

Rumen microbial genomics: from cells to genes (and back to cells)

Milka Popova, Ibrahim Fakih, Evelyne Forano, Anne Siegel, Rafael Muñoz-Tamayo, Diego Morgavi

► To cite this version:

Milka Popova, Ibrahim Fakih, Evelyne Forano, Anne Siegel, Rafael Muñoz-Tamayo, et al.. Rumen microbial genomics: from cells to genes (and back to cells). CAB Reviews Perspectives in Agriculture Veterinary Science Nutrition and Natural Resources, 2022, 2022, 10.1079/cabireviews202217025. hal-03929845

HAL Id: hal-03929845 https://hal.inrae.fr/hal-03929845

Submitted on 12 Sep 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Rumen microbial genomics: from cells to genes (and back to cells)
2 3 4	Milka Popova ^{1*} , Ibraim Fakih ^{2,3} , Evelyne Forano ² , Anne Siegel ⁴ , Rafael Muñoz-Tamayo ³ , Diego P. Morgavi ¹
5	
6	¹ Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
7	² Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
8	³ Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 75005, Paris, France
9	⁴ Université Rennes, Inria, CNRS, IRISA, Dyliss team, Rennes, France
10	
1	* Corresponding author milka.popova@inrae.fr
12	

13 Abstract

14 The rumen harbours countless bacteria, archaea, ciliated protozoa, fungi, and viruses: various microorganisms that have established multiplicity of relationships to efficiently digest complex plant fibres and polysaccharides to 15 produce volatile fatty acids (VFAs), microbial proteins, and vitamins, essentials for the host's health, growth and 16 17 performances. Recent studies using omics-based techniques have revealed that changes in rumen microbiota are associated with changes in ruminants' production and health parameters such as feed efficiency, methane yield, milk 18 composition and ruminal acidity. However, traditionally, rumen microbes were unveiled using anaerobic culture-19 based techniques, which are at the origin of most of the basic concepts and understanding of the rumen functioning. 20 Isolating and culturing microbes is frequently more difficult, time-consuming and requires more training than 21 molecular techniques, which explains why culture seems to be abandoned in favour of sequencing. Microbial 22 cultures enable the study of substrate preferences and product output, essential growth requirements, biocide 23 production, and susceptibilities; obtaining a pure culture also enables genome sequencing of these strains. We 24 25 propose here, after a brief report of published rumen isolates, a comprehensive review of current advances in molecular methods to identify novel rumen microbes and discuss how culturing and mathematics could enhance our 26 understanding of rumen microbiology. 27

28 Key words: ruminants, microbiota, pure cultures, modelling, genomics

29 **Review methodology**

This review is reported under the PRISMA 2020 guidelines for a systematic review. We conducted a comprehensive Web of Science search, using search terms "rumen" and "isolate" spanning the period 1945-2022 for an overview of 32 culture-based studies exploring rumen microbiota. Further, we searched academic databases (PubMed, Scopus,

33 Web of Science) to identify articles reporting enhanced genomic and mathematic evaluation of rumen microbiota.

3435 Introduction

Ruminant livestock systems make both positive and negative contributions to the development of sustainable agriculture. Ruminants convert roughages into high-quality proteins for human consumption while adding value to poor or erodable lands. At the same time, ruminant production is criticised for its negative impact on the environment and feeds that can be used for human consumption. Under the menace of climate change, ruminants face the challenges of feed scarcity, reduced productivity and increased health burden.

41 Ruminants have adapted their digestive systems to eat only plants, and they are most efficient to retrieve energy from the plant cell walls than monogastric herbivores. Their stomach has four separate compartments with a 42 distinctive function, allowing them to digest without thoroughly chewing. The partially chewed plant material is 43 further processed by microbes in the rumen section of the stomach. Microbes break down organic matter and 44 ferment it to produce volatile fatty acids, the ruminants' primary energy source. Rumen microorganisms have a 45 46 critical role in ruminant nutrition and health, but, on the downside, they generate methane -a potent greenhouse gas and contribute to ammonia emissions. Research in rumen microbiota started with the pioneering work of Robert 47 Edward Hungate more than 50 years ago [1, 2]; the growing evidence of the importance of rumen microbes for 48 sustainable livestock brought researchers to consolidate efforts in 2011 by forming The Rumen Microbial Genomics 49 Network. The network serves as a global collaborative platform for researchers, employing microbial genomics 50 51 methodologies to understand the rumen microbiome better to address global agricultural concerns. Several international projects underpin the network: Hungate 1000 [3, 4], Global Rumen Census [5], RuminOmics [6, 7], 52 RumenPredict [8], MASTER, and HoloRuminant. These projects contributed to our enhanced comprehension of the 53 rumen microbial ecosystem. 54

The rumen contains representatives of all domains of life: Bacteria, Archaea, Eucarya. Bacteria are the most 55 abundant and diverse; however, a diverse range of protozoa can also be found. Anaerobic fungi are also widely 56 distributed, and bacteriophages are integral to the microbiota. Archaea are the only group producing methane. 57 Numerous reviews address the composition of rumen microbiota in different ruminant species and at different 58 physiological stages [4, 6-12], with the main focus being on Bacteria and Archaea as of their implication in feed 59 digestion and methane production. But scientists agree that gaps of knowledge remain. This review stresses the 60 limited understanding of individual microbes, as specific species could be the key to improving the sustainability of 61 ruminant production systems. We also discuss research challenges to improve rumen microbial understanding, 62 including opportunities for developing enhanced predictive models of rumen metabolism. 63

64 Cultured rumen microbes

In 1959 [13] and later in 1964 [14], it was suggested that most of the functionally important bacterial 65 groups had already been described. Rumen bacteria (and archaea - classified at the time within bacteria) were 66 initially classified according to specific wall staining tests into Gram-negative or Gram-positive species and their 67 ability to grow on certain substrates or produce specific metabolites. Hungate [15] proposed to divide them into 68 cellulolytic, amylolytic, hemicellulolytic, saccharolytic, proteolytic, methanogenic, lipolytic, and bacteria that use 69 the products formed by other microbes. This classification was recently brought back in the spotlight by the 70 proposal of the functional group concept [16], dividing microorganisms into groups based on metabolic inputs and 71 outputs and irrespective of the taxonomy. However, this implies that an in-depth knowledge of microbial 72 physiology is accumulated. The time and effort required to isolate and identify pure rumen microbes in cultures 73 preclude this technique as a tool for cataloguing the complex rumen microbiota; still, the culture of isolates alone or 74 in defined mixtures remain essential for the understanding of critical mechanistic factors governing microbial 75 functionning. Through the growth of pure cultures under conditions similar to those of the rumen, it is possible to 76 infer information on the role of these strains in their complex natural environment. This information derived from 77 pure culture alone or simplified combinations can be used to formulate a hypothesis to be tested in the diverse 78 community of the rumen. 79

In this context, we conducted a systematic literature survey for microbial isolates from the rumen (Table1). The survey was performed in Web of Science (WoS) (accessed January 2022) with the search terms "rumen" and "isolate", spanning 1945-2022. We examined the resultant titles, abstracts, and full-text for relevance to the topic and extracted the relevant information from each study. However, the WoS search missed some important documents. Therefore, we reviewed the cited references in all relevant publications and journal articles not listed in WoS and extra references known to the authors. In addition, we included all ruminant animal species but excluded isolates from faecal contents.

Following the development of anaerobic techniques for the culture of strictly anaerobic bacteria in the 1950s [17], a renewed interest can be observed in the isolation of representative rumen microbes from the beginning of the 90s (Figure 1). Most of the studies included in the survey employed the classical "most probable number" [18] or the "roll-tube method" developed by R.E. Hungate [19]. In our survey, we counted more than 14 000 isolates. More than 80% of the articles and the large majority of the isolates were Bacteria (Figure 2), anaerobic fungi of the Neocallimastigomycota phylum were the second most reported (348 isolates). In addition, we enumerated 25 Archaea strains, 18 bacteriophages isolated from rumen contents and 15 protozoa.

The most frequently studied bacterial strains belong to the Firmicutes phylum, 22% of all isolates (15% were lactic acid bacteria characterised only by phenotypic screening), Fibrobacter far behind, represented 0.3%. The large majority, 65%, of the bacterial strains remained unclassified compared to only 0.4% of isolated fungi. This can be easily explained by the research strategy adopted in papers reporting many initial bacterial isolates. These pure strains were further screened for relevant phenotypic properties, as enhanced fibre degradation activity, detoxification potential (mainly tannins metabolism), fatty acids metabolism (mainly CLA-related), lactic acid

production or consumption or acetogenesis; from this initial screening, only the best performers were retained and 100

- further characterised morphologically and taxonomically. Regretfully, non-selected isolates have probably been lost, 101
- and the selected strains' fate is also uncertain. In addition, not all the isolated strains in "rumen" labs worldwide have 102
- been mentioned in publications, and many strains may still reside in freezers. Nevertheless, such a large panel of 103
- deeply characterised microbes constitutes an excellent point of departure for exploring fundamental microbial 104
- 105 interactions. To improve our understanding of cultured rumen microbes, in 2011, the Hungate1000 project was
- launched. Coordinated and led by the RMG network, this initiative aimed at generating a reference set of 1000 106
- microbial genomes cultivated from various ruminant host species [3, 4]. At that time, only 14 bacteria and one 107
- methanogen from the rumen had their genomes sequenced. The project so far has produced more than 500 108
- sequenced genomes, constituting the Hungate genome catalogue [3] (480 are bacterial, 21 are Archaea and 7 109
- Viruses). Additionally, 221 cultured genomes were produced within independent studies [12]. 110

As for the identified isolates, the Hungate1000 database is dominated by bacteria from the Firmicutes 111 phylum, while Bacteroidetes members are under-represented (Figure 3) [3]. Additionally, there is only one 112 113 Fibrobacteres-related strain, Fibrobacter succinogenes HM2, while in our survey, we numbered more than 50 strains isolated from bovine or sheep rumen, 38 of them having already their genomes sequenced [20]. F. succinogenes is a 114 remarkably proficient fibre degrading bacterium whose enzymatic system has been extensively studied [20-24]. F. 115 116 succinogenes S85 has been shown as an excellent model for exploring the species' fibrolytic traits, as the strain has 117 preserved its enzymatic characteristics compared to numerous phylogenetically close isolates [23]. In a comparative 118 pure culture assay, F. succinogenes strains S85 and A3C digested more cellulose than the other two prominent rumen cellulolytic bacteria: Ruminococcus albus and R. flavefaciens [25]. Furthermore, a recent in vivo work 119 showed that F. succinogenes S85 was outcompeted by Ruminococcus strains in gnotobiotic model lambs [26]. 120 However, the authors noticed a significant decrease in *F.succinogenes* numbers and transcriptional activity using 121 classical microbiological tools and high throughput sequencing techniques and highlighted different enzymatic 122 strategies for cellulose degradation. This work was built on previously whole sequenced genomes and the 123 124 characterisation, using pure cultures, of genes essential to fibre digestion. Therefore, it remains decidedly clear that the pure culture approach generates valuable data for precise phylogenetic and phenotypic characterisation of rumen 125 microbes and for exploring microbial interaction in fully-controlled conditions. 126

- The Hungate collection is far from complete [3]. However, in a comparative study based on the 16S rRNA 127 gene sequences, the authors estimated that the Hungate dataset covered 75% of the microbial genera retrieved in the 128 rumen [3]. This is a pretty good achievement regarding that the estimated percentage of rumen prokaryotes that can 129 130 be cultured is only 40% [27]. Despite that, Zehavi et al. noticed that less than 4% of their isolates were represented 131 in the Hungate collection in their considerable isolation effort. In this regard, pursuing the isolation of rumen microbes for enriching culture collections is a challenge in the domain. Culture collections are critical for the 132 conservation and long term utilisation of biological resources; they also support research by supplying biological 133 134 material. High throughput culturomics approaches could help isolate new bacteria belonging to the rare biosphere or
- poorly represented taxa [27]. 135

136 Metataxonomics of rumen microbes

Amplicon sequencing of the 16S rRNA gene is the most widely used approach to study rumen microbiota. 137 However, scientists employed various primers (targeting variable regions V1, V3, V4, V5) and assigned taxonomy 138 using various databases (GreenGenes, Ribosomal Database Project (RDP), SILVA), and various pipelines (mothur, 139 QIIME, DADA2 ...). In 2018, Denman et al. reviewed the limitations of these techniques, from the primer selection 140 through the sequencing error removal and the OTU-clustering step to the accuracy of the databases for taxonomic 141 142 affiliation. They argued that some of the weaknesses could be explained by the incorrect use of bioinformatics tools. Redoubling our efforts with a more precise application of these technologies will result in a complete and deep 143 144 understanding of rumen microbes' compositional and functional capability [28]. The response was not long in coming, as since several research groups undertook the assessment of protocols for sample processing [29] and data 145 analysis [30, 31]. Establishing standard operating procedures for analysing rumen microbiota is also embedded in 146 147 collaborative projects such as RumenPredict, MASTER, HoloRuminant. A guide for database choice in rumen amplicon studies [31] employed a rumen-specific reference standard to compare 16S rRNA database classifications. 148 This rumen reference standard comprised 16 bacterial and archaeal full-length 16S rRNA and 9 protozoal 18S 149 rRNA, and libraries were prepared following a previously described sample preparation guide [29] with primers 150 targeting the V4 region [32]. Taxonomic classification was performed against RDP (version 11.5), the Genome 151 Taxonomy Database (GTDB; release date 20/11/2018), SILVA (version 132) and RefSeq + RDP (release date 152 14/05/2018); the latter two giving the more accurate classification at the genus level. 153

Meanwhile, amplicon sequencing enriched our knowledge of rumen microbial diversity. A meta-analysis of 154 155 curated 16S rRNA gene sequences showed that Firmicutes, Bacteroidetes and Proteobacteria are the dominant phyla 156 (93% of all sequences) out of 19 detected [33]. For Archaea, the Methanobacteria were the most abundant. The Rumen Microbial Census network conducted an extensive investigation of the rumen microbial community (742 157 samples from 32 ruminant species from 35 countries) to identify the core microbiota and elucidate variations in the 158 rumen microbiome linked to ruminant species, diet, and geographical location [5]. This large scale survey confirmed 159 the crucial role of the diet in shaping rumen microbial profile, undoubtedly explained by the amount, physical and 160 chemical nature of feeds supplied. 161

On the other hand, the diet did not affect the methanogens population, with Methanobrevibacter 162 gottschalkii and Methanobrevibacter ruminantium nearly ubiquitous and representing 74% of the archaeal 163 sequences [5]. This complies with the ecological niche that methanogens occupy in the rumen as they use 164 fermentation end products from other microbial species as an energy source. Reports on fungal and protozoal 165 metataxonomy are more occasional. Neocallimastigomycota actively take part in the plant biomass degradation 166 ingested by the host animal and their divergence time concorded with the shift of ancestral mammals from primarily 167 168 insectivory to herbivory [34]. Morphological features and complex life cycle have entangle taxonomic classification of anaerobic fungi, but the use of marker genes made this task easier [35]. Kittelmann et al. [36, 37] used the 169 170 internal transcribed spacer (ITS1) as a taxonomic marker for describing the fungal community in New Zealand ruminants. Neocallimastix, Piromyces and Orpinomyces accounted for 60% of the detected genera, 24% belonging 171

- to novel clades. However, they highlighted that inter-animal variations are as high as 88%, pointing to the strong
- effect of the host and the diet. The high variations in ITS1 size and sequence questioned its accuracy [38, 39]; the potential of the large 28S rRNA subunit as a phylogenetic marker has also been explored [40].

175 Microbial profiling using the 16S rRNA amplicon approach provided valuable insights into the rumen ecosystem composition and its relationship with diet, feed efficiency, enteric methane emissions, milk quality, 176 acidosis or its establishment in early life [6-8, 10, 28, 41-43]. A significant step forward in understanding the 177 influence of microbial community structure on animal phenotype was achieved by identifying ruminotypes 178 associated with methane emissions. Three independent studies, one in sheep [44] and two in dairy cattle [45, 46], 179 established the link between high-methane production and species belonging to Ruminococcaceae, 180 Christensenellaceae and Lachnospiraceae. At the same time, low methane emissions runinotypes had higher 181 relative abundances of succinate producing bacteria [44-46]. More specifically, Ramayo-Caldas et al. highlighted 182 that an OTU classified as Succinivibrionaceae_UCG-001 was only present in low emitting cows. In another study, 183 the same OTU increased in abundance after calving, and authors linked it to the observed enhanced fermentations 184 185 [47]. The abundance of *Succinivibrionaceae*-family was also positively associated with propionate concentrations, feed efficiency [48] and milk protein [49]. Furthermore, strong positive and negative interactions at the 186 transcriptional level were reported between Succinivibrionaceae and other major bacterial and archaeal taxa from 187 188 the rumen [50]. All of the above studies support the idea that Succinivibrionaceae members play an essential role in the rumen due to their ecological and metabolic functions. However, the Hungate genome catalogue has only two 189 190 strains from the Succinivibrionaceae family (Ruminobacter amylophilus and Ruminobacter sp. RM87), and in our survey of cultured isolates, we found only one old article reporting the isolation of 7 Succinivibrio strains [51]. The 191 need arises to isolate more representatives of this taxon. The road is almost paved, as using binned metagenomic 192 data and metabolic predictions, Pope et al. in 2011 designed a defined medium for the for the culture of a 193 Succinivibrionaceae sp. that until then could not be grown axenically in the laboratory [52]. 194

Rumen Uncultured Genomes

The amplicon sequencing approach requires prior knowledge for the design of primers and taxonomic 196 affiliation, but accumulated data in this field made it a highly discerning tool for the phylogenetic description of 197 microbial environmental samples [53]. Nevertheless, functional diversity cannot be directly predicted from 198 phylogenetic diversity in microbial communities. Arguably, the emergence and expansion of metagenomics have 199 been one of the most impressive achievements in microbial ecology during the last decade. Metagenomics refers to 200 the study of genomic material found in environmental samples and offers access to the functional gene content of 201 microbial communities, providing a considerably more comprehensive description than metataxonomics. A 202 significant breakthrough of metagenomics is building metagenomic assembled genomes (MAGs). In this approach, 203 204 sequences are assembled into scaffolds, which are subsequently categorised into potential MAGs based on tetranucleotide frequencies, abundances, related marker genes, taxonomic alignments, and codon use [54]. In doing 205 206 so, we can identify novel species and get an insight into their contribution to microbial ecosystem dynamics.

Since 2011 with the first report of 446 rumen genome bins (and 15 draft genomes) [55], thousands of novel 207 MAGs were announced (251 by Parks et al. [56], 99 by Svartstrom et al. [57], 79 by Solden et al. [58], 5845 by 208 Stewart et al. [59, 60], 324 by Li et al. [61], 1200 by Wilkinson et al. [62], 391 by Glendinning et al. [63], 2809 by 209 Anderson & Fernando [64], 4960 in buffalos by Tong et al. [65], 719 by Peng et al. [66], 10373 by Xie et al. [12] 210 around the whole gastrointestinal tract and the list is not exhaustive). Close to 34 000 rumen MAGs were retrieved 211 212 from ten publicly available datasets [67]; 63% were seen in only one of the datasets, and no MAG was common in all datasets. In this work, the author stressed the need to have standardized procedures for MAGs and corresponding 213 metadata description and a common repository for sharing data. This is a sensible comment which complies with the 214 collaborative efforts of the Hungate1000 project and the SOP for metataxonomic analysis for standardized databases 215 and tools for ruminants gut microbiota analysis. 216

In some of the studies mentioned above, authors mapped the retrieved MAGs to the Hungate1000 genome 217 database. Li et al. [61] reported a mapping rate of 5.4% (similarity \geq 95%); 3% of the MAGs from Stewart et al. 218 [60] had \geq 95% protein identity with Hungate genomes, and this figure increased to 5.4% for similarity rates \geq 90%; 219 220 3.5% of the MAGs from Anderson & Fernando [64] had a similarity rate \geq 95% with genomes from the Hungate1000 database. Only eighteen from the 719 high-quality MAGs in Peng et al. [66] were classified as 221 eukaryotes and identified to belong to the fungal subphylum Neocallimastigomycota. Anyway, though this was the 222 223 first report of rumen fungal MAGs, the authors underlined that these MAGs are only 73% complete. Indeed, it is 224 particularly challenging to reconstruct eukaryotic genomes because of their size (>10 Mbp) and and the presence of 225 frequent repeat region with high GC content. Zehavi et al. [27] accentuated that sequencing approaches (metataxonomics was used in their study) target mainly abundant microbes. In contrast, culture can recover 226 abundant and rare microbes, as the ability to culture a microbe does on intrinsic characteristics and not on their 227 abundance [68]. Though this could partially explain the low coverage of the Hungate database by MAGs, the 228 question of whether these are real microbial species remains. In human faecal samples, MAGs recovered only 77% 229 of the core genes (shared by more than 90% of the present microbial species) and 50 % of the variable genes 230 231 (presents in more than 10%, but less than 90% of the population members) [69]. Moreover, human gut MAGs were shown to be systematically depleted for genes encoding essential functions supporting life [70]. MAGs produced 232 from short-read metagenomic datasets do seldom contain 16S genes. The use of long reads sequencing platforms 233 will bridge the gap between MAGs and cultured species, also with metataxonomics and function. Notwithstanding, 234 235 to confirm the real biological existence of MAGs, returning to culturing seems necessary. This was already done with the Succinovibrionaceae isolate of the wallaby [52], where the genome reconstruction allowed designing 236 appropriate culture media. Genomic analysis is particularly good at identifying genes and determining the functional 237 238 relationships between microbes. For validating phenotypic predictions based on genetic data, detecting novel 239 microbes, and investigating microbial interactions with precision, culture-based approaches are still required.

An alternative strategy to offset culture limitation is to isolate individual cells from fresh rumen contents as this was recently done for rumen ciliates [71]. Cells were selected based on morphological traits using electron microscope

and subjected to whole genome sequencing using multiple displacement amplification or whole transcriptome

- amplification. The analysis yielded 52 high quality ciliate genomes and allowed the classification of 22
- morphospecies in 13 genera and the of a new family Dasytrichidae [71].
- 245

Integrating culture-based approaches into the next generation models of the rumen microbiome

Rumen modelling started in the 70s with empirical and mechanistic developments [72]. Mechanistic rumen models have been consolidated in four modelling structures, namely Molly [73], CNCPS [74], COWPOLL [75] and Karoline [76], which have been incrementally improved over the years. However, the accuracy power to predict the rumen fermentation profile can still be ameliorated [77] by including improvements on physiological components (e.g., VFA absorption) [78], on rumen microbiota representation [79, 80], and the incorporation of thermodynamic, regulation and inhibition factors [81-85].

Kinetic modelling approaches are traditionally used for modelling microbial ecosystems. They are derived 254 255 from mass-balance principles and have two sets of components: the first defining the mathematical functions representing the kinetic rates of substrate utilization and product formation, and the second containing the 256 257 parameters that represent the stoichiometry of the reactions. Thus, incorporating data from pure-culture growth experiments in kinetic models detect key parameters, such as the maximal growth rate and the substrate affinity 258 constants, and give insights on ecological properties such as microbial coexistence and exclusion. For example, in 259 work with rumen methanogens, a kinetic modelling approach quantified the metabolic and energetic differences 260 between three species, but the kinetic parameters alone did not explain microbial coexistence. Indeed, adhesion 261 262 properties played a role in the ecology of methanogens in the rumen [86]. Current rumen fermentation models are in the category of kinetic models. In these models, the rumen microbiota is represented by macroscopic functional 263 groups derived from the study of the main reactions documented in the rumen literature. This representation is then 264 subjected to the modeller's choice and does not integrate data on microbial genomic knowledge. 265

Alternatively, genome-scale metabolic models (GEMs) allow the integration of microbial genomic 266 information. The core of a GEM of a microorganism is a graph that links the metabolites and biochemical reactions 267 that the organism can perform based on its genetic potential. This graph translates into a stoichiometry matrix of the 268 metabolism. The stoichiometry matrix results from a metabolic reconstruction based on annotation, orthology, gap-269 filling, and manual curation [87] of the sequenced genome based on a large set of databases and toolboxes (KEGG 270 [88], MetaCyc [89], BiGG [90], Pathway Tools [91], CarveMe [92], KBase [93] and AuReMe [94]). While models 271 of the human gut microbiota already incorporate microbial genomic knowledge [95], genome-scale modelling of the 272 rumen microbiota is at an infant stage [96, 97]. Recently, the GEM approach was used to investigate the interactions 273 between dominant rumen microbial species and their associated phages. Individual GEMs of *Ruminococcus* 274 flavefaciens, Prevotella ruminicola, and M. gottschalkii were constructed and integrated into a community model 275 using multi-level mathematical frameworks [97]. The model predicted previously unknown interactions among the 276 community members and the complementing role of viral genes in these interactions. In addition, the GEM of a 277

- 278 rumen bacterium involved in lactate metabolism, Megasphaera elsdenii, highlighted the high number of metabolic
- pathways for the production of VFAs [98, 99]. GEMS are often large networks with thousand metabolites and
- reactions. For example, our preliminary reconstruction study on F. succinogenes S85 (Fakih et al. 2021) resulted in
- a network with 1567 metabolic reactions and 1588 metabolites.

