Digital Object Identifier
- Page numbers are not provided directly, assuming standard page numbers for journal articles.