The next generation of rumen models should build on straightened microbial knowledge, but the systemic 282 understanding of microbial interactions and ruminal fermentation is still lacking. Therefore, in vitro culture systems 283 (batch and continuous) are valuable tools to study rumen metabolism, despite their limitations to mimic the rumen 284 ecosystem fully. These mini-consortia are suited for constructing tractable mathematical models with identifiable 285 properties (see, e.g., [101] for a discussion on parameter identifiability). For studying the rumen ecosystem, mini-286 287 consortia can be built by selecting microbial species covering the major rumen metabolic cascades [3, 16]. Species selection can be performed from microbial expert knowledge or synthetic ecology approaches targeting specific 288 metabolic functions or microbial interactions [102, 103]. 289

Moreover, species selection can be performed using Metage2Metabo (M2M) [96]. M2M identifies miniconsortia by reconstructing draft GEMs of all members of a microbial community, followed by the identification of the individual and community metabolic potentials, the determination of the cooperation potential (set of metabolites whose production only occur via microbial cooperation), and finally, outputs minimal communities and identifies key species. The originality of M2M is its capability for handling hundreds of genomes and MAGs. M2M was applied to 913 rumen MAGs of the cow rumen [59] and highlighted 127 key species, consisting of 20 essential symbionts and 107 alternative ones [96].

The construction of metabolic networks of key rumen species is an excellent resource for studying the 297 rumen microbial ecosystem via constraint-based reconstruction and analysis (COBRA) methods. COBRA 298 approaches overcome the need to define kinetic rates and their parameters by assuming that internal metabolism 299 operates at steady-state conditions. Genome information and COBRA methods provide analytical tools for (1) 300 assisting the design of cultivation media allowing the study of uncultured gut bacteria [52], (2) designing strategies 301 302 targeting the inhibition of methanogens in genome-sequenced rumen microbes such as *M. ruminantium* [104], (3) selecting probiotics to enhance rumen function and (4) enhancing our understanding on the robustness of the rumen 303 ecosystem linked to its resilience and functional redundancy [105]. 304

Modelling the rumen microbial ecosystem shares similar challenges to those discussed by [95] and [103] to model human gut microbiota. GEMS are often large networks with thousand metabolites and reactions. Model reductions are needed to construct dynamic parsimonious metabolic models of key rumen microbes within miniconsortia. Individual GEMs can be reduced using dedicated algorithms [106, 107] and exploit transcriptomic data to select active pathways. Reduced GEMs can be further decomposed into their elementary flux modes (EFMs) [108]to derive macroscopic reactions of the rumen fermentation, as it has been in studies on microalgae and yeast metabolism [109, 110]. Rumen modelling can then capitalize on the advances done in other ecosystems (e.g., human 312 gut, engineering reactors). Finally, interdisciplinary research is paramount to get the most out of metabolic models

and culture systems, implying rumen microbiologists, computational biologists, and mathematical modellers.

314 Conclusion

- 315 Advances in next-generation sequencing technologies coupled with sophisticated metagenomics and phylogenetic
- 316 methodologies have radically altered our perceptions of microbial diversity. However, our inability to cultivate
- 317 representatives for many newly identified lineages contrasts with the rapid expansion of genomic data, which has led
- to a better knowledge of archaeal and bacterial diversity and metabolic requirements. As a result, most of what we
- now know about rumen microbes comes from a small number of well-studied cultured lineages or reconstructed
- 320 genomes from uncultured lineages. Even though this period of rapid genome-driven discovery has yielded numerous
- 321 critical new insights into rumen microbial life, it is critical to isolate and culture species from these uncultured
- 322 lineages to test genome-based predictions about their cell biology and physiology to comprehend their ecological
- 323 roles fully.

324 Acknowledgements

325 Ibrahim Fakih was the recipient of an INRAE-Lallemand PhD fellowship. The INRAE part of the fellowship was

- 326 supported by the INRAE metaprogramme Holoflux.
- 327
- 328 329

330 **References**

- 331
- Hungate RE. The rumen bacteria. In: Hungate RE, editor. The Rumen and its Microbes:
 Academic Press; 1966. p. 8-90.
- 334 2. Hungate RE. The rumen protozoa. In: Hungate RE, editor. The Rumen and its Microbes:
- Academic Press; 1966. p. 91-147.
- Seshadri R, Leahy SC, Attwood GT, Teh KH, Lambie SC, Cookson AL, et al. Cultivation and
 sequencing of rumen microbiome members from the Hungate1000 Collection. Nature Biotechnology
 2018;36(4):359-67.
- 4. Creevey CJ, Kelly WJ, Henderson G, Leahy SC. Determining the culturability of the rumen
 bacterial microbiome. Microbial Biotechnology 2014;7(5):467-79.
- 5. Henderson G, Cox F, Ganesh S, Jonker A, Young W, Global Rumen Census C, et al. Rumen
 microbial community composition varies with diet and host, but a core microbiome is found across a wide
 geographical range. Scientific Reports 2015;5:14567.
- 6. Wallace RJ, Snelling TJ, McCartney CA, Tapio I, Strozzi F. Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism. Genetics
- 346 Selection Evolution 2017;49(1):9.
- Tapio I, Snelling TJ, Strozzi F, Wallace RJ. The ruminal microbiome associated with methane
 emissions from ruminant livestock. Journal of Animal Science and Biotechnology 2017;8(1):7.
- 8. Huws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE, Popova M, et al. Addressing global
- ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future.
- 351 Frontiers in microbiology 2018;9:2161.

9. Morgavi DP, Forano E, Martin C, Newbold CJ. Microbial ecosystem and methanogenesis in 352 ruminants. animal 2010;4(7):1024-36. 353 Morgavi DP, Popova M, Yáñez-Ruiz DR, Forano E. Colonization and establishment of the rumen 10. 354 microbiota opportunities to influence productivity and methane emissions. In: McSweeney CS, Mackie 355 RI, editors. Improving rumen function: Burleigh Dodds Science Publishing Limited; 2020. p. 862. 356 Mizrahi I, Wallace RJ, Moraïs S. The rumen microbiome: balancing food security and 11. 357 environmental impacts. Nature Reviews Microbiology 2021;19(9):553-66. 358 12. Xie F, Jin W, Si H, Yuan Y, Tao Y, Liu J, et al. An integrated gene catalog and over 10,000 359 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome 360 2021;9(1):137. 361 13. Bryant MP. Bacterial species of the rumen. Bacteriol Rev 1959;23(3):125-53. 362 14. Hungate RE, P BM, A MR. The rumen bacteria and protozoa. Annual Review of Microbiology 363 1964;18(1):131-66. 364 Hungate RE. Ruminant functions related to rumen microbial activity. In: Hungate RE, editor. The 15. 365 Rumen and its Microbes: Academic Press; 1966. p. 148-205. 366 Moraïs S, Mizrahi I. The road not taken: the rumen microbiome, functional groups, and 16. 367 community states. Trends in Microbiology 2019;27(6):538-49. 368 Hungate RE. The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 1950;14(1):1-49. 17. 369 Williams MG, Busta FF. Total viable counts | Most Probable Number (MPN). In: Robinson RK, 370 18. editor. Encyclopedia of Food Microbiology. Oxford: Elsevier; 1999. p. 2166-8. 371 Hungate RE. A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW, 19. 372 editors. Methods in Microbiology. 3: Academic Press; 1969. p. 117-32. 373 Neumann AP, Suen G, Rodrigues JM. The phylogenomic diversity of herbivore-associated 20. 374 Fibrobacter spp. is correlated to lignocellulose-degrading potential. mSphere 2018;3(6):e00593-18. 375 21. Malburg Jr LM, Forsberg CW. Fibrobacter succinogenes S85 possesses at least nine distinct 376 glucanase genes. Canadian journal of microbiology 1993;39(9):882-91. 377 Jun HS, Ha JK, Malburg J, Laercio M, Verrinder Gibbins AM, Forsberg CW. Characteristics of a 22. 378 cluster of xylanase genes in Fibrobacter succinogenes S85. Canadian journal of microbiology 379 2003;49(3):171-80. 380 Béra-Maillet C, Ribot Y, Forano E. Fiber-degrading systems of different strains of the genus 23. 381 Fibrobacter. Applied and Environmental Microbiology 2004;70(4):2172-9. 382 Neumann AP, McCormick CA, Suen G. Fibrobacter communities in the gastrointestinal tracts of 24. 383 diverse hindgut-fermenting herbivores are distinct from those of the rumen. Environmental Microbiology 384 2017;19(9):3768-83. 385 Dehority BA. Microbial ecology of cell wall fermentation. In: Jung HG, Buxton DR, Hatfield 386 25. RD, Ralph J, editors. Forage Cell Wall Structure and Digestibility: American Society of Agronomy; 387 1993. p. 425-53. 388 26. Yeoman CJ, Fields CJ, Lepercq P, Ruiz P, Forano E, White BA, et al. In vivo competitions 389 between Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminoccus albus in a gnotobiotic 390 sheep model revealed by multi-omic analyses. mBio 2021;12(2):e03533-20. 391 Zehavi T, Probst M, Mizrahi I. Insights into culturomics of the rumen microbiome. Frontiers in 27. 392 microbiology 2018;9(1999). 393 Denman SE, Morgavi DP, McSweeney CS. Review: The application of omics to rumen 28. 394 microbiota function. animal 2018;12:s233-s45. 395 McGovern E, Waters SM, Blackshields G, McCabe MS. Evaluating established methods for 29. 396 rumen 16S rRNA amplicon sequencing with mock microbial populations. Frontiers in microbiology 397 2018;9:1365-. 398 Henderson G, Yilmaz P, Kumar S, Forster RJ, Kelly WJ, Leahy SC, et al. Improved taxonomic 30. 399 assignment of rumen bacterial 16S rRNA sequences using a revised SILVA taxonomic framework. PeerJ 400 2019;7:e6496. 401

- 31. Smith PE, Waters SM, Gómez Expósito R, Smidt H, Carberry CA, McCabe MS. Synthetic
 sequencing standards: a guide to database choice for rumen microbiota amplicon sequencing analysis.
- 404 Frontiers in microbiology 2020;11:606825-.
- 405 32. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al.
- Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the national academy of sciences 2011;108(Supplement 1):4516-22.
- Kim M, Morrison M, Yu Z. Status of the phylogenetic diversity census of ruminal microbiomes.
 FEMS Microbiology Ecology 2011;76(1):49-63.
- 410 34. Wang Y, Youssef NH, Couger MB, Hanafy RA, Elshahed MS, Stajich JE, et al. Molecular
- 411 Dating of the Emergence of Anaerobic Rumen Fungi and the Impact of Laterally Acquired Genes.
 412 mSystems 2019;4(4):e00247-19.
- 413 35. Hess M, Paul SS, Puniya AK, van der Giezen M, Shaw C, Edwards JE, et al. Anaerobic Fungi:
 414 Past, Present, and Future. Frontiers in microbiology 2020;11.
- 415 36. Kittelmann S, Naylor GE, Koolaard JP, Janssen PH. A proposed taxonomy of anaerobic fungi
- 416 (class neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis.
 417 PLOS ONE 2012;7(5):e36866.
- 418 37. Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, et al. Simultaneous
 419 amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic
- 420 microorganisms in rumen microbial communities. PLOS ONE 2013;8(2):e47879.
- 421 38. Callaghan TM, Podmirseg SM, Hohlweck D, Edwards JE, Puniya AK, Dagar SS, et al.
- Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated
 from buffalo faeces. MycoKeys 2015;9:11-28.
- 424 39. Edwards JE, Hermes GDA, Kittelmann S, Nijsse B, Smidt H. Assessment of the accuracy of
 high-throughput sequencing of the ITS1 region of Neocallimastigomycota for community composition
 426 analysis. Frontiers in microbiology 2019;10:2370.
- 427 40. Hess M, Paul SS, Puniya AK, van der Giezen M, Shaw C, Edwards JE, et al. Anaerobic fungi: 428 past, present, and future. Frontiers in microbiology 2020;11:584893-.
- 41. Wallace RJ, Sasson G, Garnsworthy PC, Tapio I, Gregson E, Bani P, et al. A heritable subset of
 the core rumen microbiome dictates dairy cow productivity and emissions. Science Advances
 2019;5(7):eaav8391.
- 432 42. Buitenhuis B, Lassen J, Noel SJ, Plichta DR, Sørensen P, Difford GF, et al. Impact of the rumen 433 microbiome on milk fatty acid composition of Holstein cattle. Genetics Selection Evolution
- 434 2019;51(1):23.
- 435 43. Jami E, White BA, Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk 436 composition and feed efficiency. PLOS ONE 2014;9(1):e85423.
- 437 44. Kittelmann S, Pinares-Patiño CS, Seedorf H, Kirk MR, Ganesh S, McEwan JC, et al. Two
 438 different bacterial community types are linked with the low-methane emission trait in sheep. PLOS ONE
 439 2014:9(7):e103171.
- 440 45. Danielsson R, Dicksved J, Sun L, Gonda H, Müller B, Schnürer A, et al. Methane production in
- dairy cows correlates with rumen methanogenic and bacterial community structure. Frontiers in
 microbiology 2017;8.
- 443 46. Ramayo-Caldas Y, Zingaretti L, Popova M, Estelle J, Bernard A, Pons N, et al. Identification of
 444 rumen microbial biomarkers linked to methane emission in Holstein dairy cows. Journal of Animal
 445 Breeding and Genetics 2020;137(1):49-59.
- 446 47. Huang S, Ji S, Suen G, Wang F, Li S. The rumen bacterial community in dairy cows is correlated 447 to production traits during freshening period. Frontiers in microbiology 2021;12:630605-.
- 448 48. Li F, Li C, Chen Y, Liu J, Zhang C, Irving B, et al. Host genetics influence the rumen microbiota
- and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome 2019;7(1):92.
- 450 49. Xue MY, Sun HZ, Wu XH, Guan LL, Liu JX. Assessment of rumen bacteria in dairy cows with
- varied milk protein yield. Journal of Dairy Science 2019;102(6):5031-41.

2016;7:987. 454 51. Bryant MP, Small N. Characteristics of two new genera of anaerobic curved rods isolated from 455 the rumen of cattle. Journal of bacteriology 1956;72(1):22-6. 456 Pope PB, Smith W, Denman SE, Tringe SG, Barry K, Hugenholtz P, et al. Isolation of 52. 457 Succinivibrionaceae implicated in low methane emissions from tammar wallabies. Science 458 2011;333(6042):646-8. 459 53. Tessler M, Neumann JS, Afshinnekoo E, Pineda M, Hersch R, Velho LFM, et al. Large-scale 460 differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing. Scientific 461 Reports 2017;7(1):6589. 462 54. Yang C, Chowdhury D, Zhang Z, Cheung WK, Lu A, Bian Z, et al. A review of computational 463 tools for generating metagenome-assembled genomes from metagenomic sequencing data. Computational 464 and Structural Biotechnology Journal 2021;19:6301-14. 465 Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, et al. Metagenomic discovery 55. 466 of biomass-degrading genes and genomes from cow rumen. Science 2011;331(6016):463-7. 467 Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of 56. 468 nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature microbiology 469 2017;2(11):1533-42. 470 57. Svartström O, Alneberg J, Terrapon N, Lombard V, de Bruijn I, Malmsten J, et al. Ninety-nine de 471 novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into 472 microbial plant biomass degradation. The ISME Journal 2017;11(11):2538-51. 473 Solden LM, Naas AE, Roux S, Daly RA, Collins WB, Nicora CD, et al. Interspecies cross-58. 474 feeding orchestrates carbon degradation in the rumen ecosystem. Nature microbiology 2018;3(11):1274-475 84. 476 59. Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, et al. Assembly of 913 477 microbial genomes from metagenomic sequencing of the cow rumen. Nature Communications 478 2018;9(1):870. 479 Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. Compendium of 4,941 480 60. rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nature 481 Biotechnology 2019;37(8):953-61. 482 Li J, Zhong H, Ramayo-Caldas Y, Terrapon N, Lombard V, Potocki-Veronese G, et al. A catalog 61. 483 of microbial genes from the bovine rumen unveils a specialized and diverse biomass-degrading 484 environment. GigaScience 2020;9(6). 485 Wilkinson T, Korir D, Ogugo M, Stewart RD, Watson M, Paxton E, et al. 1200 high-quality 486 62. metagenome-assembled genomes from the rumen of African cattle and their relevance in the context of 487 sub-optimal feeding. Genome biology 2020;21(1):1-25. 488 Glendinning L, Genc B, Wallace RJ, Watson M. Metagenomic analysis of the cow, sheep, 63. 489 reindeer and red deer rumen. Scientific Reports 2021;11(1):1-10. 490 Anderson CL, Fernando SC. Insights into rumen microbial biosynthetic gene cluster diversity 64. 491 through genome-resolved metagenomics. Communications Biology 2021;4(1):818. 492 Tong F, Wang T, Gao NL, Liu Z, Cui K, Duan Y, et al. The microbiome of the buffalo digestive 65. 493 tract. Nature Communications 2022;13(1):823. 494 Peng X, Wilken SE, Lankiewicz TS, Gilmore SP, Brown JL, Henske JK, et al. Genomic and 66. 495 functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut 496 microbiomes. Nature microbiology 2021;6(4):499-511. 497 Watson M. New insights from 33,813 publicly available metagenome-assembled-genomes 67. 498 (MAGs) assembled from the rumen microbiome. bioRxiv 2021:2021.04.02.438222. 499 68. Pedros-Alio C. Marine microbial diversity: can it be determined? Trends in Microbiology 500 2006;14(6):257-63. 501

Li F, Henderson G, Sun X, Cox F, Janssen PH, Guan LL, Taxonomic assessment of rumen

microbiota using total RNA and targeted amplicon sequencing approaches. Frontiers in microbiology

50.

452

453

- 502 69. Meziti A, Rodriguez-R LM, Hatt JK, Peña-Gonzalez A, Levy K, Konstantinidis KT. The
- reliability of metagenome-assembled genomes (MAGs) in representing natural populations: insights from
 comparing MAGs against isolate genomes derived from the same fecal sample. Applied and
 Environmental Microbiology 2021:87(6):e02593-20.
- 506 70. Soverini M, Rampelli S, Turroni S, Brigidi P, Biagi E, Candela M. Do the human gut
- metagenomic species possess the minimal set of core functionalities necessary for life? BMC Genomics
 2020;21(1):678.
- 509 71. Li Z, Wang X, Zhang Y, Yu Z, Zhang T, Dai X, et al. Genomic insights into the phylogeny and
 510 biomass-degrading enzymes of rumen ciliates. bioRxiv 2022:2022.01.05.474053.
- 511 72. Tedeschi LO, Ramirez-Restrepo CA, Muir JP. Developing a conceptual model of possible 512 benefits of condensed tannins for ruminant production. animal 2014;8(7):1095-105.
- 513 73. Baldwin RL, Thornley JH, Beever DE. Metabolism of the lactating cow. II. Digestive elements of 514 a mechanistic model. Journal of Dairy Research 1987;54(1):107-31.
- 515 74. Russell JB, O'Connor JD, Fox DG, Van Soest PJ, Sniffen CJ. A net carbohydrate and protein
- system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science 1992;70(11):355161.
- 518 75. Dijkstra J, Neal HD, Beever DE, France J. Simulation of nutrient digestion, absorption and 519 outflow in the rumen: model description. The Journal of Nutrition 1992;122(11):2239-56.
- 520 76. Danfær AC, Huhtanen P, Údén P, Sveinbjörnsson J, Volden H, Kebreab E, et al. The Nordic
- dairy cow model, Karoline description. In: Kebreab E, Dijkstra J, Bannink A, Gerrits WJJ, France J,
 editors. Nutrient digestion and utilization in farm animals: modelling approaches. : CAB eBooks; 2006.
- 522 For the second second and a tripation in farm annuals. Indefining approaches: . CrAB ebooks, 2000 523 77. Kass M, Ramin M, Hanigan MD, Huhtanen P. Comparison of Molly and Karoline models to
- ⁵²⁴ predict methane production in growing and dairy cattle. Journal of Dairy Science 2022.
- 525 78. Bannink A, van Lingen HJ, Ellis JL, France J, Dijkstra J. The contribution of mathematical
 526 modeling to understanding dynamic aspects of rumen metabolism. Frontiers in microbiology
 527 2016;7:1820-.
- 528 79. Ellis JL, Dijkstra J, Kebreab E, Bannink A, Odongo NE, McBride BW, et al. Aspects of rumen 529 microbiology central to mechanistic modelling of methane production in cattle. The Journal of
- 530 Agricultural Science 2008;146(2):213-33.
- 80. Muñoz-Tamayo R, Giger-Reverdin S, Sauvant D. Mechanistic modelling of in vitro fermentation
 and methane production by rumen microbiota. Animal Feed Science and Technology 2016;220:1-21.
- 533 81. Janssen PH. Influence of hydrogen on rumen methane formation and fermentation balances
 534 through microbial growth kinetics and fermentation thermodynamics. Animal Feed Science and
 535 Tacha da and 2010;160(1):1.22
- 535 Technology 2010;160(1):1-22.
- 82. Muñoz-Tamayo R, Chagas JC, Ramin M, Krizsan SJ. Modelling the impact of the macroalgae
- Asparagopsis taxiformis on rumen microbial fermentation and methane production. Peer Community
 Journal 2021;1.
- 83. Ungerfeld EM. Metabolic hydrogen flows in rumen fermentation: principles and possibilities of
 interventions. Frontiers in microbiology 2020;11(589).
- 84. van Lingen HJ, Fadel JG, Moraes LE, Bannink A, Dijkstra J. Bayesian mechanistic modeling of
 thermodynamically controlled volatile fatty acid, hydrogen and methane production in the bovine rumen.
 Journal of Theoretical Biology 2019;480:150-65.
- 544 85. van Lingen HJ, Fadel JG, Yáñez-Ruiz DR, Kindermann M, Kebreab E. Inhibited methanogenesis
- in the rumen of cattle: microbial metabolism in response to supplemental 3-nitrooxypropanol and nitrate.
 Frontiers in microbiology 2021;12:705613.
- 547 86. Muñoz-Tamayo R, Popova M, Tillier M, Morgavi DP, Morel J-P, Fonty G, et al.
- Hydrogenotrophic methanogens of the mammalian gut: Functionally similar, thermodynamically
 different—A modelling approach. PLOS ONE 2019;14(12):e0226243.
- 550 87. Thiele I, Palsson BØ. A protocol for generating a high-quality genome-scale metabolic
- reconstruction. Nature Protocols 2010;5(1):93-121.

Genes and Genomes. Nucleic Acids Research 1999;27(1):29-34. 553 89. Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, et al. The MetaCyc 554 database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. 555 Nucleic Acids Research 2015;44(D1):D471-D80. 556 King ZA, Lu J, Dräger A, Miller P, Federowicz S, Lerman JA, et al. BiGG Models: A platform 557 90. for integrating, standardizing and sharing genome-scale models. Nucleic Acids Research 558 2015:44(D1):D515-D22. 559 91. Karp PD, Paley S, Romero P. The Pathway Tools software. Bioinformatics (Oxford, England) 560 2002;18(suppl_1):S225-S32. 561 Machado D, Andrejev S, Tramontano M, Patil KR. Fast automated reconstruction of genome-92. 562 scale metabolic models for microbial species and communities. Nucleic Acids Research 563 2018;46(15):7542-53. 564 Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The 93. 565 United States department of energy systems biology knowledgebase. Nature Biotechnology 566 2018;36(7):566-9. 567 Aite M, Chevallier M, Frioux C, Trottier C, Got J, Cortés MP, et al. Traceability, reproducibility 94. 568 and wiki-exploration for "à-la-carte" reconstructions of genome-scale metabolic models. PLOS 569 Computational Biology 2018;14(5):e1006146. 570 95. Kumar M, Ji B, Zengler K, Nielsen J. Modelling approaches for studying the microbiome. Nature 571 microbiology 2019;4(8):1253-67. 572 Belcour A, Frioux C, Aite M, Bretaudeau A, Hildebrand F, Siegel A. Metage2Metabo, 96. 573 microbiota-scale metabolic complementarity for the identification of key species. eLife 2020;9:e61968. 574 Islam MM, Fernando SC, Saha R. Metabolic modeling elucidates the transactions in the rumen 97. 575 microbiome and the shifts upon virome interactions. Frontiers in microbiology 2019;10. 576 98. Lee N-R, Lee CH, Lee D-Y, Park J-B. Genome-scale metabolic network reconstruction and in 577 silico analysis of hexanoic acid producing Megasphaera elsdenii. Microorganisms 2020;8(4):539. 578 Panikov NS. True and illusory benefits of modeling: comment on "Genome-scale metabolic 99 579 network reconstruction and in silico analysis of hexanoic acid producing Megasphaera elsdenii. 580 Microorganisms 2020, 8, 539". Microorganisms 2020;8(11):1742. 581 100. Fakih I, Got J, Siegel A, Forano E, Munoz Tamayo R. Genome-scale network reconstruction of 582 the predominant cellulolytic rumen bacterium Fibrobacter succinogenes S85. 2021 - 12th International 583 Symposium on Gut Microbiology; 2021-10-13; Virtual, France2021. 584 Muñoz-Tamayo R, Puillet L, Daniel JB, Sauvant D, Martin O, Taghipoor M, et al. Review: To be 101. 585 or not to be an identifiable model. Is this a relevant question in animal science modelling? animal 586 2018;12(4):701-12. 587 102. Freilich S, Kreimer A, Meilijson I, Gophna U, Sharan R, Ruppin E. The large-scale organization 588 of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Research 589 2010;38(12):3857-68. 590 Vrancken G, Gregory AC, Huys GRB, Faust K, Raes J. Synthetic ecology of the human gut 103. 591 microbiota. Nature Reviews Microbiology 2019;17(12):754-63. 592 104. Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, et al. The genome 593 sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for 594 controlling ruminant methane emissions. PLOS ONE 2010;5(1):e8926. 595 Weimer PJ. Redundancy, resilience, and host specificity of the ruminal microbiota: implications 105. 596 for engineering improved ruminal fermentations. Frontiers in microbiology 2015;6. 597 106. Erdrich P, Steuer R, Klamt S. An algorithm for the reduction of genome-scale metabolic network 598 models to meaningful core models. BMC Systems Biology 2015;9(1):48. 599 107. Röhl A, Bockmayr A. A mixed-integer linear programming approach to the reduction of genome-600 scale metabolic networks. BMC Bioinformatics 2017;18(1):2. 601

Ogata H. Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of

88.

552

- Schuster S, Hilgetag C. On elementary flux modes in biochemical reaction systems at steady
 state. Journal of Biological Systems 1994;2(02):-.
- 109. Baroukh C, Muñoz-Tamayo R, Steyer J-P, Bernard O. DRUM: a new framework for metabolic
- modeling under non-balanced growth. Application to the carbon metabolism of unicellular microalgae.
- 606 PLOS ONE 2014;9(8):e104499.
- 110. Robles-Rodriguez CE, Bideaux C, Guillouet SE, Gorret N, Cescut J, Uribelarrea J-L, et al.
- ⁶⁰⁸ Dynamic metabolic modeling of lipid accumulation and citric acid production by Yarrowia lipolytica.
- 609 Computers & Chemical Engineering 2017;100:139-52.

610

13			

 Table 1 Studies found in Web of Science with research terms "rumen" and isolates, spanning the period 1947-2022, reporting at least one new microbial isolate characterized phenotypically or phylogenetically

				Publication		Date of
Authors	Article title	Source Title	ISSN	Year	DOI	Export
			0022			
	A Study of Actively Cellulolytic Rod-Shaped		-	105		0/1/06-
Bryant, MP; Doetsch, RN	Bacteria of the Bovine Rumen	J DAIRY SCI	0302	1954		3/1/2022
	CHARACTERISTICS OF ORGANISMS ISOLATED FROM THE		0021			
	RUMEN OF COWS FED HIGH AND LOW ROUGHAGE		-			
Bauman, HE; Foster, EM	RATIONS	J BACTERIOL	9193 0021	1956	10.1128/JB.71.3.333-338.1956	3/1/2022
	The characteristics of strains of selenomonas		-			
Bryant, MP	isolated from bovine rumen contents	J BACTERIOL	9193 0021	1956	10.1128/JB.72.2.162-167.1956	3/1/202
	Characteristics of 2 new genera of anaerobic		-			
Bryant, MP; Small, N	curved rods isolated from the rumen of cattle	J BACTERIOL	9193	1956	10.1128/JB.72.1.22-26.1956	3/1/2022
			0022	1000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0, 1, 2022
	Nutrition of lactic acid bacteria isolated from		-			
Ford, JE; Perry, KD; Briggs, CAE	the rumen	J GEN MICROBIOL	1287	1958	10.1099/00221287-18-1-273	3/1/2022
rord, se, rerry, RD, Briggs, CAE	the runnen	J GEN MICHODIOE	0003	1990	10.1035/00221207 10 1 275	5/ 1/202
	The proteolytic system of a gram negative rod		-			
Hunt, WG; Moore, RO	isolated from the bovine rumen	APPL MICROBIOL	6919	1958	10.1128/AEM.6.1.36-39.1958	3/1/202
	Degradation and utilization of isolated	ATTENNICIODIOL	0021	1556	10.1120/ALM.0.1.30-35.1550	5/1/202
	hemicellulose BY pure cultures of cellulolytic		0021			
Dehority, BA	rumen bacteria	J BACTERIOL	- 9193	1965	10.1128/JB.89.6.1515-1520.1965	3/1/202
Denonty, BA		J DACTENIOL	0021	1905	10.1120/10.09.0.1515-1520.1905	5/1/202
	Characterization of several bovine rumen		0021			
Dehority, BA	bacteria isolated with a xylan medium	J BACTERIOL	- 9193	1000	10.1128/JB.91.5.1724-1729.1966	3/1/202
репопту, ва	Dacteria isolateu with a xylan meulum	JBACTERIOL	9193 0021	1966	10.1128/JB.91.5.1/24-1/29.1966	3/1/202.
	Characterization of methanobacterium mobilis		0021			
Paynter, MJB; Hungate, RE	SP n isolated from bovine rumen		-	1000	10.1128/JB.95.5.1943-1951.1968	3/1/2022
Paymer, MJB; Hungale, RE	SP IT Isolated from bovine rumen	J BACTERIOL	9193	1968	10.1128/JB.95.5.1943-1951.1968	3/1/202.
			0022			
	Aspergillus-fumigatus and sporormia-minima		-	1000	10 1000 /00001007 50 1 107	2/1/202
Brewer, D; Taylor, A	isolated from rumen of sheep	J GEN MICROBIOL	1287	1969	10.1099/00221287-59-1-137	3/1/202
			0021			
	Pectin-fermenting bacteria isolated from bovine		-			- / - /
Dehority, BA	rumen	J BACTERIOL	9193	1969	10.1128/JB.99.1.189-196.1969	3/1/202
	Growth factor requirements of ruminococcus		0003			
	flavefaciens isolated from rumen of cattle fed		-			
Slyter, LL; Weaver, JM	purified diets	APPL MICROBIOL	6919	1969	10.1128/AEM.17.5.737-741.1969	3/1/202
			0021			
	Improved method for enumerating and		-			
Henderson, C	isolating lipolytic rumen bacteria	J APPL BACTERIOL	8847	1973	10.1111/j.1365-2672.1973.tb04088.x	3/1/2022

Sharpe, ME; Latham, MJ; Garvie, EI;	2 new species of lactobacillus isolated from bovine rumen, lactobacillus-ruminis SP-nov and		0022			
Zirngibl, J; Kandler, O	lactobacillus-vitulinus SP-nov Metabolism of starch, glucose, amino-acids,	J GEN MICROBIOL	1287 0022	1973	10.1099/00221287-77-1-37	3/1/2022
Coleman, GS; Laurie, JI	purines, pyrimidines and bacteria BY 3 epidinium spp isolated from rumen	J GEN MICROBIOL	- 1287	1974	10.1099/00221287-85-2-244	3/1/2022
			0003			
	Sulfate reduction BY a desulfovibrio-species		-	1074	10 1120/4514 20 2 400 407 1074	2/1/2022
Huisingh, J; Mcneill, JJ; Matrone, G	isolated from sheep rumen Hydrogenation of unsaturated fatty-acids BY 5 bacterial isolates from sheep rumen, including a	APPL MICROBIOL	6919 0022 -	1974	10.1128/AEM.28.3.489-497.1974	3/1/2022
Kemp, P; White, RW; Lander, DJ	new species	J GEN MICROBIOL	1287 0022	1975	10.1099/00221287-90-1-100	3/1/2022
Coleman, GS; Laurie, JI; Bailey, JE;	Cultivation of cellulolytic protozoa isolated from		-			
Holdgate, SA	rumen	J GEN MICROBIOL	1287	1976	10.1099/00221287-95-1-144	3/1/2022
	Effect of carbon-dioxide and oxygen on growth of orange-colored streptococcus-bovis isolated	J GEN APPL	0022			
Hayashi, T; Kitahara, K	from bovine rumen	MICROBIOL	- 1260	1976	10.2323/jgam.22.301	3/1/2022
nayashi, i, Kitanara, K	Biological characteristics of streptococcus-bovis bacteriophages isolated from lysogenic cultures	WICHOBIOL	0026	1970	10.2323/jgam.22.301	5/1/2022
Tarakanov, BV	and sheep rumen Factors affecting uptake and metabolism of	MICROBIOLOGY	2617	1976		3/1/2022
	soluble carbohydrates BY rumen ciliate		0022			
Millioner AC: Usefast CC	dasytricha-ruminantium isolated from ovine rumen contents BY filtration		-	1070	10 1000/00221207 06 1 125	2/1/2022
Williams, AG; Harfoot, CG	Technique for fractionation of bacteria in rumen microbial ecosystem .2. Attachment of	J GEN MICROBIOL	1287	1976	10.1099/00221287-96-1-125	3/1/2022
	, bacteria isolated from bovine rumen to		0022			
	cellulose powder invitro and elution of bacteria	J GEN APPL	-			
Minato, H; Suto, T	attached therefrom Characteristics of a lipolytic and fatty acid	MICROBIOL	1260 0022	1978	10.2323/jgam.24.1	3/1/2022
	requiring butyrivibrio SP isolated from the ovine		-	1070	10 1000 /00001007 110 1 15	2/1/2022
Hazlewood, G; Dawson, RMC	rumen Characterization of group-n and group-d	J GEN MICROBIOL	1287 0022	1979	10.1099/00221287-112-1-15	3/1/2022
Ledford, RA; Brown, JM	streptococci isolated from rumen fluids	J DAIRY SCI	- 0302	1979	10.3168/jds.S0022-0302(79)83245-2	3/1/2022
	Technique for fractionation of bacteria in rumen microbial ecosystem .3. Attachment of	J DAINI SCI	0302	1575	10.5100/jus.50022 0502(75)05245 2	5/1/2022
	, bacteria isolated from bovine rumen to starch		0022			
	granules invitro and elution of bacteria	J GEN APPL	-			
Minato, H; Suto, T	attached therefrom	MICROBIOL	1260	1979	10.2323/jgam.25.71	3/1/2022
	Effect of l-alpha-amino-normal-butyric acid on growth and production of extracellular isoleucine and valine BY eubacterium-		0008			
Stevenson, IL	ruminantium and a related rumen isolate	CAN J MICROBIOL	4166	1979	10.1139/m79-218	3/1/2022
						•

Wojciechowicz, M; Heinrichova, K;	Polygalacturonate lyase produced BY lachnospira-multiparus isolated from the		0022 -			
Ziolecki, A	bovine rumen Selective isolation and characteristics of	J GEN MICROBIOL	1287 0099	1980	10.1099/00221287-117-1-193	3/1/2022
C S Stewart, C Paniagua, D Dinsdale, K J	Bacteriodes succinogenes from the rumen of a	APPL ENVIRON	-			
Cheng, And S H Garrow	COW.	MICROB	2240	1981		3/1/2022
<u>,</u>	Bacillus spp in the rumen ecosystem -					
	hemicellulose depolymerases and glycoside hydrolases of bacillus spp and rumen isolates		0021			
Williams, AG; Withers, SE	grown under anaerobic conditions	J APPL BACTERIOL	8847	1983	10.1111/j.1365-2672.1983.tb01325.x	3/1/2022
	5.0 m ander ander op is conditions	57.112.57.612.1102	0099	1000	101111,,,11000 20,210001020	0/1/2022
Miller, TL; Wolin, MJ; Hongxue, Z;	Characteristics of methanogens isolated from	APPL ENVIRON	-			
Bryant, MP	bovine rumen	MICROB	2240	1986	10.1128/AEM.51.1.201-202.1986	3/1/2022
bryanc, wi	Characterization of strictly anaerobic fungi	Michob	0926	1500	10.1120//(201.01201.201.200	5/1/2022
Fonty, G; Breton, A; Fevre, M; Citron, A;	isolated from the rumen of sheep - preliminary		-			
Hebraud, M; Gouet, P	data	REPROD NUTR DEV	5287	1987	10.1051/rnd:19870229	3/1/2022
	Gata	NEI NOD NOT DEV	0266	1507	10.1031/110.150/0225	5/1/2022
	Characteristics of isolates of lactobacillus-	LETT APPL	-			
Stewart, CS; Duncan, SH; Flint, HJ	fermentum from the rumen of sheep	MICROBIOL	8254	1988	10.1111/j.1472-765X.1988.tb01232.x	3/1/2022
Stewart, es, Danean, Sh, Fint, Hi	remental from the ramen of sheep	MICROBIOL	0026	1900	10.1111/j.14/2 /03/.1900.001232.x	5/1/2022
Kostyukovskii, VA; Okunev, ON;			-			
Tarakanov, BV	Anaerobic cellulolytic fungi from cattle rumen	MICROBIOLOGY	2617	1990		3/1/2022
	Bifidobacterium-ruminantium SP-nov and	MICKOBIOLOGI	0020	1550		5/1/2022
	bifidobacterium-merycicum SP-nov from the		-			
Biavati, B; Mattarelli, P	rumens of cattle	INT J SYST BACTERIOL	- 7713	1991	10.1099/00207713-41-1-163	3/1/2022
blavati, b, Mattarcii, i	Characteristics of a rumen clostridium capable	INT J J J J DACTENIOL	0723	1551	10.1035/00207/15-41-1-105	5/1/2022
	of degrading mimosine, 3(oh)-4-(1h)-pyridone	SYST APPL	0725			
Dominguezbello, MG; Stewart, CS	and 2,3-dihydroxypyridine	MICROBIOL	- 2020	1991	10.1016/S0723-2020(11)80363-2	3/1/2022
Dominguezbeno, Mid, Stewart, CS	and 2,5-uniyuroxypynume	WIICKUDIUL	0864	1991	10.1010/30/23-2020(11)80303-2	5/1/2022
Galindo, J; Elias, A; Menchaca, MA;	Identification of isolated gram cellulolytic		-			
Piedra, R	bacillus in the rumen of cows consuming silage	CUBAN J AGR SCI	- 0408	1991		3/1/2022
Galindo, J; Elias, A; Piedra, R; Cordero, J;	Identification of gram + cellulolytic coccus	CODAIN'I AGIN JUL	0408	1991		5/1/2022
Menchaca, M; Riveri, Z; Boucourt, R;	strains isolated from the rumen of cows		0004			
Elizarde, S	consuming poor quality silage	CUBAN J AGR SCI	- 0408	1991		3/1/2022
Liizai ue, S	Morphology of 3 polycentric rumen fungi and	CODAIN J AGN SCI	0406	1991		3/1/2022
	description of a procedure for the induction of		0022			
	zoosporogenesis and release of zoospores in		0022			
Ho, YW; Bauchop, T	cultures	J GEN MICROBIOL	- 1287	1991	10.1099/00221287-137-1-213	3/1/2022
	Cultures	J GEN WICKUDIUL	0378	1991	10.10 <i>33</i> /0022126/-13/-1-213	3/1/2022
	Dhago registance and altered growth habit is a		0576			
Kliova AV: Rauchan T	Phage resistance and altered growth habit in a strain of streptococcus-bovis	FEMS MICROBIOL LETT	- 1097	1991		3/1/2022
Klieve, AV; Bauchop, T		LEII		1991		5/1/2022
Kasturkavalar MA, Okupar, ON	Description of 2 anaerobic fungal strains from		0022			
Kostyukovsky, VA; Okunev, ON;	the bovine rumen and influence of diet on the	J GEN MICROBIOL	- 1287	1991	10.1099/00221287-137-7-1759	2/1/2022
Tarakanov, BV	fungal population invivo			1991	10.1023/0055159/-13/-1-1/23	3/1/2022
Largon M. Walstrup I. Hanrika CA	Invitro stress selection of nematophagous fungi		0022			
Larsen, M; Wolstrup, J; Henriksen, SA; Dackman, C; Gronvold, J; Nansen, P	for biocontrol of parasitic nematodes in ruminants	J HELMINTHOL	- 149X	1991	10.1017/S0022149X00010701	3/1/2022
Dackman, C, Gronvolu, J, Narisell, P	Turrindrits	JTICLIVIIINTHUL	1437	1221	10.101//30022143/00010/01	3/1/2022

Mukhopadhyay, B; Purwantini, E; Demacario, EC; Daniels, L	Characterization of a methanosarcina strain isolated from goat feces, and that grows on h2- co2 only after adaptation	CURR MICROBIOL	0343 - 8651 0343	1991	10.1007/BF02091977	3/1/2022
Ning, Z; Attwood, GT; Lockington, RA; Brooker, JD	Genetic diversity in ruminal isolates of selenomonas-ruminantium Glucose and lactate catabolism BY bacteria of	CURR MICROBIOL	- 8651 0021	1991	10.1007/BF02091955	3/1/2022
Stevani, J; Grivet, JP; Hannequart, G; Durand, M	the pig large-intestine and sheep rumen as assessed BY c-13 nuclear-magnetic-resonance Preliminary-observations of interaction	J APPL BACTERIOL	- 8847	1991	10.1111/j.1365-2672.1991.tb03827.x	3/1/2022
Styriak, I; Galfi, P; Kmet, V	between bacteriophages and streptococcus- bovis bacteria on ruminal epithelium primoculture	VET MICROBIOL	0378 - 1135	1991	10.1016/0378-1135(91)90135-3	3/1/2022
Teunissen, MJ; Dencamp, Hjmo; Orpin,	Comparison of growth-characteristics of anaerobic fungi isolated from ruminant and non-ruminant herbivores during cultivation in a		0022			
CG; Veld, Jhjhi; Vogels, GD	defined medium Neocallimastix-hurleyensis SP-nov AN anaerobic	J GEN MICROBIOL	1287 0008	1991	10.1099/00221287-137-6-1401	3/1/2022
Webb, J; Theodorou, MK	fungus from the ovine rumen	CAN J BOT	- 4026 0008	1991	10.1139/b91-156	3/1/2022
Wubah, DA; Fuller, MS; Akin, DE	Isolation of monocentric and polycentric fungi from the rumen and feces of cows in georgia	CAN J BOT	- 4026 0266	1991	10.1139/b91-158	3/1/2022
A. Ziolecki, Wanda Guczyńska, Maria Wojciechowicz	Rumen bacteria degrading fructan	LETT APPL MICROBIOL	- 8254 0723	1992		3/1/2022
Allison, MJ; Mayberry, WR; Mcsweeney, CS; Stahl, DA	Synergistes-jonesii, gen-nov, SP-nov - a rumen bacterium that degrades toxic pyridinediols	SYST APPL MICROBIOL	- 2020 0266	1992	10.1016/S0723-2020(11)80111-6	3/1/2022
Javorsky, P; Vanat, I	Deoxyribonuclease activity in streptococcus- bovis	LETT APPL MICROBIOL	- 8254 0044	1992	10.1111/j.1472-765X.1992.tb00660.x	3/1/2022
Laukova, A	Biochemical and physiological-properties of enterococci isolated from the rumen of calves The biochemical and physiological traits of the	ZIVOCISNA VYROBA	- 4847 0044	1992		3/1/2022
Laukova, A; Kmet, V	coagulase negative rumen staphylococci and of those producing bacteriocin Physiological and biochemical characteristics of	ZIVOCISNA VYROBA	- 4847 0232	1992		3/1/2022
Laukova, A; Marounek, M	staphylococci isolated from the rumen of young calves and lambs Selective isolation of bacteria with dipeptidyl	ZBL MIKROBIOL	- 4393 0378	1992	10.1016/S0232-4393(11)80322-7	3/1/2022
Mckain, N; Wallace, RJ; Watt, ND	aminopeptidase type-i activity from the sheep rumen Selective isolation of bacteria with dipeptidyl	FEMS MICROBIOL LETT	- 1097 0266	1992		3/1/2022
N Mckain, R J Wallace, N D Watt	aminopeptidase type I activity from the sheep rumen	FEMS MICROBIOL LETT	- 8254	1992		3/1/2022

Tabassum, R; Rajoka, M; Malik, KA Description (Entry polatical interview) APPL BOOLEGY PAPL BOOLEGY		Use of chemostat for enhanced production of beta-glucosidase BY newly isolated anaerobic	APPL BIOCHEM	0273			
Answerbic production of extracellular polysacchande BY burynivbino-fibrisolvens nyxAPPL ENVIRON	Tabassum B: Bajoka MI: Malik KA	с ,		-	1002	10 1007/BE02920555	3/1/2022
Anaerobic production of extracellular APPL ENNRON - Anaerobic production of extracellular APPL ENNRON - Machembern, DF; Patterson, JA polyascharide BY butyrikbrio-fibrisolvens nyx MICROB 2040 1992 10.1128/AFM.58.1.385-391.1992 3/1/2022 Defaultar, S, Guczynska, W; Defaultar AMPL ENNRON - Endo, Y, Ogimoto, K Kimoto, H; Shishikura, M; Biohydrogenation of linoleic-acid BY anaerobic Endo, Y, Ogimoto, K Emoto, H; Shishikura, M; Biohydrogenation of linoleic-acid BY anaerobic Endo, Y, Ogimoto, K Emoto, H; Shishikura, M; Biohydrogenation of linoleic-acid BY anaerobic Endo, Y, Ogimoto, K Emoto, H; Shishikura, M; Biohydrogenation of linoleic-acid BY anaerobic Enterococid and Staphylococci losites from I aukova, A activity MicroBiol Cocid A Staphylococci Laukova, A, Marekova, M; Javorsky, P enterococcus-facetum cmr231 MICROBIOL GEL 274 B272 10.1111/j.1472-765X.1993.tb01413.x 3/1/2022 Brooker, JD; Odonovan, JA; Skone, J; Clanow, J, Skone, J; Clanow, A, Marekova, M, Javorsky, P enterococcus-facetum cmr231 MICROBIOL B254 1993 10.1111/j.1472-765X.1993.tb01413.x 3/1/2022 Brooker, JD; Odonovan, JA; Skone, J; Clanow, J, Skone, J; Clanow, J, Skone, J; Clanow, J, Skone, J; Clanow, A activity and interactions from form foral gates MICROBIOL B254 1994 10.1111/j.1472-765X.1993.tb01413.x 3/1/2022 Brooker, JD; Odonovan, JA; Skone, J; Clanow, A activity and interactions from main a microbes acceptions SP-nov, a tannin- Clarke, K; Blackall, L; Muslera, P enterococcus-facium Encore activity and interactions of numinal bacterioum from feral gates MICROBIOL B254 1994 10.1111/j.1472-765X.1993.tb01413.x 3/1/2022 Brooker, JD; Odonovan, JA; Skone, J; Clanow, A activity and interactions of numinal enterococcus facium Encore activity and interactions of numinal enterococcus and MICROBIOL 738 1994 10.1111/j.1365-3672.1995.tb03119.x 3/1/2022 Brooker, GY, Ellay, K Lanoge, B; Dinterococcus and JA Hydr	Tabassum, N, Najoka, Mi, Maik, KA		DIOTECT		1992	10.1007/0102920555	5/1/2022
Watchenheim, DE, Patterson, IApolysaccharide BY butyrivbiro-fibrisolvens nyxMICROB2240 0266199210.1128/AEM.58.1.385-391.19923/1/2022Zablecki, A: Guczynska, W: Wojciechowicz, MEleft APPL<		Anaerohic production of extracellular	ΔΡΡΙ ΕΝΙ/ΙΒΟΝ	-			
Lankova, ALETT APPL MCROBIOL0266Yeijiectowicz, MSome rumen bacteria degrading fructanMICROBIOL8254 0916199210.1111/j.1472-765X.1992.tb00774.x3/1/2022Fujimoto, K, Kimoto, H; Shishikura, M; Endo, Y; Ogimoto, KBiohydrogenation of inoleic-acid dY anaerobic- Interaccersi and staphylococci isolates from rumen of failow deer and their antimicrobial Detection and antimicrobial spectrum of a Laukova, ABiohydrogenation of inoleic-acid dY anaerobic- BIOCHBIOSCI BIOTECH BIOCH199310.1271/bbb.57.10263/1/2022Laukova, AThe properties of adherent staphylococci isolated from the rumen wall of lambs Detection and antimicrobial spectrum of a Laukova, A; Marekova, M; Javorsky, Pmiteroccurs-land staphylococci MICROBIOL CGICA7138 R1293199310.1111/j.1472-765X.1993.tb01413.x3/1/2022Laukova, A; Marekova, M; Javorsky, Penteroccurs-facility and the rumen wall of lambs Detection and antimicrobial spectrum of a Laukova, A; Marekova, M; Javorsky, Psterptococcus-facility and the rumen frail goatsLETT APPL R254199310.1111/j.1472-765X.1993.tb01413.x3/1/2022Laukova, Acogguase-negative staphylococci mersitant ruminal bacterium from feral goatsMICROBIOL R2548254 R254199410.1111/j.1472-765X.1994.tb00877.x3/1/2022Laukova, Acogguase-negative staphylococci mersitant ruminal bacteria streptococcal flora of sheepJAPPL ANIM RES R2119199410.1111/j.1472-765X.1994.tb00877.x3/1/2022Laukova, Aidentification of or orteotytic rumen bacteria streptococcal flora of sheepJAPPL ANIM RES<	Wachenheim DE: Patterson IA			2240	1992	10 1128/AFM 58 1 385-391 1992	3/1/2022
Zolecki, A.; Guzynska, W;LETT APPL-Wojciechowicz, MSome rumen bacteria degrading fructanMICROBIOL8254199210.1111/j.1472-765X.1992.tb00774.x3/1/2022Fujimoto, K; Kimato, H; Shishikura, M; Endo, Y, Ogimoto, KBiohydrogenation of linolesic-acid BY anaerobic Enterscocci and staphylococci isolates from rumen of fallow deer and their antimicrobial activityBIOSCI BIOTECH916199310.1271/bbb.57.10263/1/2022Laukova, AactivityMICROBIOLOGICA7138199310.1271/bbb.57.10263/1/2022Laukova, A,isolated from therumen wall of lambs bacterion-like subtance produced BYVET MED-CZCH827719933/1/2022Laukova, A; Marekova, M; Javorsky, Penterococcus-faccium ccm4231MICROBIOL8254199310.1111/j.1472-765X.1993.tb01413.x3/1/2022Incoker, JD; Odonovan, JA; Stene, I; Clarke, K; Blackall, L; Muslera, PStreptococcus-caprinus SP-nov, a tannin- resistant ruminal bacterium from feral goatsIETT APPL MICROBIOLLaukova, Audentification of ruminal enterococcal and streptococcus-regetive staphylococciIETT APPL MICROBIOLLaukova, Aidentification of ruminal enterococcal and dering of proteolytic rumen bacteria polaencephaloenad cattleLaukova, Aidentification of ruminal enterococcal and dering of proteolytic rumen bacteria polaencephalomalacia in cattleLaukova, Aidentification of proteolytic rumen bacteria definition and cattleLaukova, Aidentific	Wuenennenn, DE, Futterson, sr		Michob		1992	10.1120// 20.301.303 331.1332	3/ 1/2022
Wojciechowicz, MSome rumen bacteria degrading fructanMICROBIOL8254 0916199210.1111/j.1472-765X.1992.tb00774.x3/1/2022Fujimoto, K, Kimoto, H; Shishkura, M; Endo, Y, Ogimoto, KBiolydrogenation of linolei-caid BY anaerobic Enterococi and staphylococi isolates from activityBIOSCI BUTECH BIOCHLaukova, AactivityMICROBIOLOGICA7138 03712199310.1271/bbb.57.10263/1/2022Laukova, AactivityMICROBIOLOGICA7138 03715199310.1271/bbb.57.10263/1/2022Laukova, AThe properties of adherent staphylococci bacterion and antimicrobial spectrum of a bacterionabil spectrum of a low of a lo	Ziolecki. A: Guczvnska. W:		LETT APPL	-			
Fujimoto, K; Kimoto, H; Shishikura, M; Endo, Y; Ogimoto, KBiohydrogenation of linoleic-acid BY anserobic bacteria isolated from numen Enteroaccid and staphylococci isolates from rumen of fallow deer and their antimicrobial activityBIOSCI BIOTECH 8451199310.1271/bbb.57.10263/1/2022Laukova, AactivityMICROBIOLOGICA7138 0375199310.2211/bbb.57.10263/1/2022Laukova, Aisolated from the rumen wall of lambs bacterioninike subtance produced BY bacterioninike subtance produced BY tection and antimicrobial spectrum of a bacterioninike subtance produced BY enteroaccus-faeium ccm4231VET MED-CZECH MICROBIOL8427 0266199310.1111/j.1472-765X.1993.tb01413.x 3/1/2022Brooker, JD; Odonovan, LA; Skene, I; Clarke, K; Blackall, L; Muslera, PStreptococcus-caprinus SP-nov, at namin- resistant ruminal bacterium from feral goatsLETT APPL MICROBIOL- 8254 1121199410.1111/j.1472-765X.1994.tb00877.x 3/1/2022Laukova, Acoagulase-negative staphylococci steptococcus-faeium ccm4231MICROBIOLOGICA 02667138 1121199410.1111/j.1472-765X.1994.tb00877.x 3/1/2022Laukova, Acoagulase-negative staphylococci utentrobal susceptibility of ruminal streptococcal and streptococcal and tected from nume and fer and streptococcal and streptococcal and attime: coagulase-negative staphylococciMICROBIOLOGICA 021199410.1000/09712119.1994.97059993/1/2022Laukova, Acoagulase-negative staphylococci utentification of ruminal enterococcal and streptococcal and streptococcal and atthe coagulase-negative staphylococciMICRO		Some rumen bacteria degrading fructan	MICROBIOL	8254	1992	10.1111/j.1472-765X.1992.tb00774.x	3/1/2022
Endo, Y; Ogimoto, Kbacteria isolated from rumen Enterococci and staphylococci isolates from rumen of fallow der and their antimicrobial activity der and their antimicrobial staphylococciBIOCH8451 1121199310.1271/bbb.57.10263/1/2022Laukova, AactivityMICROBIOLOGICA7138 0375199310.1271/bbb.57.10263/1/2022Laukova, Aisolated from the rumen wall of lambs Detertion and antimicrobial spectrum of a bacteriocin-like substance produced BY enterocccus-facium crnds21VET MED-CZECH8427 2056199310.1111/j.1472-765X.1993.tb01413.x3/1/2022Brooker, JD; Odonovan, LA; Skene, I; Clarke, K; Blackall, L; Muslera, PStreptococcus-caprinus SP-nov, a tannin- resistant ruminal bacterium from feral goatsLETT APPL MICROBIOL10.1111/j.1472-765X.1994.tb00877.x3/1/2022Laukova, AAntimicrobial susceptibility of ruminal coagulase-negative staphylococciMICROBIOLOGICA7138 2071199410.1111/j.1472-765X.1994.tb00877.x3/1/2022Laukova, Astreptococcal from of sheepJAPPL ANIM RES 20021219910.1080/09712119.1994.97059993/1/2022Laukova, Astreptococcal from of sheepJAPPL ANIM RES 2002110.1111/j.1365-2672.1995.tb03119.x3/1/2022Laukova, Astocated with dictary sulfate-induced policoncephalomalacia in cattle associated with dictary sulfate-induced policoncephalomalacia in cattleAM J VET RES 206596510.1111/j.1365-2672.1995.tb03119.x3/1/2022Laukova, AStocated with dictary sulfate-induced policoncephalomalacia in cattle defatind agrading minos				0916			
Laukova, A	Fujimoto, K; Kimoto, H; Shishikura, M;	Biohydrogenation of linoleic-acid BY anaerobic-	BIOSCI BIOTECH	-			
Laukova, A mini of allow deer and their antimicrobial activity MICROBIOLOGICA 7138 1993	Endo, Y; Ogimoto, K	bacteria isolated from rumen	BIOCH	8451	1993	10.1271/bbb.57.1026	3/1/2022
Laukova, A activity MICROBIOLOGICA 7138 1993 . 3/1/2022 The properties of adherent staphylococci - isolated from the rumen wall of lambs VET MED-CZECH 8427 1993 1993 . 3/1/2022 Detection and antimicrobial spectrum of a bacteriocin-like substance produced BY LETT APPL - Laukova, A; Marekova, M; Javorsky, P enterococcus-faecium ccm4231 MICROBIOL 8254 1993 10.1111/j.1472-765X.1993.tb01413.x 3/1/2022 Brooker, JD; Odonovan, LA; Skene, I; Clarke, K; Blackall, L; Muslera, P resistant ruminal bacteriau from freal goats MICROBIOL 8254 1994 10.1111/j.1472-765X.1993.tb01413.x 3/1/2022 Laukova, A cogulase-negative staphylococci MICROBIOL 8254 1994 10.1111/j.1472-765X.1994.tb00877.x 3/1/2022 Laukova, A cogulase-negative staphylococci MICROBIOL 8254 1994 10.1111/j.1472-765X.1994.tb00877.x 3/1/2022 Laukova, A cogulase-negative staphylococci MICROBIOL 8254 1994 10.1111/j.1472-765X.1994.tb00877.x 3/1/2022 Laukova, A cogulase-negative staphylococci MICROBIOL 8254 1994 10.1080/09712119.1994.p705999 3/1/2022 Laukova, A streptococcal flora of sheep JAPPL ANIM RES 2119 1994 10.1080/09712119.1994.9705999 3/1/2022 MICROBIOLOGICA 7138 1995 10.1111/j.1365-2672.1995.tb03119.x 3/1/2022 MICROBIOL 9646 - Amang.DW policencephalomalacia in cattle AM J VET RES 964 - Aranda, N; Piedra, R; Chango, B; dilwdroxyprirdine and 3-hydroxy-4 pyridore in Delgado, D coversion of oleic add to 10-hydroxysteric Aranda, N; Piedra, R; Chongo, B; dilwdroxyprirdine and 3-hydroxy-4 pyridore in Delgado, D coversion of oleic add to 10-hydroxysteric Aranda, N; Piedra, R; Chongo, B; dilwdroxyprirdine and 3-hydroxy-4 pyridore in Delgado, D coversion of oleic add to 10-hydroxysteric Aranda, N; Piedra, R; Chongo, B; dilwdroxyprirdine and 3-hydroxy-4 pyridore in Delgado, D		Enterococci and staphylococci isolates from		1121			
Laukova, A0375Laukova, AThe properties of adherent staphylococci isolated from the rumen wall of lambs Detection and antimicrobial spectrum of a bacteriodin-like substance produced BY LETT APPL199310.1111/j.1472-765X.1993.tb01413.x3/1/2022Laukova, A; Marekova, M; Javorsky, Penterococcus-faecium ccm4231MICROBIOL8254199310.1111/j.1472-765X.1993.tb01413.x3/1/2022Brooker, JD; Odonovan, LA; Skene, I; Clarke, K; Blackall, L; Muslera, PStreptococcus-caprinus SP-nov, a tannin- resistant ruminal bacterium from feral goatsLETT APPL HICROBIOL-Laukova, AAntimicrobial susceptibility of ruminal coagulase-negative staphylococciMICROBIOL8254199410.1111/j.1472-765X.1994.tb00877.x3/1/2022Laukova, AAntimicrobial susceptibility of ruminal coagulase-negative staphylococciMICROBIOLOGICA7138199410.1080/09712119.1994.97059993/1/2022Laukova, Aidentification of ruminal enterococcal and streptococcal flora of sheepJ APPL ANIM RES119410.1080/09712119.1994.97059993/1/2022Laukova, GT; Reilly, Kidentification of proteolytic rumen bacteria isolated from new-realand cattle udentity and interactions of rumen microbes associated with dietary sulfate-induced dihydroxyprindine and shydroxy-4 pyridone in the rumenCurmings, BA; Caldwell, DR; Gould, DH; epileoncephalomalacia in cattle Aranda, N; Piedra, R; Chongo, B; oblicancephalacia in cattle the rumenAM J VET RES9645199510.1111/j.1365-2672.1995.tb03119.x3/1/2022Calindo, J, Geerken, CM; Lilis,		rumen of fallow deer and their antimicrobial		-			
Laukova, A Laukova, A; Marekova, M; Javorsky, P trainerobial successful from the rumen wall of Jambs Detection and a inthin:robial spectrum of a bacteriocin-like substance produced BY Laukova, A; Marekova, M; Javorsky, P enterococcus-facium ccm4231 Brooker, JD; Odonovan, LA; Skene, J; Clarke, K; Blackall, L; Muslera, P Laukova, A Attimicrobial susceptibility of ruminal Laukova, A Attimicrobial susceptibility of ruminal coagulase-negative staphylococci MICROBIOL action of ruminal enterococcal and streptococcal flora of sheep JAPPL ANIM RES Attiwood, GT; Reilly, K Identification of proteolytic rumen bacteria Isolated from new-zealand cattle Identification of proteolytic rumen microbes associated with dietary sulfate-induced Aranda, N; Piedra, R; Chongo, B; Deljeado, D Comersion of oleic acid to 10-hydroxystearic Hudson, JA; Mackenzie, CAM; Joblin, KN Isolation and characterization of a temperate Isolation and charac	Laukova, A	activity	MICROBIOLOGICA	7138	1993		3/1/2022
Laukova, Aisolated from the rumen wall of lambs Detection and antimicrobial spectrum of a bacterioin-like substance produced PV enterococcus-faecium ccm4231VET MED-CZECH 02669427 0266199310.1111/j.1472-765X.1993.tb01413.x 3/1/2022Brooker, JD; Odonovan, LA; Skene, I; Clarke, K; Blackall, L; Muslera, PStreptococcus-caprinus SP-nov, a tannin- resistant ruminal bacterium from feral goatsLETT APPL 0266Laukova, AAntimicrobial susceptibility of ruminal teretococus-faecium crm4231LETT APPL 0266Laukova, AAntimicrobial susceptibility of ruminal teretococus-caprinus SP-nov, a tannin- resistant ruminal bacterium from feral goatsLETT APPL 0266Laukova, AAntimicrobial susceptibility of ruminal streptococcus caprinus Protococl and streptococci flora of sheepNICROBIOL GICA 0711713819940.1111/j.1472-765X.1994.tb00877.x 07113/1/2022Laukova, Aidentification of proteolytic rumen bacteria isolated from new-zealand cattle udentity and interactions of rumen microbes associated with dietary sufface-induced poloencephalomalacia in cattleHamar, DWpoloencephalomalacia in cattle the rumenAM J VET RES 00629645199510.1111/j.1365-2672.1995.tb03119.x 3/1/20223/1/2022Calindo, J; Geerken, CM; Ellas, A; Aranda, N; Piedra, R; Chongo, B; dilivydroxypirdine minosine, the 2,3- the rumenAM J VET RES 046519953/1/2022Laukova, Diegado, DConversion of oleic acid to 10-hydroxystearic acid BY two species of ruminal bacteria biolated inducovypi				0375			
Detection and antimicrobial spectrum of a bacteriocin-like substance produced BY enterococus-faecium ccm4231O266Brooker, JD, Odonovan, LA; Skene, I; Clarke, K; Blackall, L; Muslera, PStreptococcus-caprinus SP-nov, a tannin- resistant ruminal bacterium from feral goatsLETT APPL MICROBIOL-Clarke, K; Blackall, L; Muslera, PStreptococcus-caprinus SP-nov, a tannin- resistant ruminal bacterium from feral goatsLETT APPL MICROBIOL-Laukova, AAntimicrobial susceptibility of ruminal coagulase-negative staphylococciMICROBIOLOGICA1121 -Laukova, AIdentification of ruminal enterococcal and streptococcal flora of sheepJ APPL ANIM RES119410.1080/09712119.1994.97059993/1/2022Laukova, AIdentification of proteolytic rumen bacteria isolated from new-zealand cattle definitiv and interactions of rume microbes associated with dietary suffate-induced polioencephalomalacia in cattleJ APPL ANIM RES119510.1111/j.1472-765X.1993.tb03119.x3/1/2022Cummings, BA; Caldwell, DR; Gould, DH; Bada, J; Redra, R; Chongo, B; Dipleace, DBMICROBIOL GICA7138 PPL ANIM RES199510.1111/j.1365-2672.1995.tb03119.x3/1/2022Cummings, BA; Caldwell, DR; Gould, DH; Bada, J; Redra, R; Chongo, B; Delgado, DMICROBIOL MicrobesHudson, JA; Mackenzie, CAM; Joblin, KNConversion of oleic acid to 10-hydroxystearic acid BY two species of ruminal bacteriaAPPL MICROBIOL BIOTHudson, JA; Mackenzie, CAM; Joblin, KNConversion of oleic acid to 10-hydroxystearic alid W two species of ruminal bacteriaAPPL MI		The properties of adherent staphylococci		-			
Laukova, A; Marekova, M; Javorsky, Pbacteriocin-like substance produced BY enterococcus-facium ccm4231LETT APPL MICROBIOL-Laukova, A; Marekova, M; Javorsky, PStreptococcus-facium ccm4231MICROBIOL8254 0266199310.1111/j.1472-765X.1993.tb01413.x3/1/2022Brooker, JD; Odonovan, LA; Skene, I; Clarke, K; Blackall, L; Muslera, PStreptococcus-caprinus SP-nov, a tannin- resistant ruminal bacterium from feral goatsLETT APPL MICROBIOL-Laukova, AAntmicrobial susceptibility of ruminal coagulase-negative staphylococciMICROBIOLOGICA199410.1111/j.1472-765X.1994.tb00877.x3/1/2022Laukova, AAntmicrobial susceptibility of ruminal coagulase-negative staphylococciLaukova, AIdentification of ruminal enterococcal and streptococcal flora of sheepJ APPL ANIM RES2119199410.1080/09712119.1994.97059993/1/2022Attwood, GT; Reilly, KIdentification of proteolytic rumen bacteria isolated from new-zealand cattle Identification of rumen microbesJ APPL ANIM RES2119199410.1111/j.1365-2672.1995.tb03119.x3/1/2022Cummings, BA; Caldwell, DR; Gould, DH; Hamar, DWassociated with dietary suffate-induced induction of proteolytic rumen microbesDelgado, Dthe rumenCUBAN J AGR SCI0408199510.1111/j.1365-2672.1995.tb03119.x3/1/2022Galindo, J; Geerken, CM; Elias, A; Delgado, DBacteria degrading misne, the 2,3- Aranda, N; Piedra, R; Chongo, B; dihydroxypridine and 3-hydroxy-4 pyridone in the rumen <td>Laukova, A</td> <td>isolated from the rumen wall of lambs</td> <td>VET MED-CZECH</td> <td>8427</td> <td>1993</td> <td></td> <td>3/1/2022</td>	Laukova, A	isolated from the rumen wall of lambs	VET MED-CZECH	8427	1993		3/1/2022
Laukova, A; Marekova, M; Javorsky, Penterococcus-faecium ccm4231MICROBIOL8254 0266199310.1111/j.1472-765X.1993.tb01413.x3/1/2022Brooker, JD; Odonovan, LA; Skene, I; Clarke, K; Blackall, L; Muslera, PStreptococcus-caprinus SP-nov, a tannin- resistant ruminal bacterium from feral goatsLETT APPL MICROBIOL-Laukova, AAntimicrobial susceptibility of ruminal coagulase-negative staphylococciMICROBIOL 000008254 1121199410.1111/j.1472-765X.1994.tb00877.x3/1/2022Laukova, AIdentification of ruminal enterococcal and streptococcal flora of sheepLaukova, AIdentification of proteolytic rumen bacteria identification of proteolytic rumen bacteria identification of proteolytic rumen bacteria dentify and interactionesAttwood, GT; Reilly, Kisolated from new-zealand cattle poliencephalomalacia in cattle bacteria dentity sulfate-induced poliencephalomalacia in cattleJAPPL BACTERIOL Section di Arydroxy-4 pyridone in the rumenLaukova, D, JK; Chong, B; Delgado, DConversion of oleic acid to 10-hydroxystearic acid BY two species of ruminal bacteria acid BY two species of ruminal bacteria loolatic acid to 10-hydroxystearic acid BY two species of ruminal bacteria BIOT199510.1111/j.1365-2672.1995.tb03119.x3/1/2022Hudson, JA; Mackenzie, CAM; Joblin, KNConversion of oleic acid to 10-hydroxystearic acid BY two species of ruminal bacteriaAM J VET RES BIOT964519953/1/2022Hudson, JA; Mackenzie, CAM; Joblin, KNacid BY two species of ruminal bacteria acid BY two species of		Detection and antimicrobial spectrum of a		0266			
Brooker, JD; Odonovan, LA; Skene, I; Clarke, K; Blackall, L; Muslera, PStreptococus-caprinus SP-nov, a tanni- resistant ruminal bacterium from feral goatsLETT APPL - MICROBIOL199410.1111/j.1472-765X.1994.tb00877.x3/1/2022Laukova, AAntimicrobial susceptibility of ruminal coagulase-negative staphylococciMICROBIOLOGICA7138199410.1111/j.1472-765X.1994.tb00877.x3/1/2022Laukova, A- coagulase-negative staphylococciMICROBIOLOGICA7138199410.1080/09712119.1994.97059993/1/2022Laukova, A- isolated from new-zealand cattle identification of proteolytic rumen bacteria isolated from new-zealand cattle didentify and interactions of rumen microbes- associated with dietary sulfate-induced ouc- - - - - - - - - - -3/1/2022Cummings, BA; Caldwell, DR; Gould, DH; Hamar, DW Delicencephalomalacia in cattle dihydroxypiridine and 3-hydroxy-4 pyridone in the rumen- <b< td=""><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td>-</td><td></td><td></td><td></td></b<>		· · · · · · · · · · · · · · · · · · ·		-			
Brooker, JD; Odonovan, LA; Skene, I; Clarke, K; Blackall, L; Muslera, PStreptococcus-caprinus SP-nov, a tannin- resistant ruminal bacterium from feral goatsLETT APPL MICROBIOL-Laukova, AAntimicrobial susceptibility of ruminal coagulase-negative staphylococciMICROBIOLOGICA7138199410.1111/j.1472-765X.1994.tb00877.x3/1/2022Laukova, AOagulase-negative staphylococciMICROBIOLOGICA713819940.01111/j.1472-765X.1994.tb00877.x3/1/2022Laukova, AOagulase-negative staphylococciMICROBIOLOGICA7138199410.1080/09712119.1994.97059993/1/2022Laukova, AIdentification of ruminal enterococcal and streptococcal flora of sheepJ APPL ANIM RES2119199410.1080/09712119.1994.97059993/1/2022Attwood, GT; Reilly, Kisolated from new-zealand cattle Identity and interactions of rumen microbesJ APPL BACTERIOL8847199510.1111/j.1365-2672.1995.tb03119.x3/1/2022Cummings, BA; Caldwell, DR; Gould, DH; Balindo, J; Geerken, CM; Elias, A; Balteria degrading misoine, the 2,3- Aranda, N; Piedra, R; Chongo, B; Hudson, JA; Mackenzie, CAM; Joblin, KNBacteria degrading misoine, the 2,3- Airydoxy/-4 pyridone in the rumenAPPL MICROBIOL-Hudson, JA; Mackenzie, CAM; Joblin, KN Isolation and characterization of a temperateAPPL MICROBIOLBIOT759819953/1/20223/1/2022Identity and interactirization of a temperateIDIDIDIDIdentity and interactivation of a temperateIDIDIDID <td>Laukova, A; Marekova, M; Javorsky, P</td> <td>enterococcus-faecium ccm4231</td> <td>MICROBIOL</td> <td></td> <td>1993</td> <td>10.1111/j.1472-765X.1993.tb01413.x</td> <td>3/1/2022</td>	Laukova, A; Marekova, M; Javorsky, P	enterococcus-faecium ccm4231	MICROBIOL		1993	10.1111/j.1472-765X.1993.tb01413.x	3/1/2022
Clarke, K; Blackall, L; Muslera, Presistant ruminal bacterium from feral goatsMICROBIOL8254199410.1111/j.1472-765X.1994.tb00877.x3/1/2022Laukova, AAntimicrobial susceptibility of ruminal coagulase-negative staphylococciIdentification of ruminal enterococcal and streptococcal flora of sheepLaukova, AIdentification of proteolytic rumen bacteria isolated from new-zealand cattle udentify and interactions of rumen microbesAttwood, GT; Reilly, Kisolated from new-zealand cattle polioencephalomalacia in cattle oplioencephalomalagia in cattle Deligado, D199510.1111/j.1365-2672.1995.tb03119.x3/1/2022Cummings, BA; Caldwell, DR; Gould, DH; Hamar, DW Deligado, Dassociated with dietary sulfate-induced polioencephalomalagia in cattle oplioencephalomalagia				0266			
Laukova, A1121Laukova, AAntimicrobial susceptibility of ruminal coagulase-negative staphylococciMICROBIOLOGICA7138 713819943/1/2022Identification of ruminal enterococcal and streptococcal flora of sheepIdentification of proteolytic rumen bacteria isolated from new-zealand cattle ldentity and interactions of rumen microbesAttwood, GT; Reilly, Kisolated from new-zealand cattle isolated from new-zealand cattle ldentity and interactions of rumen microbesJAPPL BACTERIOL8847199510.1111/j.1365-2672.1995.tb03119.x3/1/2022Cummings, BA; Caldwell, DR; Gould, DH; Hamar, DWassociated with dietary sulfate-induced policencephalomalacia in cattleAM J VET RES964519953/1/2022Galindo, J; Geerken, CM; Elias, A; Hamar, DWBacteria degrading mimosine, the 2,3- dihydroxypiridine and 3-hydroxy-4 pyridone in the rumenDelgado, Dthe rumenCUBAN J AGR SCI040819953/1/2022Hudson, JA; Mackenzie, CAM; Joblin, KN isolation and characterization of a temperateIsolation and characterization of a temperate				-			
Laukova, A coagulase-negative staphylococci MICROBIOLOGICA 7138 1994 10.1080/09712119.1994.9705999 3/1/2022 JAPPL ANIM RES 2119 1994 10.1080/09712119.1994.9705999 3/1/2022 Identification of proteolytic rumen bacteria isolated from new-zealand cattle JAPPL BACTERIOL 8847 1995 10.1111/j.1365-2672.1995.tb03119.x 3/1/2022 Identity and interactions of rumen microbes Cummings, BA; Caldwell, DR; Gould, DH; associated with dietary sulfate-induced sassociated with dietary sulfate-induced sassociated with dietary sulfate-induced polioencephalomalacia in cattle AM J VET RES 9645 1995 1995 3/1/2022 Galindo, J; Geerken, CM; Elias, A; Bacteria degrading mimosine, the 2,3- Aranda, N; Piedra, R; Chongo, B; dihydroxypirdine and 3-hydroxy-4 pyridone in the rumen CUBAN J AGR SCI 0408 1995 3/1/2022 Hudson, JA; Mackenzie, CAM; Joblin, KN acid BY two species of ruminal bacteria BIOT 758 1995 1995 3/1/2022 BIOT 758 1995 3/1/2022 3/1/2022 3/1/2022 BIOT 758 1995 3/1/2022 3/1/	Clarke, K; Blackall, L; Muslera, P	resistant ruminal bacterium from feral goats	MICROBIOL		1994	10.1111/j.1472-765X.1994.tb00877.x	3/1/2022
Laukova, AO971Laukova, AIdentification of ruminal enterococcal and streptococcal flora of sheepJ APPL ANIM RES2119199410.1080/09712119.1994.97059993/1/2022Attwood, GT; Reilly, KIdentification of proteolytic rumen bacteria isolated from new-zealand cattle Identity and interactions of rumen microbesAttwood, GT; Reilly, Kisolated from new-zealand cattle Identity and interactions of rumen microbesJAPPL BACTERIOL8847199510.1111/j.1365-2672.1995.tb03119.x3/1/2022Cummings, BA; Caldwell, DR; Gould, DH; Hamar, DWassociated with dietary sulfate-induced polioencephalomalacia in cattleHamar, DWpolioencephalomalacia in cattle of alter adding mimosine, the 2,3- the rumenAM J VET RES964519953/1/2022Galindo, J; Geerken, CM; Elias, A; Bacteria degrading mimosine, the 2,3- Aranda, N; Piedra, R; Chongo, B; dihydroxypiridine and 3-hydroxy-4 pyridone in the rumenHudson, JA; Mackenzie, CAM; Joblin, KNConversion of oleic acid to 10-hydroxystearic acid BY two species of ruminal bacteriaAPPL MICROBIOL BIOTHudson and characterization of a temperateIsolation and characterization of a temperate </td <td></td> <td>Antimicrobial susceptibility of ruminal</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>		Antimicrobial susceptibility of ruminal		-			
Laukova, AIdentification of ruminal enterococcal and streptococcal flora of sheepJ APPL ANIM RES2119199410.1080/09712119.1994.97059993/1/2022Attwood, GT; Reilly, Kisolated from new-zealand cattle udentity and interactions of rumen microbesJ APPL BACTERIOL8847199510.1111/j.1365-2672.1995.tb03119.x3/1/2022Cummings, BA; Caldwell, DR; Gould, DH; Hamar, DWassociated with dietary sulfate-induced polioencephalomalacia in cattleAM J VET RES9645199510.1111/j.1365-2672.1995.tb03119.x3/1/2022Galindo, J; Geerken, CM; Elias, A; Bacteria degrading mimosine, the 2,3- Aranda, N; Piedra, R; Chongo, B; Delgado, Ddihydroxypirdine and 3-hydroxy-4 pyridone in the rumenCumstion of oleic acid to 10-hydroxystearic a sociated struminal bacteriaAPPL MICROBIOL BIOTHudson, JA; Mackenzie, CAM; Joblin, KNacide than the rumenta bacteriaBIOT0343 Isolation and characterization of a temperate	Laukova, A	coagulase-negative staphylococci	MICROBIOLOGICA	7138	1994		3/1/2022
Laukova, Astreptococcal flora of sheepJ APPL ANIM RES2119199410.1080/09712119.1994.97059993/1/2022Attwood, GT; Reilly, Kidentification of proteolytic rumen bacteria				0971			
Attwood, GT; Reilly, KIdentification of proteolytic rumen bacteria isolated from new-zealand cattle Identity and interactions of rumen microbesJ APPL BACTERIOL 00028847 00021995 10.1111/j.1365-2672.1995.tb03119.x3/1/2022Cummings, BA; Caldwell, DR; Gould, DH; Hamar, DWassociated with dietary sulfate-induced policencephalomalacia in cattleAM J VET RES9645199510.1111/j.1365-2672.1995.tb03119.x3/1/2022Galindo, J; Geerken, CM; Elias, A; Aranda, N; Piedra, R; Chongo, B; Delgado, DBacteria degrading mimosine, the 2,3- the rumenO40819953/1/2022Guindo, J, Goerken, CAM; Joblin, KNConversion of oleic acid to 10-hydroxystearic acid BY two species of ruminal bacteriaAPPL MICROBIOL BIOTHudson, JA; Mackenzie, CAM; Joblin, KNisolation and characterization of a temperateJustification of a temperate <td></td> <td>Identification of ruminal enterococcal and</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>		Identification of ruminal enterococcal and		-			
Identification of proteolytic rumen bacteria-Attwood, GT; Reilly, Kisolated from new-zealand cattleJ APPL BACTERIOL8847199510.1111/j.1365-2672.1995.tb03119.x3/1/2022Identity and interactions of rumen microbes00020002000200020002Cummings, BA; Caldwell, DR; Gould, DH; Hamar, DWassociated with dietary sulfate-induced polioencephalomalacia in cattleAM J VET RES9645199510.1111/j.1365-2672.1995.tb03119.x3/1/2022Galindo, J; Geerken, CM; Elias, A; Delgado, DBacteria degrading mimosine, the 2,3-0864-3/1/2022Gulado, Ddihydroxypiridine and 3-hydroxy-4 pyridone in the rumenDelgado, Dthe rumenCUBAN J AGR SCI040819953/1/2022Muson, JA; Mackenzie, CAM; Joblin, KNacid BY two species of ruminal bacteriaAPPL MICROBIOL BIOTHudson and characterization of a temperate <t< td=""><td>Laukova, A</td><td>streptococcal flora of sheep</td><td>J APPL ANIM RES</td><td></td><td>1994</td><td>10.1080/09712119.1994.9705999</td><td>3/1/2022</td></t<>	Laukova, A	streptococcal flora of sheep	J APPL ANIM RES		1994	10.1080/09712119.1994.9705999	3/1/2022
Identity and interactions of rumen microbes0002Cummings, BA; Caldwell, DR; Gould, DH; associated with dietary sulfate-induced-Hamar, DWpolioencephalomalacia in cattleAM J VET RES964519953/1/2022Galindo, J; Geerken, CM; Elias, A; Aranda, N; Piedra, R; Chongo, B; Delgado, DBacteria degrading mimosine, the 2,3- dihydroxypiridine and 3-hydroxy-4 pyridone in the rumen0064-Delgado, Dthe rumenCUBAN J AGR SCI040819953/1/2022Conversion of oleic acid to 10-hydroxystearic acid BY two species of ruminal bacteriaAPPL MICROBIOL BIOTHudson, JA; Mackenzie, CAM; Joblin, KN acid BY two species of ruminal bacteriaBIOT759819953/1/2022Isolation and characterization of a temperate		Identification of proteolytic rumen bacteria		-			
Cummings, BA; Caldwell, DR; Gould, DH; Hamar, DWassociated with dietary sulfate-induced-Galindo, J; Geerken, CM; Elias, A; Aranda, N; Piedra, R; Chongo, B; Delgado, DBacteria degrading mimosine, the 2,3- dihydroxypiridine and 3-hydroxy-4 pyridone in the rumen0864Delgado, Dthe rumenCUBAN J AGR SCI0408 19951995Conversion of oleic acid to 10-hydroxystearic acid BY two species of ruminal bacteriaAPPL MICROBIOL BIOT-Hudson, JA; Mackenzie, CAM; Joblin, KNacid BY two species of ruminal bacteriaBIOT7598 03431995 19953/1/2022 3/1/2022	Attwood, GT; Reilly, K	. ,	J APPL BACTERIOL	8847	1995	10.1111/j.1365-2672.1995.tb03119.x	3/1/2022
Hamar, DWpolioencephalomalacia in cattleAM J VET RES964519953/1/2022Galindo, J; Geerken, CM; Elias, A; Aranda, N; Piedra, R; Chongo, B; Delgado, DBacteria degrading mimosine, the 2,3- dihydroxypiridine and 3-hydroxy-4 pyridone in the rumen0864Delgado, Dthe rumenCUBAN J AGR SCI040819953/1/2022Onversion of oleic acid to 10-hydroxystearicAPPL MICROBIOLHudson, JA; Mackenzie, CAM; Joblin, KNacid BY two species of ruminal bacteriaBIOT759819953/1/2022Isolation and characterization of a temperate		Identity and interactions of rumen microbes		0002		-	
Galindo, J; Geerken, CM; Elias, A; Bacteria degrading mimosine, the 2,3- 0864 Aranda, N; Piedra, R; Chongo, B; dihydroxypiridine and 3-hydroxy-4 pyridone in - Delgado, D the rumen CUBAN J AGR SCI 0408 1995 3/1/2022 Mudson, JA; Mackenzie, CAM; Joblin, KN acid BY two species of ruminal bacteria BIOT 7598 1995 3/1/2022 Isolation and characterization of a temperate - - - -	Cummings, BA; Caldwell, DR; Gould, DH;	associated with dietary sulfate-induced		-			
Aranda, N; Piedra, R; Chongo, B; dihydroxypiridine and 3-hydroxy-4 pyridone in - Delgado, D the rumen CUBAN J AGR SCI 0408 1995 3/1/2022 O175 0175 0175 0175 3/1/2022 0175 Hudson, JA; Mackenzie, CAM; Joblin, KN acid BY two species of ruminal bacteria BIOT 7598 1995 3/1/2022 Isolation and characterization of a temperate - - - -	Hamar, DW	polioencephalomalacia in cattle	AM J VET RES	9645	1995		3/1/2022
Delgado, D the rumen CUBAN J AGR SCI 0408 1995 3/1/2022 0175 0175 Conversion of oleic acid to 10-hydroxystearic APPL MICROBIOL - Hudson, JA; Mackenzie, CAM; Joblin, KN acid BY two species of ruminal bacteria BIOT 7598 1995 3/1/2022 Isolation and characterization of a temperate - - - -	Galindo, J; Geerken, CM; Elias, A;	Bacteria degrading mimosine, the 2,3-		0864			
Image: Provide a conversion of oleic acid to 10-hydroxystearic APPL MICROBIOL - Hudson, JA; Mackenzie, CAM; Joblin, KN acid BY two species of ruminal bacteria BIOT 7598 1995 3/1/2022 Isolation and characterization of a temperate - - -	Aranda, N; Piedra, R; Chongo, B;	dihydroxypiridine and 3-hydroxy-4 pyridone in		-			
Conversion of oleic acid to 10-hydroxystearic APPL MICROBIOL - Hudson, JA; Mackenzie, CAM; Joblin, KN acid BY two species of ruminal bacteria BIOT 7598 1995 3/1/2022 0343 Isolation and characterization of a temperate - - -	Delgado, D	the rumen	CUBAN J AGR SCI	0408	1995		3/1/2022
Hudson, JA; Mackenzie, CAM; Joblin, KN acid BY two species of ruminal bacteria BIOT 7598 1995 3/1/2022 0343 Isolation and characterization of a temperate - - -				0175			
0343 Isolation and characterization of a temperate -		Conversion of oleic acid to 10-hydroxystearic	APPL MICROBIOL	-			
Isolation and characterization of a temperate -	Hudson, JA; Mackenzie, CAM; Joblin, KN	acid BY two species of ruminal bacteria	BIOT	7598	1995		3/1/2022
				0343			
Jiang, WH; Patterson, JA; Steenson, LR bacteriophage from a ruminal acetogen CURR MICROBIOL 8651 1995 10.1007/BF00294695 3/1/2022				-			
	Jiang, WH; Patterson, JA; Steenson, LR	bacteriophage from a ruminal acetogen	CURR MICROBIOL	8651	1995	10.1007/BF00294695	3/1/2022

	Isolation and characterization of AN anaerobic		0099			1
Nelson, KE; Pell, AN; Schofield, P; Zinder,	ruminal bacterium capable of degrading	APPL ENVIRON	-			
S	hydrolyzable tannins	MICROB	2240	1995	10.1128/AEM.61.9.3293-3298.1995	3/1/2022
			0378			
	Isolation and characterization of a new	FEMS MICROBIOL	-			
Rieulesme, F; Fonty, G; Dore, J	hydrogen-utilizing bacterium from the rumen	LETT	1097	1995	10.1111/j.1574-6968.1995.tb07338.x	3/1/2022
	Characterization of tannin acylhydrolase activity		1075			
	in the ruminal bacterium Selenomonas		-			
Skene, IK; Brooker, JD	ruminantium	ANAEROBE	9964	1995	10.1006/anae.1995.1034	3/1/2022
	Succiniclasticum ruminis gen-nov, SP-nov, a					
	ruminal bacterium converting succinate to		0020			
Ver a davada NO	propionate as the sole energy-yielding		-	1005	10 1000/00207712 45 2 207	2/1/2022
Vangylswyk, NO	mechanism	INT J SYST BACTERIOL	7713	1995	10.1099/00207713-45-2-297	3/1/2022
Wang MV/L, Ha WW/, Tan SC, Abdullah	Isozyme and morphological-characteristics of		0378			
Wong, MVL; Ho, YW; Tan, SG; Abdullah,	the anaerobic fungus piromyces mae isolated	FEMS MICROBIOL LETT	-	1005	10 1010/0278 1007/05/00251 5	2/1/2022
N; Jalaludin, S	from the duodenum, rumen and feces of sheep	LEII	1097 0099	1995	10.1016/0378-1097(95)00351-5	3/1/2022
Anderson, RC; Rasmussen, MA; Allison,	Enrichment and isolation of a nitropropanol-	APPL ENVIRON	0099			
MJ	metabolizing bacterium from the rumen	MICROB	- 2240	1996	10.1128/AEM.62.10.3885-3886.1996	3/1/2022
		WIICKOB	0020	1990	10.1128/ALWI.02.10.3885-3880.1990	5/1/2022
	Clostridium proteoclasticum SP nov, a novel		-			
Attwood, GT; Reilly, K; Patel, BKC	proteolytic bacterium from the bovine rumen	INT J SYST BACTERIOL	7713	1996	10.1099/00207713-46-3-753	3/1/2022
			0021	1000	1011000,00207710 10 0 700	0,1,2022
	Comparison of nitrogen-15 and purines as		-			
Calsamiglia, S; Stern, MD; Firkins, JL	microbial markers in continuous culture	J ANIM SCI	8812	1996		3/1/2022
6,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	16S rdna analysis of Butyrivibrio fibrisolvens:					
	Phylogenetic position and relation to butyrate-		0266			
	producing anaerobic bacteria from the rumen	LETT APPL	-			
Forster, RJ; Teather, RM; Gong, J	of white-tailed deer	MICROBIOL	8254	1996	10.1111/j.1472-765X.1996.tb00069.x	3/1/2022
			0022			
			-			
Krause, DO; Russell, JB	How many ruminal bacteria are there?	J DAIRY SCI	0302	1996	10.3168/jds.S0022-0302(96)76506-2	3/1/2022
			0923			
Rieulesme, F; Dauga, C; Morvan, B;	Acetogenic coccoid spore-forming bacteria		-			
Bouvet, OMM; Grimont, PAD; Dore, J	isolated from the rumen	RES MICROBIOL	2508	1996	10.1016/S0923-2508(97)85122-4	3/1/2022
	A new H-2/CO2-using acetogenic bacterium		0378			
Rieulesme, F; Morvan, B; Collins, MD;	from the rumen: Description of Ruminococcus	FEMS MICROBIOL	-			
Fonty, G; Willems, A	schinkii SP nov	LETT	1097	1996		3/1/2022
	Pseudobutyrivibrio ruminis gen nov, SP nov, a					
	butyrate-producing bacterium from the rumen		0020			
	that closely resembles Butyrivibrio fibrisolvens		-		40 4000 /00007740	0 /1 /5
Vangylswyk, NO; Hippe, H; Rainey, FA	in phenotype	INT J SYST BACTERIOL	7713	1996	10.1099/00207713-46-2-559	3/1/2022
Anderson DC: Desmusson MA: Dissiste	Characteristics of a nitronronanal match-linian		0008			
Anderson, RC; Rasmussen, MA; Dispirito, AA; Allison, MJ	Characteristics of a nitropropanol-metabolizing bacterium isolated from the rumen	CAN J MICROBIOL	- 4166	1997	10.1139/m97-088	3/1/2022
AA, AIIISUH, IVIJ	pacterium isolateu nom the fumen		4100	1931	10.1123/1113/-000	5/1/2022

			0133			
Binder, J; Horvath, EM; Schatzmayr, G;	Screening for deoxynivalenol-detoxifying	CEREAL RES	-			
Ellend, N; Danner, H; Krska, R; Braun, R	anaerobic rumen microorganisms	COMMUN	3720	1997		3/1/2022
	Group-specific 16S rrna hybridization probes for		0099			
	determinative and community structure studies	APPL ENVIRON	-			
Forster, RJ; Gong, JH; Teather, RM	of Butyrivibrio fibrisolvens in the rumen	MICROB	2240	1997	10.1128/AEM.63.4.1256-1260.1997	3/1/2022
	Formate and ethanol are the major products of		1364			
	glycerol fermentation produced BY a Klebsiella		-			
Jarvis, GN; Moore, ERB; Thiele, JH	planticola strain isolated from red deer	J APPL MICROBIOL	5072	1997	10.1046/j.1365-2672.1997.00217.x	3/1/2022
	Isolation and characterization of glycerol-		0008			
Jarvis, GN; Strompl, C; Moore, ERB;	fermenting bacteria from the rumen of red		-			
Thiele, JH	deer	CAN J MICROBIOL	4166	1997	10.1139/m97-158	3/1/2022
	Schwartzia succinivorans gen nov, SP nov,		0020			
	another ruminal bacterium utilizing succinate as		-			
Vangylswyk, NO; Hippe, H; Rainey, FA	the sole energy source	INT J SYST BACTERIOL	7713	1997	10.1099/00207713-47-1-155	3/1/2022
			0168			
Wells, JE; Krause, DO; Callaway, TR;	A bacteriocin-mediated antagonism BY ruminal	FEMS MICROBIOL	-			
Russell, JB	lactobacilli against Streptococcus bovis	ECOL	6496	1997	10.1016/S0168-6496(96)00095-5	3/1/2022
			0099			
Attwood, GT; Klieve, AV; Ouwerkerk, D;	Ammonia-hyperproducing bacteria from New	APPL ENVIRON	-			
Patel, BKC	Zealand ruminants	MICROB	2240	1998		3/1/2022
,	Isolation and characterization of ruminal		0367			, ,
	bacteria degrading DHP, the toxic metabolite of		-			
Chhabra, A; Kaur, J; Malik, RK; Kaur, H	mimosine	INDIAN J ANIM SCIS	8318	1998		3/1/2022
	minosine		0378	1550		5/ 1/2022
	Hydration of linoleic acid BY bacteria isolated	FEMS MICROBIOL	-			
Hudson, JA; Morvan, B; Joblin, KN	from ruminants	LETT	1097	1998	10.1111/j.1574-6968.1998.tb13329.x	3/1/2022
	Isolation and characterisation of obligately		0723	1550	10.1111/j.137 + 0300.1330.0013325.x	5/ 1/2022
Jarvis, GN; Strompl, C; Moore, ERB;	anaerobic, lipolytic bacteria from the rumen of	SYST APPL	-			
Thiele, JH	red deer	MICROBIOL	2020	1998	10.1016/S0723-2020(98)80017-9	3/1/2022
	Comparison of metabolic activities between	MICHODICE	0377	1550	10.1010/30/23 2020(30/0001/ 3	5/ 1/2022
Julliand, V; Riondet, C; DE Vaux, A;	Piromyces citronii, and equine fungal species,		-			
Alcaraz, G; Fonty, G	and Piromyces communis, a ruminal species	ANIM FEED SCI TECH	8401	1998	10.1016/S0377-8401(97)00043-6	3/1/2022
, (curuz, c), i onty, c	and monyces community, a runnial species		0008	1550	10.1010/30377 8101(37)00013 8	5/ 1/2022
	Tannin-tolerant ruminal bacteria from East		-			
Odenyo, AA; Osuji, PO	African ruminants	CAN J MICROBIOL	4166	1998	10.1139/cjm-44-9-905	3/1/2022
ouenyo, AA, osuji, 1 o	Isolation from the rumen of a new acetogenic	CAN I WICHOBIOL	1075	1550	10.1135/cjiii 44 5 505	5/ 1/2022
Rieu-Lesme, F; Dauga, C; Fonty, G; Dore,	bacterium phylogenetically closely related to		-			
	Clostridium difficile	ANAEROBE	9964	1998	10.1006/anae.1998.0153	3/1/2022
3		ANALNODL	0026	1550	10.1000/anac.1558.0155	5/1/2022
	Cellulolytic bacteria of the genus Ruminococcus		0020			
Tarakanov, BV; Lavlinskii, DY	from bovine rumen	MICROBIOLOGY	- 2617	1998		3/1/2022
τατακάτιον, υν, Εανιποκπ, υτ	A method for the selective enumeration and	WIGNOBIOLOGI	0266	1990		5/1/2022
	isolation of ruminal Lactobacillus and	LETT APPL	0200			
Yanke, LJ; Cheng, KJ		MICROBIOL	- 8254	1998		3/1/2022
Talike, LJ, CHEHB, KJ	Streptococcus	WIICRODIUL	0234	1230		5/1/2022

Duncan, SH; Doherty, CJ; Govan, JRW;	Characteristics of sheep-rumen isolates of Pseudomonas aeruginosa inhibitory to the	FEMS MICROBIOL	0378			
Neogrady, S; Galfi, P; Stewart, CS	growth of Escherichia coli O157 Actinobacillus succinogenes SP. Nov., a novel succinic-acid-producing strain from the bovine	LETT	1097 0020	1999	10.1016/S0378-1097(99)00493-0	3/1/2022
Guettler, MV; Rumler, D; Jain, MK	rumen Genetic homogeneity and phage susceptibility	INT J SYST BACTERIOL	7713 0266	1999	10.1099/00207713-49-1-207	3/1/2022
Klieve, AV; Heck, GL; Prance, MA; Shu, Q	of ruminal strains of Streptococcus bovis isolated in Australia	LETT APPL MICROBIOL	- 8254 0026	1999	10.1046/j.1365-2672.1999.00596.x	3/1/2022
Laukova, A	Vancomycin-resistant enterococci isolates from the rumen content of deer Isolation and characterization of proteolytic	MICROBIOS	- 2633	1999		3/1/2022
Mcsweeney, CS; Palmer, B; Bunch, R;	ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra	APPL ENVIRON	0099			- (- (
Krause, DO	calothyrsus Hydration of oleic acid BY Enterococcus gallinarum, Pediococcus acidilactici and	MICROB	2240 1075	1999		3/1/2022
Morvan, B; Joblin, KN	Lactobacillus SP isolated from the rumen Denitrobacterium detoxificans gen. Nov., SP	ANAEROBE	9964 1466	1999	10.1006/anae.1999.0306	3/1/2022
Anderson, RC; Rasmussen, MA; Jensen, NS; Allison, MJ	nov., a ruminal bacterium that respires on nitrocompounds Identification of spores in the polycentric	INT J SYST EVOL MICR	- 5026 0168	2000	10.1099/00207713-50-2-633	3/1/2022
Brookman, JL; Ozkose, E; Rogers, S; Trinci, APJ; Theodorou, MK	anaerobic gut fungi which enhance their ability to survive	FEMS MICROBIOL ECOL	- 6496 0004	2000	10.1111/j.1574-6941.2000.tb00692.x	3/1/2022
Cheong, JPE; Brooker, JD	Isolation of a virulent bacteriophage from a Propionibacterium species in the sheep rumen	AUST J AGR RES	- 9409 0343	2000	10.1071/AR99069	3/1/2022
Jarvis, GN; Strompl, C; Burgess, DM; Skillman, LC; Moore, ERB; Joblin, KN	Isolation and identification of ruminal methanogens from grazing cattle	CURR MICROBIOL	- 8651 0015	2000	10.1007/s002849910065	3/1/2022
Kopecny, J; Hodrova, B	Chitinolytic enzymes produced BY ovine rumen bacteria	FOLIA MICROBIOL	- 5632 0015	2000	10.1007/BF02817622	3/1/2022
Ambrozic, J; Ferme, D; Grabnar, M; Ravnikar, M; Avgustin, G	The bacteriophages of ruminal prevotellas	FOLIA MICROBIOL	- 5632	2001	10.1007/BF02825881	3/1/2022
Ha, JK; Lee, SS; Gao, Z; Kim, CH; Kim, SW; Ko, JY; Cheng, KJ	The effect of saturated fatty acids on cellulose digestion BY the rumen anaerobic fungus, Neocallimatix frontalis C5-1 Phenotypic and genetic data supporting reclassification of Puturivibrio fibricolycon	ASIAN AUSTRAL J ANIM	1011 - 2367 0015	2001	10.5713/ajas.2001.941	3/1/2022
Kopecny, J; Logar, RM; Kobayashi, Y	reclassification of Butyrivibrio fibrisolvens isolates The antibacterial activity and sensitivity of	FOLIA MICROBIOL	- 5632 0168	2001	10.1007/BF02825883	3/1/2022
Mantovani, HC; Kam, DK; Ha, JK; Russell, JB	Streptococcus bovis strains isolated from the rumen of cattle	FEMS MICROBIOL ECOL	- 6496	2001	10.1016/S0168-6496(01)00166-0	3/1/2022

·						
Michalowski, T; Rybicka, K; Wereszka, K;	Ability of the rumen ciliate Epidinium ecaudatum to digest and use crystalline		0065 -			
Kasperowicz, A	cellulose and xylan for in vitro growth	ACTA PROTOZOOL	1583 1075	2001		3/1/2022
Odenyo, AA; Bishop, R; Asefa, G; Jamnadass, R; Odongo, D; Osuji, P	Characterization of tannin-tolerant bacterial isolates from East African ruminants Cyllamyces aberensis gen.nov SP.nov., a new	ANAEROBE	- 9964 0008	2001	10.1006/anae.2000.0367	3/1/2022
Ozkose, E; Thomas, BJ; Davies, DR; Griffith, GW; Theodorou, MK	anaerobic gut fungus with branched sporangiophores isolated from cattle Purification and characterization of a	CAN J BOT	- 4026	2001	10.1139/b01-047	3/1/2022
Pattnaik, P; Kaushik, JK; Grover, S; Batish,	bacteriocin-like compound (Lichenin) produced anaerobically BY Bacillus licheniformis isolated		1364 -			
VK	from water buffalo	J APPL MICROBIOL	5072 0026	2001	10.1046/j.1365-2672.2001.01429.x	3/1/2022
Rinta-Koski, M; Beasley, S; Montonen, L; Mantere-Alhonen, S	Propionibacteria isolated from rumen used as possible probiotics together with bifidobacteria Lachnobacterium bovis gen. Nov., SP nov., a	MILCHWISSENSCHAF T	- 3788 1466	2001		3/1/2022
Whitford, MF; Yanke, LJ; Forster, RJ; Teather, RM	novel bacterium isolated from the rumen and faeces of cattle	INT J SYST EVOL MICR	- 5026 0029	2001	10.1099/00207713-51-6-1977	3/1/2022
Chen, YC; Hseu, RS	Piromyces polycephalus (Neocallimastigaceae), a new rumen fungus Ammonia production BY ruminal	NOVA HEDWIGIA	- 5035	2002	10.1127/0029-5035/2002/0075-0409	3/1/2022
Eschenlauer, SCP; Mckain, N; Walker, ND; Mcewan, NR; Newbold, CJ; Wallace,	microorganisms and enumeration, isolation, and characterization of bacteria capable of growth on peptides and amino acids from the	APPL ENVIRON	0099			
RJ	sheep rumen The enrichment of a ruminal bacterium (Megasphaera elsdenii YJ-4) that produces the	MICROB	2240 1365	2002	10.1128/AEM.68.10.4925-4931.2002	3/1/2022
Kim, YJ; Liu, RH; Rychlik, JL; Russell, JB	trans-10, cis-12 isomer of conjugated linoleic acid	J APPL MICROBIOL	- 2672 1466	2002	10.1046/j.1365-2672.2002.01610.x	3/1/2022
Lan, GQ; Ho, YW; Abdullah, N	Mitsuokella jalaludinii SP nov., from the rumens of cattle in Malaysia Isolation and characterization of a new succinic	INT J SYST EVOL MICR	- 5026	2002	10.1099/00207713-52-3-713	3/1/2022
	acid-producing bacterium, Mannheimia		1432			
Lee, PC; Lee, SY; Hong, SH; Chang, HN	succiniciproducens MBEL55E, from bovine rumen	APPL MICROBIOL BIOT	- 0614 1364	2002	10.1007/s00253-002-0935-6	3/1/2022
Ouwerkerk, D; Klieve, AV; Forster, RJ	Enumeration of Megasphaera elsdenii in rumen contents BY real-time Taq nuclease assay	J APPL MICROBIOL	- 5072 0343	2002	10.1046/j.1365-2672.2002.01580.x	3/1/2022
Rychlik, JL; Lavera, R; Russell, JB	Amino acid deamination BY ruminal Megasphaera elsdenii strains Bacteriocin-like activity of Butyrivibrio	CURR MICROBIOL	- 8651 0099	2002	10.1007/s00284-002-3743-4	3/1/2022
Rychlik, JL; Russell, JB	fibrisolvens JL5 and its effect on other ruminal bacteria and ammonia production	APPL ENVIRON MICROB	- 2240	2002	10.1128/AEM.68.3.1040-1046.2002	3/1/2022

Kopecny, J; Zorec, M; Mrazek, J;	Butyrivibrio hungatei SP nov and Pseudobutyrivibrio xylanivorans SP nov.,		1466 -			
Kobayashi, Y; Marinsek-Logar, R Krause, DO; Smith, WJM; Conlan, LL; Gough, JM; Williamson, MA;	butyrate-producing bacteria from the rumen Diet influences the ecology of lactic acid bacteria and Escherichia coli along the digestive	INT J SYST EVOL MICR	5026 1350 -	2003	10.1099/ijs.0.02345-0	3/1/2022
Mcsweeney, CS	tract of cattle: neural networks and 16S rdna Isolation and characterization of solventogenic, cellulase-free xylanolytic Clostridia from cow	MICROBIOLOGY-SGM	0872 0273	2003	10.1099/mic.0.25685-0	3/1/2022
Sankar, M; Delgado, O; Mattiasson, B	rumen Biohydrogenation of C18 unsaturated fatty	WATER SCI TECHNOL	1223 0266	2003	10.2166/wst.2003.0251	3/1/2022
Van DE Vossenberg, JLCM; Joblin, KN	acids to stearic acid BY a strain of Butyrivibrio hungatei from the bovine rumen Eubacterium pyruvativorans SP nov., a novel	LETT APPL MICROBIOL	- 8254	2003	10.1046/j.1472-765X.2003.01421.x	3/1/2022
Wallace, RJ; Mckain, N; Mcewan, NR; Miyagawa, E; Chaudhary, LC; King, TP; Walker, ND; Apajalahti, JHA; Newbold, CJ	non-saccharolytic anaerobe from the rumen that ferments pyruvate and amino acids, forms caproate and utilizes acetate and propionate	INT J SYST EVOL MICR	1466 - 5026	2003	10.1099/ijs.0.02110-0	3/1/2022
	Fiber-degrading systems of different strains of	APPL ENVIRON	0099 -			
Bera-Maillet, C; Ribot, Y; Forano, E	the genus Fibrobacter The use of PCR for the identification and characterisation of bacteriocin genes from	MICROB	2240 0168	2004	10.1128/AEM.70.4.2172-2179.2004	3/1/2022
Cookson, AL; Noel, SJ; Kelly, WJ; Attwood, GT	bacterial strains isolated from rumen or caecal contents of cattle and sheep	FEMS MICROBIOL ECOL	- 6496	2004	10.1016/j.femsec.2004.01.003	3/1/2022
Fliegerova, K; Hodrova, B; Voigt, K	Classical and molecular approaches as a powerful tool for the characterization of rumen polycentric fungi	FOLIA MICROBIOL	0015 - 5632	2004	10.1007/BF02931392	3/1/2022
Klieve, AV; Bain, PA; Yokoyama, MT; Ouwerkerk, D; Forster, RJ; Turner, AF	Bacteriophages that infect the cellulolytic ruminal bacterium Ruminococcus albus AR67		0266 - 8254	2004	10 1111/: 1472 7/22 2004 01402	2/1/2022
Paul, SS; Kamra, DN; Sastry, VRB; Sahu,	Effect of anaerobic fungi on in vitro feed	MICROBIOL	8254 0926 -	2004	10.1111/j.1472-765X.2004.01493.x	3/1/2022
NP; Agarwal, N	digestion BY mixed rumen microflora of buffalo Different restriction and modification	REPROD NUTR DEV FEMS MICROBIOL	5287 0378	2004	10.1051/rnd:2004036	3/1/2022
Piknova, M; Filova, M; Javorsky, P; Pristas, P	phenotypes in ruminal lactate-utilizing bacteria Effect of cellulose degrading bacteria isolated	LETT	- 1097	2004	10.1111/j.1574-6968.2004.tb09632.x	3/1/2022
Sahu, NP; Kamra, DN; Paul, SS	from wild and domestic ruminants on in vitro dry matter digestibility of feed and enzyme production	ASIAN AUSTRAL J ANIM	1011 - 2367	2004	10.5713/ajas.2004.199	3/1/2022
Shin, HT; Lee, SW; Park, KM; Kim, LT;	Nutritional requirements of Prevotella SP	BIOTECHNOL	1226		10.07 10/0/03/2007.100	5/ 1/2022
Son, AH; Lee, JH	isolated from the rumen of the goat Tannic acid resistance in ruminal streptococcal	BIOPROC E	8372 0233	2004	10.1007/BF02942350	3/1/2022
Goel, G; Puniya, AK; Singh, K	isolates	J BASIC MICROB	- 111X	2005	10.1002/jobm.200410517	3/1/2022

Kasting, A.; Stanton, C.; Murphy, J.; of polymorphiums in the promotion region in daily covers topable of degrading the neurotics hast-colope (beta-th-coal)(Isolation and characterization of the bovine Stearoyi-coa desaturase promoter and analysis		0938			
InterchangeUptical-Hoak/H-Lajba, beta-diaminopropionic0022Marichany, S., Yigzaw, Y., Gorton, L., and Jaszer Stron, L., and Jaszer Stron, L., Pelgado, DCacd Jaszer Strong analysis system dharacterization of yeasts from the ruminal ecosystemJ SCI FOOD AGR5142 064200510.1002/jfa.22113/1/2022Windman, Al; Boucourt, R; Elias, A. Delgado, DCcontrol departerization of yeasts from the ruminal angustasimaMesweeney, CS, Blackall, ILI, Collins, F; Conlan, LI, Webb, Ri, Denman, SF; angustasimaand characterization of angustasimaMesweeney, CS, Blackall, RJ, Collins, F; Conlan, LI, Webb, Ri, Denman, SF; 		dairy cows	MAMM GENOME	- 8990	2005	10.1007/s00335-004-2325-0	3/1/2022
Marrero, Y. Galindo, J. Avarez, E. Torres, V. Aldama, Aj. Sao, D.C. Methodology for the isolation and ecosystem 0864 V. Jalama, Aj. Yaoucourt, R. Elias, A; Delgado, D.C. Curban Lagence and 	Marichamy, S; Yigzaw, Y; Gorton, L;	(beta-N-oxalyl-L-alpha,beta-diaminopropionic		0022			
Delgado, DC ecosystem CUBAN J AGR SCI 0408 2005 3/1/2022 Mosweeney, CS; Blackall, LL; Collins, E; Conlan, LL; Webb, R; Denman, SF; ruminal bacteria that degrade non-protein amino acids from the tropical legume Acacia 0377 - Krause, DO - - 1226 10.1016/j.anlfeedsci.2005.02.018 3/1/2022 Cohmiya, K; Sakka, K; Kimura, T - - - - - Ohmiya, K; Sakka, K; Kimura, T - - - - - Russell, JB growth ANAEROBE 9964 2005 10.1016/j.anaerobe.2005.01.001 3/1/2022 Singh, R; Singh, M; Nayyar, S - - - - - Sprincova, A; Stovcik, V; Javorsky, P; Occurrence of pis86/pef47-related plasmids in Gram-positive cocci - - - Piritals, P - - - - - Styriak, J; Spanova, A; Zitnan, R and different capiak from from elulose Firmen cellulose for memon cellulose Firmen cellulose Firmen cellulose Firmen cellulose and bacterial colloses - - Styriak, J; Spanova, A; Zitnan, R and bacterial coll wind marchifter form fingal and bacterial cell walls - - - Veriak, Gram, Coll, Grament elulose firmen fingal and bacterial cell walls - - - - <	Marrero, Y; Galindo, J; Alvarez, E; Torres,	Methodology for the isolation and	J SCI FOOD AGR		2005	10.1002/jsfa.2211	3/1/2022
Conlan, Li, Webb, Ri, Denman, SE; Arause, DOamino acids from the tropical legume Acacia angustissima-Krause, DOANIM FEED SCI TECH8401200510.1016/j.anfeedsci.2005.02.0183/1/2022Ohmiya, K; Sakka, K; Kimura, Teffective utilization of biomass Enrichment of fusbacterial form the runen tac an utilize lysine as AN energy source for growthBIOPEOC E8372200510.1016/j.anfeedsci.2005.02.0183/1/2022Russell, JBgrowthBIOPEOC E8372200510.1016/j.anaerobe.2005.01.0013/1/2022Singh, R; Singh, M; Nayyar, SCharacterization of rumen bacteria isolated from the buffalo calvesTHE INDIAN J ANIM SCIS8318 2005200510.1016/j.anaerobe.2005.01.0013/1/2022Sprincova, A; Stovcik, V; Javorsky, P; Pristas, POccurrence of ps86/pef47-related plasmids in Gram-positive cocciCURR MICROBIOL Partial characterization of two runninal bufferent capisdis morphologyCURR MICROBIOL 10.1007/s00284-005-4564-23/1/2022Belzecki, G; Michalowski, Tand different capisdis morphology affine, to digest polysacchardes from fungal affine, to digest polysacchardes from fungal 		ecosystem	CUBAN J AGR SCI	0408	2005		3/1/2022
LinkLi		. .		0377 -			
Dhmiya, K; Sakka, K; Kimura, Teffective utilization of bomass Enrichment of fusobacteria from the rumen that can utilize lysine as AN energy source for growthBIOPROC E8372 	Krause, DO	-			2005	10.1016/j.anifeedsci.2005.02.018	3/1/2022
Russell, JBgrowthANAEROBE9964200510.1016/j.anaerobe.2005.01.0013/1/2022Singh, R; Singh, M; Nayyar, SCharacterization of rumen bacteria isolated from the buffalo calvesTHE INDIAN J ANIM SCIS831820053/1/2022Sprincova, A; Stovcik, V; Javorsky, P; Pristas, POccurrence of ps86/pef47-related plasmids in Gram-positive cocciPristas, POccurrence of ps86/pef47-related plasmids in Gram-positive cocciStyriak, I; Spanova, A; Zitnan, ROccurrence of ps86/pef47-related plasmids in frea bility of the rume nilate, Diploplastron affine, to digest polysaccharides from fungal affine, to digest polysaccharides from fungal affine, to digest polysaccharides from fungal affine, to digest polysaccharides from fungal Belzecki, G; Michalowski, TPiknova, M; Javorsky, P; Guczynska, W; Kasperowicz, A; Michalowski, T; Pristas, PNew species of rumen treponemes Bio-hydrogen production from cellulose BY sequential CO-culture of cellulosis hydrogen paterial featherize galliarem G1 and Ethanoigenens harbinense B49FOLIA MICROBIOL BIOTECHNOL LETT5632200610.1007/s10529-009-0028-z3/1/2022Wang, AI; Gao, LF; Ren, NQ; Xu, JF; Liu, C Yang, HJ; Yue, Q; Cao, YC; Zhang, DF; hay, wheta bran, mize bran, what straw andYang, HJ; Yue, Q; Cao, YC; Zhang, DF;hay, wheta bran, mize bran, what straw and	Ohmiya, K; Sakka, K; Kimura, T	effective utilization of biomass Enrichment of fusobacteria from the rumen		1075	2005	10.1007/BF02932282	3/1/2022
Singh, R; Singh, M; Nayyar, Sfrom the buffalo calvesSCIS8318 (343)20053/1/2022 (343)Sprincova, A; Stovcik, V; Javorsky, P; Pristas, POccurrence of ps86/pef47-related plasmids in 	Russell, JB	,	ANAEROBE		2005	10.1016/j.anaerobe.2005.01.001	3/1/2022
Pristas, PGram-positive cocciCURR MICROBIOL8651200510.1007/s00284-005-4564-z3/1/2022Partial characterization of two ruminal bacteriophages with similar restriction patternsStyriak, I; Spanova, A; Zitnan, Rand different capsids morphology The ability of the rumen ciliate, Diploplastron affine, to digest polysaccharides from fungal and bacterial cell wallsBelzecki, G; Michalowski, Tand bacterial cell wallsJ ANIM FEED SCI1388200610.1007/BF02931819Piknova, M; Javorsky, P; Guczynska, W;-Kasperowicz, A; Michalowski, T; Pristas, PNew species of rumen treponemes Bio-hydrogen production from cellulose BY sequential CO-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Etfects of crude feruloy1 and acetyl esterase solutions of Neocallimastix SP YQ1 and Anaeromyces SP YQ3 isolated from Holstein steers on hydrolysis of Chinese wildrye grass solutions of Neocallimastix SP YQ1 and Anaeromyces SP YQ3 isolated from Holstein steers on hydrolysis of Chinese wildrye grass solutions of Neocallimastix SP YQ1 and Anaeromyces SP YQ3 isolated from Holstein steers on hydrolysis of Chinese wildrye grass solutions of Neocallimastix SP YQ1 and Anaeromyces SP YQ3 isolated from Holstein steers on hydrolysis of Chinese wildrye grass solutions of Neocallimastix SP YQ1 and Anaeromyces SP YQ3 isolated from Holstein steers on hydrolysis of Chinese wildrye grass solutions of Neocallimastix SP YQ1 and Anaeromyces SP YQ3 isolated from Holstein steers on hydrolysis of Chinese wildrye grass solutions of Neocallimastix SP YQ1 and Anaeromyces SP YQ3 isolated from Holstein steers on hydrolysis of Chinese wildrye grass No Holstein st	Singh, R; Singh, M; Nayyar, S				2005		3/1/2022
Styriak, I; Spanova, A; Zitnan, Rand different capsids morphology The ability of the rumen ciliate, Diploplastron affine, to digest polysaccharides from fungal affine, to digest polysaccharides from fungal affine, to digest polysaccharides from fungal affine, to digest polysaccharides from fungal and bacterial cell wallsARCH TIERZUCHT9438 94382005 10.5194/aab-48-572-20053/1/2022Belzecki, G; Michalowski, Tand bacterial cell wallsJ ANIM FEED SCI1230Piknova, M; Javorsky, P; Guczynska, W;Kasperowicz, A; Michalowski, T; Pristas, PNew species of rumen treponemes Bio-hydrogen production from cellulose BY sequential CO-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and bacteria of Enterococcus gallinarum G1 and Effects of crude feruloyl and acetyl esterase solutions of Neocallimastix SP YQ1 and Anaeromyces SP YQ3 isolated from Holstein steers on hydrolysis of Chinese wildrye grass03770377Yang, HJ; Yue, Q; Cao, YC; Zhang, DF;hay, wheat bran, maize bran, wheat straw and	• • • • • • • •	Gram-positive cocci Partial characterization of two ruminal	CURR MICROBIOL		2005	10.1007/s00284-005-4564-z	3/1/2022
Belzecki, G; Michalowski, T and bacterial cell walls J ANIM FEED SCI 1388 2006 3/1/2022 Piknova, M; Javorsky, P; Guczynska, W; - - - - Kasperowicz, A; Michalowski, T; Pristas, P New species of rumen treponemes FOLIA MICROBIOL 5632 2006 10.1007/BF02931819 3/1/2022 Wang, AJ; Gao, LF; Ren, NQ; Xu, JF; Liu, C Ethanoigenens harbinense B49 BIOTECHNOL LETT 5492 2009 10.1007/s10529-009-0028-z 3/1/2022 Effects of crude feruloyl and acetyl esterase solutions of Neocallimastix SP YQ1 and Anaeromyces SP YQ3 isolated from Holstein steers on hydrolysis of Chinese wildrye grass 0377 - Yang, HJ; Yue, Q; Cao, YC; Zhang, DF; hay, wheat bran, maize bran, wheat straw and - -	Styriak, I; Spanova, A; Zitnan, R	and different capsids morphology The ability of the rumen ciliate, Diploplastron	ARCH TIERZUCHT		2005	10.5194/aab-48-572-2005	3/1/2022
Kasperowicz, A; Michalowski, T; Pristas, PNew species of rumen treponemes Bio-hydrogen production from cellulose BY sequential CO-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Effects of crude feruloyl and acetyl esterase solutions of Neocallimastix SP YQ1 and Anaeromyces SP YQ3 isolated from Holstein steers on hydrolysis of Chinese wildrye grassFOLIA MICROBIOL5632200610.1007/BF029318193/1/2022Yang, HJ; Yue, Q; Cao, YC; Zhang, DF;New species of rumen treponemes bio-hydrogen production from cellulose BY sequential CO-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Effects of crude feruloyl and acetyl esterase solutions of Neocallimastix SP YQ1 and Anaeromyces SP YQ3 isolated from Holstein steers on hydrolysis of Chinese wildrye grassBIOTECHNOL LETT5492200910.1007/s10529-009-0028-z3/1/2022Yang, HJ; Yue, Q; Cao, YC; Zhang, DF;hay, wheat bran, maize bran, wheat straw andYang, HJ; Yue, Q; Cao, YC; Zhang, DF;hay, wheat bran, maize bran, wheat straw and	Belzecki, G; Michalowski, T		J ANIM FEED SCI		2006		3/1/2022
sequential CO-culture of cellulosic hydrogen0141bacteria of Enterococcus gallinarum G1 and-Wang, AJ; Gao, LF; Ren, NQ; Xu, JF; Liu, CEthanoigenens harbinense B49BIOTECHNOL LETT5492200910.1007/s10529-009-0028-z3/1/2022Effects of crude feruloyl and acetyl esterase solutions of Neocallimastix SP YQ1 and Anaeromyces SP YQ3 isolated from Holstein steers on hydrolysis of Chinese wildrye grass0377Yang, HJ; Yue, Q; Cao, YC; Zhang, DF;hay, wheat bran, maize bran, wheat straw and-		New species of rumen treponemes	FOLIA MICROBIOL	- 5632	2006	10.1007/BF02931819	3/1/2022
Wang, AJ; Gao, LF; Ren, NQ; Xu, JF; Liu, CEthanoigenens harbinense B49BIOTECHNOL LETT5492200910.1007/s10529-009-0028-z3/1/2022Effects of crude feruloyl and acetyl esterase solutions of Neocallimastix SP YQ1 and Anaeromyces SP YQ3 isolated from Holstein steers on hydrolysis of Chinese wildrye grass0377Yang, HJ; Yue, Q; Cao, YC; Zhang, DF;hay, wheat bran, maize bran, wheat straw and-		sequential CO-culture of cellulosic hydrogen		0141			
Steers on hydrolysis of Chinese wildrye grass0377Yang, HJ; Yue, Q; Cao, YC; Zhang, DF;hay, wheat bran, maize bran, wheat straw and-	Wang, AJ; Gao, LF; Ren, NQ; Xu, JF; Liu, C	Ethanoigenens harbinense B49 Effects of crude feruloyl and acetyl esterase solutions of Neocallimastix SP YQ1 and	BIOTECHNOL LETT	- 5492	2009	10.1007/s10529-009-0028-z	3/1/2022
		steers on hydrolysis of Chinese wildrye grass		0377			
			ANIM FEED SCI TECH	- 8401	2009	10.1016/j.anifeedsci.2009.09.006	3/1/2022

	Selenomonas bovis SP nov., isolated from yak		1466			
Zhang, KG; Dong, XZ	rumen contents	INT J SYST EVOL MICR	5026	2009	10.1099/ijs.0.007641-0	3/1/2022
<i>o, , o,</i>			0015			, ,
Belzecki, G; Miltko, R; Kwiatkowska, E;	Mureinolytic Ability of the Rumen Ciliate		-			
Michalowski, T	Diploplastron affine	FOLIA MICROBIOL	5632	2010		3/1/2022
	Cellulosilyticum ruminicola gen. Nov., SP nov.,					
	isolated from the rumen of yak, and		1466			
	reclassification of Clostridium lentocellum as		-			
Cai, SC; Dong, XZ	Cellulosilyticum lentocellum comb. Nov.	INT J SYST EVOL MICR	5026	2010	10.1099/ijs.0.014712-0	3/1/2022
	Cellulosilyticum ruminicola, a Newly Described					
	Rumen Bacterium That Possesses Redundant					
Cai, SC; Li, JB; Hu, FZ; Zhang, KG; Luo,	Fibrolytic-Protein-Encoding Genes and		0099			
YM; Janto, B; Boissy, R; Ehrlich, G; Dong,	Degrades Lignocellulose with Multiple	APPL ENVIRON	-			
XZ	Carbohydrate-Borne Fibrolytic Enzymes	MICROB	2240	2010	10.1128/AEM.03124-09	3/1/2022
			0377			
Henning, PH; Horn, CH; Steyn, DG;	The potential of Megasphaera elsdenii isolates		-			
Meissner, HH; Hagg, FM	to control ruminal acidosis	ANIM FEED SCI TECH	8401	2010	10.1016/j.anifeedsci.2009.12.011	3/1/2022
Kasperowicz, A; Stan-Glasek, K;	Fructanolytic and Saccharolytic Enzymes of the		0015			
Guczynska, W; Piknova, M; Pristas, P;	Rumen Bacterium Pseudobutyrivibrio ruminis		-			
Nigutova, K; Javorsky, P; Michalowski, T	strain 3-preliminary study	FOLIA MICROBIOL	5632	2010	10.1007/s12223-010-0051-4	3/1/2022
	Basfia succiniciproducens gen. Nov., SP nov., a		1466			
Kuhnert, P; Scholten, E; Haefner, S;	new member of the family Pasteurellaceae		-		· · · · · · · · · · · · · · · · · · ·	
Mayor, D; Frey, J	isolated from bovine rumen	INT J SYST EVOL MICR	5026	2010	10.1099/ijs.0.011809-0	3/1/2022
	Evaluation of Fibrolytic Activity of Two Different		0972			
Mamen, D; Vadivel, V; Pugalenthi, M;	Anaerobic Rumen Fungal Isolates for their	ANIM NUTR FEED	-	2010		2/1/2022
Parimelazhagan, T	Utilization as Microbial Feed Additive	TECHN	2963	2010		3/1/2022
	Fibrolytic potential of anaerobic fungi (Piromyces SP.) Isolated from wild cattle and					
	blue bulls in pure culture and effect of their					
	addition on in vitro fermentation of wheat		0022			
Paul, SS; Deb, SM; Punia, BS; Singh, D;	straw and methane emission BY rumen fluid of		0022			
Kumar, R	buffaloes	J SCI FOOD AGR	5142	2010	10.1002/jsfa.3952	3/1/2022
Kumur, K	Fermentative characteristics and fibrolytic	JUSTICODIAGN	1745	2010	10.1002/j310.3332	5/1/2022
	activities of anaerobic gut fungi isolated from		-			
Paul, SS; Kamra, DN; Sastry, VRB	wild and domestic ruminants	ARCH ANIM NUTR	039X	2010	10.1080/17450391003625037	3/1/2022
, , , , , , , , ,	Proteiniclasticum ruminis gen. Nov., SP. Nov., a		1466		,	-, -,
	strictly anaerobic proteolytic bacterium isolated		-			
Zhang, KG; Song, L; Dong, XZ	from vak rumen	INT J SYST EVOL MICR	5026	2010	10.1099/ijs.0.011759-0	3/1/2022
Chen, YX; Wang, J; Xing, Y; Zhou, HQ;	Isolation and Characterization of a lignolytic	ISBE 2011: 2011 INT C				
Tong, J	rumen microorganism	BIOMED E, VOL 3		2011		3/1/2022
	Pediococcus acidilactici isolated from the					
	rumen of lambs with rumen acidosis, 16S rrna		0034			
Cobos, MA; DE Coss, AL; Ramirez, ND;	identification and sensibility to monensin and		-			

Kenters, N; Henderson, G; Jeyanathan, J;	Isolation of previously uncultured rumen bacteria BY dilution to extinction using a new		0167 -			
Kittelmann, S; Janssen, PH	liquid culture medium	J MICROBIOL METH	7012 0175	2011	10.1016/j.mimet.2010.10.011	3/1/2022
Ko, KC; Han, Y; Choi, JH; Kim, GJ; Lee, SG;	A novel bifunctional endo-/exo-type cellulase	APPL MICROBIOL	-			
Song, JJ	from AN anaerobic ruminal bacterium Olsenella umbonata SP. Nov., a microaerotolerant anaerobic lactic acid	BIOT	7598	2011	10.1007/s00253-010-2949-9	3/1/2022
	bacterium from the sheep rumen and pig jejunum, and emended descriptions of		1466 -			
Kraatz, M; Wallace, RJ; Svensson, L	Olsenella, Olsenella uli and Olsenella profusa In vitro fibrolytic potential of anaerobic rumen	INT J SYST EVOL MICR	5026 1340	2011	10.1099/ijs.0.022954-0	3/1/2022
Nagpal, R; Puniya, AK; Sehgal, JP; Singh, K	fungi from ruminants and non-ruminant herbivores	MYCOSCIENCE	- 3540	2011	10.1007/s10267-010-0071-6	3/1/2022
	Isolation and characterization of novel sulphate-reducing Fusobacterium SP and their					
	effects on in vitro methane emission and digestion of wheat straw BY rumen fluid from		0377 -			
Paul, SS; Deb, SM; Singh, D	Indian riverine buffaloes	ANIM FEED SCI TECH	8401 0377	2011	10.1016/j.anifeedsci.2011.04.062	3/1/2022
Salem, AZM; Ammar, H; Lopez, S; Gohar,	Sensitivity of ruminal bacteria isolates of sheep,		-			
YM; Gonzalez, JS	cattle and buffalo to some heavy metals	ANIM FEED SCI TECH	8401 0175	2011	10.1016/j.anifeedsci.2010.10.017	3/1/2022
	Isolation, characterization, and quantification of	APPL MICROBIOL	-			
Weimer, PJ; Stevenson, DM	Clostridium kluyveri from the bovine rumen Enzymatic characteristics of crude feruloyl and	BIOT	7598	2012	10.1007/s00253-011-3751-z	3/1/2022
	acetyl esterases of rumen fungus Neocallimastix SP YAK11 isolated from yak (Bos		0931 -			
Cao, YC; Yang, HJ; Zhang, DF	grunniens)	J ANIM PHYSIOL AN N	2439	2013	10.1111/j.1439-0396.2012.01281.x	3/1/2022
Grilli, DJ; Ceron, ME; Paez, S; Egea, V; Schnittger, L; Cravero, S; Escudero, MS;	Isolation of Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans from rumen of		0015 -			
Allegretti, L; Arenas, GN	Creole goats fed native forage diet Phenotypic and Phylogenetic Characterization	FOLIA MICROBIOL	5632 0972	2013	10.1007/s12223-012-0219-1	3/1/2022
Kumar, A; Kamra, DN; Agarwal, N; Rikhari, K; Chaudhary, LC	of Cellulose Degrading Bacteria Isolated from Rumen of Buffalo	ANIM NUTR FEED TECHN	- 2963	2013		3/1/2022
inknan, k, chaudhary, Le	Whole-Transcriptome Shotgun Sequencing (RNA-seq) Screen Reveals Upregulation of Cellobiose and Motility Operons of	TECHN	2903	2013		3/ 1/ 2022
	Lactobacillus ruminis L5 during Growth on Tetrasaccharides Derived from Barley beta-	APPL ENVIRON	0099			
Lawley, B; Sims, IM; Tannock, GW	Glucan	MICROB	- 2240 1466	2013	10.1128/AEM.01887-13	3/1/2022
Lee, GH; Rhee, MS; Chang, DH; Lee, J; Kim, S; Yoon, MH; Kim, BC	Oscillibacter ruminantium SP nov., isolated from the rumen of Korean native cattle	INT J SYST EVOL MICR	- 5026 1466	2013	10.1099/ijs.0.041749-0	3/1/2022
Lee, JH; Kumar, S; Lee, GH; Chang, DH;	Methanobrevibacter boviskoreani SP nov.,					
Rhee, MS; Yoon, MH; Kim, BC	isolated from the rumen of Korean native cattle	INT J SYST EVOL MICR	- 5026	2013	10.1099/ijs.0.054056-0	3/1/2022

	Candida tropicalis BPU1, a novel isolate from the rumen of the Malabari goat, is a dual		0749			
	producer of biosurfactant and		-			
Priji, P; Unni, KN; Sajith, S; Benjamin, S	polyhydroxybutyrate Characterization of Cellulolytic and Xylanolytic	YEAST	503X 1011	2013	10.1002/yea.2944	3/1/2022
Seo, JK; Park, TS; Kwon, IH; Piao, MY;	Enzymes of Bacillus licheniformis JK7 Isolated	ASIAN AUSTRAL J	-			
Lee, CH; Ha, JK	from the Rumen of a Native Korean Goat	ANIM	2367	2013	10.5713/ajas.2012.12506	3/1/2022
	Isolation, identification and growth		0266			
Sirisan, V; Pattarajinda, V; Vichitphan, K;	determination of lactic acid-utilizing yeasts	LETT APPL	-			
Leesing, R	from the ruminal fluid of dairy cattle	MICROBIOL	8254	2013	10.1111/lam.12078	3/1/2022
	Isolation, characterization and fibre		1590			
Sirohi, SK; Choudhury, PK; Dagar, SS;	degradation potential of anaerobic rumen fungi		-			
Puniya, AK; Singh, D	from cattle	ANN MICROBIOL	4261	2013	10.1007/s13213-012-0577-6	3/1/2022
	The potential of bacteria isolated from ruminal					
	contents of seaweed-eating North Ronaldsay					
	sheep to hydrolyse seaweed components and		1751			
	produce methane BY anaerobic digestion in		-			
Williams, AG; Withers, S; Sutherland, AD	vitro	MICROB BIOTECHNOL	7907	2013	10.1111/1751-7915.12000	3/1/2022
	Complete genome sequence of					
	Corynebacterium vitaeruminis DSM 20294(T),		0168			
AL-Dilaimi, A; Albersmeier, A; Kalinowski,	isolated from the cow rumen as a vitamin B		-			
J; Ruckert, C	producer	J BIOTECHNOL	1656	2014	10.1016/j.jbiotec.2014.08.036	3/1/2022
Almeida, PNM; Freitas, CES; Abrao, FO;			0100			
Ribeiro, ICO; Vieira, EA; Geraseev, LC;	Cellulolytic activity of aerobic fungi isolated		-			
Duarte, ER	from dairy cattle fed with forage tropical	REV CAATINGA	316X	2014		3/1/2022
Arokiyaraj, S; Islam, VIH; Bharanidharan,	Antibacterial, anti-inflammatory and probiotic		0959			
R; Raveendar, S; Lee, J; Kim, DH; Oh, YK;	potential of Enterococcus hirae isolated from	WORLD J MICROB	-			
Kim, EK; Kim, KH	the rumen of Bos primigenius	BIOT	3993	2014	10.1007/s11274-014-1625-0	3/1/2022
	Production, characterization of acetyl esterase					
	from a rumen bacteria strain RB3, and		0960			
	application potential of the strain in		-			
Chen, J; Xu, LX; Wu, Y; Tong, J; Chen, YX	biodegradation of crop residues	RENEW ENERG	1481	2014	10.1016/j.renene.2014.01.033	3/1/2022
_	A highly active beta-glucanase from a new					
	strain of rumen fungus Orpinomyces SP.Y102		0960			
Chen, YC; Chen, WT; Liu, Jc; Tsai, LC;	exhibits cellobiohydrolase and	BIORESOURCE	-			
Cheng, Hl	cellotriohydrolase activities	TECHNOL	8524	2014	10.1016/j.biortech.2014.08.016	3/1/2022
	Characterization of rumen bacterial strains		0959			
DE Aguiar, SC; Zeoula, LM; DO Prado,	isolated from enrichments of rumen content in	WORLD J MICROB	-			
OPP; Arcuri, PB; Forano, E	the presence of propolis	BIOT	3993	2014	10.1007/s11274-014-1719-8	3/1/2022
Fraga, M; Perelmuter, K; Valencia, MJ;			1590			
Martinez, M; Abin-Carriquiry, A;	Evaluation of native potential probiotic bacteria		-			
Cajarville, C; Zunino, P	using AN in vitro ruminal fermentation system	ANN MICROBIOL	4261	2014	10.1007/s13213-013-0753-3	3/1/2022
Gagen, EJ; Wang, JK; Padmanabha, J; Liu,						
J; DE Carvalho, IPC; Liu, JX; Webb, RI; AL	Investigation of a new acetogen isolated from		1471			
Jassim, R; Morrison, M; Denman, SE;	AN enrichment of the tammar wallaby		-			
Mcsweeney, CS	forestomach	BMC MICROBIOL	2180	2014	10.1186/s12866-014-0314-3	3/1/2022
						· •

Kelly, WJ; Leahy, SC; Li, D; Perry, R;	The complete genome sequence of the rumen methanogen Methanobacterium formicicum		1944 -			
Lambie, SC; Attwood, GT; Altermann, E	BRM9 Finding a robust strain for biomethanation:	STAND GENOMIC SCI	3277	2014	10.1186/1944-3277-9-15	3/1/2022
Leis, S; Dresch, P; Peintner, U; Fliegerova, K; Sandbichler, AM; Insam, H;	Anaerobic fungi (Neocallimastigomycota) from the Alpine ibex (Capra ibex) and their		1075			
Podmirseg, SM	associated methanogens Improved culturability of cellulolytic rumen	ANAEROBE	9964	2014	10.1016/j.anaerobe.2013.12.002	3/1/2022
	bacteria and phylogenetic diversity of culturable cellulolytic and xylanolytic bacteria	FEMS MICROBIOL	0168			
Nyonyo, T; Shinkai, T; Mitsumori, M	newly isolated from the bovine rumen	ECOL	- 6496	2014	10.1111/1574-6941.12318	3/1/2022
	Effect of rumen bacteria from sheep adapted to a tanninferous diet on in vitro fermentation		1728			
	parameters of pistachio hulls using bovine		-	2015		2/1/2022
Babaei, Y; Rouzbehan, Y; Alipour, D	inoculum Buwchfawromyces eastonii gen. Nov., SP nov.:	IRAN J VET RES	1997	2015		3/1/2022
Callaghan, TM; Podmirseg, SM; Hohlweck, D; Edwards, JE; Puniya, AK;	a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo		1314 -			
Dagar, SS; Griffith, GW	faeces	MYCOKEYS	4057	2015	10.3897/mycokeys.9.9032	3/1/2022
Hamann, PRV; Serpa, DL; Da Cunha, ASB;	Evaluation of plant cell wall degrading enzyme		0964			
DE Camargo, BR; Osiro, KO; DE Sousa,	production BY Clostridium thermocellum B8 in	INT BIODETER	-			
MV; Felix, CR; Miller, RNG; Noronha, EF	the presence of raw agricultural wastes	BIODEGR	8305	2015	10.1016/j.ibiod.2015.08.013	3/1/2022
	Fibrolytic Bacteria Isolated from the Rumen of		1932			
Ishaq, SL; Kim, CJ; Reis, D; Wright, ADG	North American Moose (Alces alces) and Their Use as a Probiotic in Neonatal Lambs	PLOS ONE	- 6203	2015	10.1371/journal.pone.0144804	3/1/2022
Lambie, SC; Kelly, WJ; Leahy, SC; Li, D;		I LOS ONE	1944	2015	10.1371/journal.pone.0144804	5/1/2022
Reilly, K; Mcallister, TA; Valle, ER;	The complete genome sequence of the rumen		-			
Attwood, GT; Altermann, E	methanogen Methanosarcina barkeri CM1	STAND GENOMIC SCI	3277	2015	10.1186/s40793-015-0038-5	3/1/2022
Miltko, R; Pietrzak, M; Belzecki, G;	Isolation and in vitro cultivation of the fibrolytic		0932			
Wereszka, K; Michalowski, T; Hackstein,	rumen ciliate Eremoplastron (Eudiplodinium)		-			
JHP	dilobum	EUR J PROTISTOL	4739	2015	10.1016/j.ejop.2014.11.002	3/1/2022
			0141			
Sun, WT; Liu, JJ; Xu, H; Li, WJ; Zhang, J	L-Lactic acid fermentation BY Enterococcus faecium: a new isolate from bovine rumen	BIOTECHNOL LETT	- 5492	2015	10.1007/s10529-015-1821-5	2/1/2022
Tan, H; Zhang, ZM; Hu, YC; Wu, L; Liao, F;	Isolation and characterization of Pseudomonas	BIOTECHNOL LETT	5492 0956	2015	10.1007/\$10529-015-1821-5	3/1/2022
He, J; Luo, B; He, YJ; Zuo, ZC; Ren, ZH;	otitidis TH-N1 capable of degrading		-			
Peng, GN; Deng, JL	Zearalenone	FOOD CONTROL	7135	2015	10.1016/j.foodcont.2014.07.013	3/1/2022
	Isolation, Identification and Molecular					-, _,
	Characterization of Cellulolytic Bacteria from		2278			
	Rumen Samples collected from Erzurum		-			
Baltaci, MO; Adiguzel, A	Slaughter House, Turkey	RES J BIOTECHNOL	4535	2016		3/1/2022
	Effects of Glucose and Starch on Lactate		0099			
Chen, LM; Luo, Y; Wang, HR; Liu, SM;	Production BY Newly Isolated Streptococcus	APPL ENVIRON	-	2010	10 1128/4514 01004 10	2/1/2022
Shen, YZ; Wang, MZ	bovis S1 from Saanen Goats	MICROB	2240 1471	2016	10.1128/AEM.01994-16	3/1/2022
Fohler, S; Klein, G; Hoedemaker, M; Scheu, T; Seyboldt, C; Campe, A; Jensen,	Diversity of Clostridium perfringens toxin-		14/1			
KC; Abdulmawjood, A	genotypes from dairy farms	BMC MICROBIOL	- 2180	2016	10.1186/s12866-016-0812-6	3/1/2022
,	· · · · · · · · · · · · · · · · · · ·				,	-, -,

Hussain, SKA; Srivastava, A; Tyagi, A; Shandilya, UK; Kumar, A; Kumar, S;	Characterization of CLA-producing Butyrivibrio		2190 -			
Panwar, S; Tyagi, AK	spp. Reveals strain-specific variations Production of medium-chain carboxylic acids BY Megasphaera SP MH with supplemental	3 BIOTECH BIOTECHNOL	572X 1754 -	2016	10.1007/s13205-016-0401-2	3/1/2022
Jeon, BS; Choi, O; Um, Y; Sang, BI Kelly, WJ; Henderson, G; Pacheco, DM; Li, D; Reilly, K; Naylor, GE; Janssen, PH;	electron acceptors The complete genome sequence of Eubacterium limosum SA11, a metabolically	BIOFUELS	6834 1944 -	2016	10.1186/s13068-016-0549-3	3/1/2022
Attwood, GT; Altermann, E; Leahy, SC	versatile rumen acetogen	STAND GENOMIC SCI	- 3277 1944	2016	10.1186/s40793-016-0147-9	3/1/2022
Kelly, WJ; Pacheco, DM; Li, D; Attwood, GT; Altermann, E; Leahy, SC	The complete genome sequence of the rumen methanogen Methanobrevibacter millerae SM9 Fumarate Reductase-Producing Enterococci	STAND GENOMIC SCI	- 3277 1017	2016	10.1186/s40793-016-0171-9	3/1/2022
Kim, SH; Mamuad, LL; Kim, Dw; Kim, SK; Lee, SS	Reduce Methane Production in Rumen Fermentation In Vitro Correlation between genomic analyses with	J MICROBIOL BIOTECHN	- 7825	2016	10.4014/jmb.1512.12008	3/1/2022
Nathani, NM; Duggirala, SM; Bhatt, VD;	metatranscriptomic study reveals various functional pathways of Clostridium		0971 -			
Patel, AK; Kothari, RK; Joshi, CG Neethu, KB; Priji, P; Unni, KN; Sajith, S; Sreedevi, S; Ramani, N; Anitha, K;	sartagoforme AAU1, a buffalo rumen isolate New Bacillus thuringiensis strain isolated from the gut of Malabari goat is effective against	J APPL ANIM RES	2119 0931 -	2016	10.1080/09712119.2015.1091346	3/1/2022
Rosana, B; Girish, MB; Benjamin, S	Tetranychus macfarlanei Actinomyces succiniciruminis SP nov and	J APPL ENTOMOL	2048	2016	10.1111/jen.12235	3/1/2022
Palakawong, NAS; Pristas, P; Hrehova, L;	Actinomyces glycerinitolerans SP nov., two novel organic acid-producing bacteria isolated	SYST APPL	0723 -			
Javorsky, P; Stams, AJM; Plugge, CM	from rumen Reclassification of Eubacterium rectale (Hauduroy ET AL. 1937) Prevot 1938 in a new genus Agathobacter gen. Nov as Agathobacter	MICROBIOL	2020	2016	10.1016/j.syapm.2016.08.001	3/1/2022
Rosero, JA; Killer, J; Sechovcova, H; Mrazek, J; Benada, O; Fliegerova, K;	rectalis comb. Nov., and description of Agathobacter ruminis SP nov., isolated from the		1466 -			
Havlik, J; Kopecny, J	rumen contents of sheep and cows Pseudomonas aeruginosa strain BUP2, a novel	INT J SYST EVOL MICR	5026 0006	2016	10.1099/ijsem.0.000788	3/1/2022
Unni, KN; Priji, P; Sajith, S; Faisal, PA; Benjamin, S	bacterium inhabiting the rumen of Malabari goat, produces AN efficient lipase Fiber degradation potential of natural CO-	BIOLOGIA	- 3088	2016	10.1515/biolog-2016-0057	3/1/2022
Wei, YQ; Long, RJ; Yang, H; Yang, HJ; Shen, XH; Shi, RF; Wang, ZY; Du, JG; QI,	cultures of Neocallimastix frontalis and Methanobrevibacter ruminantium isolated from yaks (Bos grunniens) grazing on the		1075 -			
XJ; Ye, QH	Qinghai Tibetan Plateau Notable fibrolytic enzyme production BY	ANAEROBE	9964	2016	10.1016/j.anaerobe.2016.03.005	3/1/2022
Abrao, FO; Duarte, ER; Pessoa, MS; Dos Santos, VL; De Freitas, LF; Barros, KD;	Aspergillus spp. Isolates from the gastrointestinal tract of beef cattle fed in		1932 -			
Hughes, AFD; Silva, TD; Rodriguez, NM Asem, D; Leo, VV; Passari, AK; Tonsing,	lignified pastures Evaluation of gastrointestinal bacterial	PLOS ONE	6203 1932	2017	10.1371/journal.pone.0183628	3/1/2022
MV; Joshi, JB; Uthandi, S; Hashem, A; Abd Allah, EF; Singh, BP	population for the production of holocellulose enzymes for biomass deconstruction	PLOS ONE	- 6203	2017	10.1371/journal.pone.0186355	3/1/2022

Ayudthaya, SPN; Hornung, B;	Draft Genome Sequence of Actinomyces succiniciruminis Strain Am4(T), Isolated from	MICROBIOLOGY RESOURCE	2576 -			
Varadarajan, AR; Plugge, W; Plugge, CM	Cow Rumen Fluid	ANNOUNCEMENTS	098X 1466	2017	10.1128/genomea.01587-16	3/1/2022
Chun, BH; Lee, HJ; Jeong, SE; Schumann, P; Jeon, CO	Leucobacter ruminantium SP nov., isolated from the bovine rumen	INT J SYST EVOL MICR	- 5026	2017	10.1099/ijsem.0.002003	3/1/2022
	Beneficial and Safety Properties of a		1867			-, -,
Colombo, M; Castilho, NPA; Todorov, SD; Nero, LA	Corynebacterium vitaeruminis Strain Isolated from the Cow Rumen	PROBIOTICS ANTIMICRO	- 1306	2017	10.1007/s12602-017-9263-0	3/1/2022
Gilbert, RA; Kelly, WJ; Altermann, E;	Toward Understanding Phage: Host Interactions		1664			
Leahy, SC; Minchin, C; Ouwerkerk, D;	in the Rumen; Complete Genome Sequences of	FRONT MICRORIO	-	2017	10 2200 /	2/1/2022
Klieve, AV	Lytic Phages Infecting Rumen Bacteria	FRONT MICROBIOL	302X 0021	2017	10.3389/fmicb.2017.02340	3/1/2022
Harlow, BE; Goodman, JP; Lynn, BC;	Ruminal tryptophan-utilizing bacteria degrade		-			
Flythe, MD; Ji, H; Aiken, GE Henske, JK; Gilmore, SP; Knop, D;	ergovaline from tall fescue seed extract	J ANIM SCI	8812	2017	10.2527/jas.2016.1128	3/1/2022
Cunningham, FJ; Sexton, JA; Smallwood,	Transcriptomic characterization of Caecomyces		1754			
CR; Shutthanandan, V; Evans, JE;	churrovis: a novel, non-rhizoid-forming	BIOTECHNOL	-			
Theodorou, MK; O'malley, MA	lignocellulolytic anaerobic fungus	BIOFUELS	6834	2017	10.1186/s13068-017-0997-4	3/1/2022
	Megasphaera hexanoica SP nov., a medium-		1466			
	chain carboxylic acid-producing bacterium		-			
Jeon, BS; Kim, S; Sang, BI	isolated from a cow rumen	INT J SYST EVOL MICR	5026	2017	10.1099/ijsem.0.001888	3/1/2022
	Fibrobacter communities in the gastrointestinal		1462			
Neumann, AP; Mccormick, CA; Suen, G	tracts of diverse hindgut-fermenting herbivores are distinct from those of the rumen	ENVIRON MICROBIOL	- 2912	2017	10.1111/1462-2920.13878	3/1/2022
Neumann, Ar, Micconniek, eA, Suen, G	are distinct from those of the fumer		1466	2017	10.1111/1402-2520.15076	5/1/2022
Newbrook, K; Staton, GJ; Clegg, SR;	Treponema ruminis SP nov., a spirochaete		-			
Birtles, RJ; Carter, SD; Evans, NJ	isolated from the bovine rumen	INT J SYST EVOL MICR	5026	2017	10.1099/ijsem.0.001812	3/1/2022
Nidhina, N; Bhavya, ML; Bhaskar, N;	Aflatoxin production BY Aspergillus flavus in		0956			
Muthukumar, SP; Murthy, PS	rumen liquor and its implications	FOOD CONTROL	- 7135	2017	10.1016/j.foodcont.2016.05.051	3/1/2022
Mathakamar, Sr, Marthy, 13		1000 contriol	1944	2017	10.1010, j.10000011.2010.03.031	5/1/2022
Palevich, N; Kelly, WJ; Leahy, SC;	The complete genome sequence of the rumen		-			
Altermann, E; Rakonjac, J; Attwood, GT	bacterium Butyrivibrio hungatei MB2003	STAND GENOMIC SCI	3277	2017	10.1186/s40793-017-0285-8	3/1/2022
	AN isolated cellulolytic Escherichia coli from		1754			
	bovine rumen produces ethanol and hydrogen	BIOTECHNOL	-			
Pang, J; Liu, ZY; Hao, M; Zhang, YF; QI, QS Podlesny, M; Jarocki, P; Wyrostek, J;	from corn straw	BIOFUELS	6834 1751	2017	10.1186/s13068-017-0852-7	3/1/2022
Czernecki, T; Kucharska, J; Nowak, A;	Enterobacter SP LU1 as a novel succinic acid		1/51			
Targonski, Z	producer - CO-utilization of glycerol and lactose	MICROB BIOTECHNOL	- 7915	2017	10.1111/1751-7915.12458	3/1/2022
	Pseudomonas SP BUP6, a novel isolate from		0233	2017	10.1111, 1701 7010.12 100	5/ 1/2022
Priji, P; Sajith, S; Unni, KN; Anderson, RC;	Malabari goat produces AN efficient		-			
Benjamin, S	rhamnolipid type biosurfactant	J BASIC MICROB	111X 1364	2017	10.1002/jobm.201600158	3/1/2022
Sharma, D; Mal, G; Kannan, A; Bhar, R;	Degradation of euptox A BY tannase-producing		-			
Sharma, R; Singh, B	rumen bacteria from migratory goats	J APPL MICROBIOL	5072	2017	10.1111/jam.13563	3/1/2022

Wang, XW; Liu, XZ; Groenewald, JZ	Phylogeny of anaerobic fungi (phylum Neocallimastigomycota), with contributions from yak in China Characterization of natural CO-cultures of Piromyces with Methanobrevibacter	ANTON LEEUW INT J G	0003 - 6072	2017	10.1007/s10482-016-0779-1	3/1/2022
Wei, YQ; Yang, HJ; Long, RJ; Wang, ZY; Cao, BB; Ren, QC; Wu, TT	ruminantium from yaks grazing on the Qinghai- Tibetan Plateau: a microbial consortium with high potential in plant biomass degradation	AMB EXPRESS	2191 - 0855 2190	2017	10.1186/s13568-017-0459-1	3/1/2022
Bohra, V; Dafale, NA; Purohit, HJ	Paenibacillus polymyxa ND25: candidate genome for lignocellulosic biomass utilization Partial characterization of phylogeny, ecology	3 BIOTECH	- 572X	2018	10.1007/s13205-018-1274-3	3/1/2022
Boonsaen, P; Kinjo, M; Sawanon, S; Suzuki, Y; Koike, S; Kobayashi, Y	and function of the fibrolytic bacterium Ruminococcus flavefaciens OS14, newly isolated from the rumen of swamp buffalo	ANIM SCI J	1344 - 3941	2018	10.1111/asj.12927	3/1/2022
Cipriano-Salazar, M; Rojas-Hernandez, S; Olivares-Perez, J; Jimenez-Guillen, R;			0882			_, _,
Cruz-Lagunas, B; Camacho-Diaz, LM; Ugbogu, AE	Antibacterial activities of tannic acid against isolated ruminal bacteria from sheep Accelerated biogas production from	MICROB PATHOGENESIS	- 4010 0960	2018	10.1016/j.micpath.2018.01.045	3/1/2022
Dollhofer, V; Dandikas, V; Dorn-In, S; Bauer, C; Lebuhn, M; Bauer, J	lignocellulosic biomass after pre-treatment with Neocallimastix frontalis Feramyces austinii, gen. Nov., SP nov., AN	BIORESOURCE TECHNOL	- 8524 0027	2018	10.1016/j.biortech.2018.05.068	3/1/2022
Hanafy, RA; Elshahed, MS; Youssef, NH	anaerobic gut fungus from rumen and fecal samples of wild Barbary sheep and fallow deer Hydrogen production BY newly isolated	MYCOLOGIA	- 5514	2018	10.1080/00275514.2018.1466610	3/1/2022
Hoang, VT; Hoang, DH; Pham, ND; Tran, HM; Bui, HTV; Ngo, TA	Clostridium species from cow rumen in pure- and CO-cultures on a broad range of carbon sources	AIMS ENERGY	2333 - 8326	2018	10.3934/energy.2018.5.846	3/1/2022
Hoedt, EC; Parks, DH; Volmer, JG; Rosewarne, CP; Denman, SE; Mcsweeney, CS; Muir, JG; Gibson, PR;	Culture- and metagenomics-enabled analyses of the Methanosphaera genus reveals their		1751			
Cuiv, PO; Hugenholtz, P; Tyson, GW; Morrison, M	monophyletic origin and differentiation according to genome size Isolation and screening of aflatoxin-detoxifying	ISME JOURNAL	- 7362	2018	10.1038/s41396-018-0225-7	3/1/2022
Intanoo, M; Kongkeitkajorn, MB; Pattarajinda, V; Bernard, JK; Callaway,	yeast and bacteria from ruminal fluids to reduce aflatoxin B-1 contamination in dairy		1364 -			
TR; Suriyasathaporn, W; Phasuk, Y	cattle feed Cultivation of multiple genera of	J APPL MICROBIOL	5072 1075	2018	10.1111/jam.14060	3/1/2022
Joshi, A; Lanjekar, V; Dhakephalkar, PK; Dagar, SS	hydrogenotrophic methanogens from different environmental niches Complete genome sequence of Bifidobacterium	ANAEROBE	- 9964 0168	2018	10.1016/j.anaerobe.2018.02.001	3/1/2022
Jung, DH; Chung, WH; Seo, DH; Nam, YD; Yoon, S; Park, CS	choerinum FMB-1, a resistant starch-degrading bacterium The effect of resistant starch (RS) on the bovine	J BIOTECHNOL	- 1656 0175	2018	10.1016/j.jbiotec.2018.03.009	3/1/2022
Jung, DH; Seo, DH; Kim, GY; Nam, YD; Song, EJ; Yoon, S; Park, CS	rumen microflora and isolation of RS-degrading bacteria	APPL MICROBIOL BIOT	- 7598	2018	10.1007/s00253-018-8971-z	3/1/2022

Kalawong, R; Wakayama, M; Anuntalabhochai, S; Wongsawad, C;	Comparison and Characterization of Purified Cellulase and Xylanase from Bacillus		0125			
Sangwijit, K	amyloliquefaciens CX1 and Bacillus subtilis B4	CHIANG MAI J SCI	2526 1225	2018		3/1/2022
Kim, MK; Kim, ET; Kim, SB; Jeong, HY;	Kurthia ruminicola SP nov., isolated from the		-			
Park, BY; Srinivasan, S	rumen contents of a Holstein cow Probiotic Potential of Pediococcus pentosaceus	J MICROBIOL	8873 0890	2018	10.1007/s12275-018-7285-2	3/1/2022
Ladha, G; Jeevaratnam, K	LJR1, a Bacteriocinogenic Strain Isolated from Rumen Liquor of Goat (Capra aegagrus hircus) Characterization of Enterococcus faecalis JF85	FOOD BIOTECHNOL	- 5436	2018	10.1080/08905436.2017.1414700	3/1/2022
	and Enterococcus faecium Y83 isolated from		0960			
Li, JF; Yuan, XJ; Desta, ST; Dong, ZH; Mugabe, W; Shao, T	Tibetan yak (Bos grunniens) for ensiling Pennisetum sinese Molecular cloning, purification, expression, and	BIORESOURCE TECHNOL	- 8524	2018	10.1016/j.biortech.2018.02.070	3/1/2022
	characterization of beta-1, 4-endoglucanase		1011			
Park, T; Seo, S; Shin, T; Cho, BW; Cho, S;	gene (Cel5A) from Eubacterium cellulosolvens	ASIAN AUSTRAL J	-			
Kim, B; Lee, S; Ha, JK; Seo, J	SP isolated from Holstein steers' rumen Genome sequencing of Pediococcus acidilactici	ANIM	2367 1590	2018	10.5713/ajas.17.0552	3/1/2022
Ranjan, R; Pandit, RJ; Duggirala, SM; Joshi, CG; Sharma, S; Patil, NV	(NRCC1), a novel isolate from dromedary camel (Camelus dromedarius) rumen fluid	ANN MICROBIOL	- 4261	2018	10.1007/s13213-017-1320-0	3/1/2022
Salem, AZM; Khusro, A; Elghandour, Mmy; Olivares-Perez, J; Rojas-	Susceptibility of ruminal bacteria isolated from large and small ruminant to multiple	MICROB	0882			
Hernandez, S; Jimenez-Guillen, R	conventional antibiotics Characterization of a xylanolytic bacterial strain	PATHOGENESIS	4010	2018	10.1016/j.micpath.2018.05.013	3/1/2022
Simunek, J; Killer, J; Sechovcova, H;	C10 isolated from the rumen of a red deer (Cervus elaphus) closely related of the recently		0015			
Simunek, J; Pechar, R; Rada, V; Svec, P; Sedlacek, I	described species Actinomyces succiniciruminis, A-glycerinitolerans, and A-ruminicola	FOLIA MICROBIOL	- 5632	2018	10.1007/s12223-017-0577-9	3/1/2022
	The potential of Bacillus strains isolated from		2087	2010	1011007,011220 017 0077 0	0, 1, 2022
Sugiharto, S; Yudiarti, T; Isroli, I;	the rumen content of dairy cows as natural	J INDONES TROP	-			
Widiastuti, E; Wahyuni, HI; Suprijatna, E	antibacterial and antioxidant agents for broilers Isolation and Characterization of N-acyl	ANIM AGR	8273 2235	2018	10.14710/jitaa.43.2.115-123	3/1/2022
Yang, Y; Zhou, MX; Hardwidge, PR; Cui,	Homoserine Lactone-Producing Bacteria From	FRONT CELL INFECT	-	2010	10.2280/faimh 2018.001FF	2/1/2022
HM; Zhu, GQ	Cattle Rumen and Swine Intestines Complete Genome Sequence of Actinobacillus	MI MICROBIOLOGY	2988 2576	2018	10.3389/fcimb.2018.00155	3/1/2022
Zhang, HY; Shen, NK; Qin, Y; Zhu, L; Li, Y; Wu, JF; Jiang, MG	succinogenes GXAS137, a Highly Efficient Producer of Succinic Acid Isolation and characterization of a novel	RESOURCE ANNOUNCEMENTS	- 098X 1011	2018	10.1128/genomea.01562-17	3/1/2022
Zhang, YH; Zhang, ZY; Dai, L; Liu, Y;	gossypol-degrading bacteria Bacillus subtilis	ASIAN AUSTRAL J	-			
Cheng, MJ; Chen, LJ	strain Rumen Bacillus Subtilis Administration of Streptococcus bovis isolated	ANIM	2367	2018	10.5713/ajas.17.0018	3/1/2022
	from sheep rumen digesta on rumen function and physiology as evaluated in a rumen		0972			
Aphale, D; Natu, A; Laldas, S; Kulkarni, A	simulation technique system Isolation and characterization of a new	VETERINARY WORLD	8988 1011	2019	10.14202/vetworld.2019.1362-1371	3/1/2022
	Methanoculleus bourgensis strain KOR-2 from	ASIAN AUSTRAL J	-	2010		2/1/2022
Battumur, U; Lee, M; Bae, GS; Kim, CH	the rumen of Holstein steers	ANIM	2367	2019	10.5713/ajas.18.0409	3/1/2022

						1
	Genomically Defined Paenibacillus polymyxa		0273			
	ND24 for Efficient Cellulase Production Utilizing	APPL BIOCHEM	-			- /- /
Bohra, V; Tikariha, H; Dafale, NA	Sugarcane Bagasse as a Substrate	BIOTECH	2289	2019	10.1007/s12010-018-2820-5	3/1/2022
Boonsaen, P; Poonko, S;	Isolation and partial characterization of		0125			
Kanjanapruetipong, J; Wongchawalit, J;	ruminococcus flavefaciens from the rumen of		-			2 /1 /2 2 2 2
Phiriyangkul, P; Sawanon, S	swamp buffalo	BUFFALO BULL	6726	2019		3/1/2022
	Draft genome analysis of lignocellulolytic		04.44			
Dadheech, T; Jakhesara, S; Chauhan, PS;	enzymes producing Aspergillus terreus with		0141			
Pandit, R; Hinsu, A; Kunjadiya, A; Rank,	structural insight of beta-glucosidases through	INT J BIOL	-			2 /1 /2 2 2 2
D; Joshi, C	molecular docking approach	MACROMOL	8130	2019	10.1016/j.ijbiomac.2018.12.020	3/1/2022
			1691			
Dubrovin, A; Dunyashev, T; Ilina, L;	Isolation of cellulolytic bacterial strains from		-		10 00010/ 100 0010 011	2 /1 /2 2 2 2
Filippova, V; Laishev, K	rangifer tarandus rumen microflora	RES RURAL DEV	4031	2019	10.22616/rrd.25.2019.041	3/1/2022
	Identification and characterization of yeasts		1364			
Fernandes, T; Carvalho, BF; Mantovani,	from bovine rumen for potential use as		-		//	- /- /
HC; Schwan, RF; Avila, CLS	probiotics	J APPL MICROBIOL	5072	2019	10.1111/jam.14350	3/1/2022
	Isolation and Characterization of Potential		0973			
	Cellulose Degrading Bacteria from Sheep	J PURE APPL	-		· · · · · · · · · · · · · · · · · · ·	
Guder, DG; Krishna, MSR	Rumen	MICROBIO	7510	2019	10.22207/JPAM.13.3.60	3/1/2022
	Isolation, characterization and conjugated					
	linoleic acid production potential of		1075			
Jaglan, N; Kumar, S; Choudhury, PK;	bifidobacterial isolates from ruminal fluid		-			
Tyagi, B; Tyagi, AK	samples of Murrah buffaloes	ANAEROBE	9964	2019	10.1016/j.anaerobe.2019.02.001	3/1/2022
	Draft Genome Sequence and Annotation of	MICROBIOLOGY	2576			
	Oribacterium SP. Strain C9, Isolated from a	RESOURCE	-			
Kang, S; Denman, S; Mcsweeney, C	Cattle Rumen	ANNOUNCEMENTS	098X	2019	10.1128/MRA.01562-18	3/1/2022
	Draft Genome Sequence and Annotation of	MICROBIOLOGY	2576			
Kang, S; Denman, S; Tahmasbi, R;	Sporanaerobacter acetigenes Strain F-12,	RESOURCE	-			
Mcsweeney, C	Isolated from a Cattle Rumen	ANNOUNCEMENTS	098X	2019	10.1128/MRA.00634-19	3/1/2022
			1930			
	Analysis of Cellulolytic Bacterial Flora in the		-			
Liu, JG; Liu, ZY; Liu, YC; Hao, M; Hou, XZ	Rumen of Inner Mongolian Sheep	BIORESOURCES	2126	2019	10.15376/biores.14.4.9544-9556	3/1/2022
Lunar, L; Hernandez, D; Silva, HV; Cobos,	Isolation, biochemical characterization, and		0120			
MA; Gonzalez, SS; Cortez, C; Pinto, R;	phylogeny of a cellulose-degrading ruminal	REV COLOMB CIENC	-			
Ramirez, E; Pinos, JM; Vargas, JM	bacterium	PEC	0690	2019	10.17533/udea.rccp.v32n2a05	3/1/2022
	Enhancing Butyrate Production, Ruminal					
Miguel, MA; Lee, SS; Mamuad, LL; Choi,	Fermentation and Microbial Population through		1017			
YJ; Jeong, CD; Son, AR; Cho, KK; Kim, ET;	Supplementation with Clostridium	J MICROBIOL	-			
Kim, SB; Suk, S	saccharobutylicum	BIOTECHN	7825	2019	10.4014/jmb.1905.05016	3/1/2022
	Detection and Characterization of Bovine		1678			
Pimentel, MFA; Paula, DAJ; Riet-Correa,	Rumen Microorganisms Resistant to Sodium		-			
F; Dutra, V; Nakazato, L	Fluoroacetate	ACTA SCI VET	0345	2019	10.22456/1679-9216.89907	3/1/2022
	Evaluation of Cellulases and Xylanases		1300			
	Production from Bacillus spp. Isolated from		-			
Raza, A; Bashir, S; Tabassum, R	Buffalo Digestive System	KAFKAS UNIV VET FAK	6045	2019	10.9775/kvfd.2018.20280	3/1/2022

Ribeiro, MT; Arcuri, PB; Carneiro, JD;	Antibacterial activity and lantibiotic post-		1590			
Machado, MA; Reis, DRD; Machado, ABF;	translational modification genes in		-			
Hungaro, HM; Ribeiro, JB; Paiva, AD	Streptococcus spp. Isolated from ruminal fluid Assessment of probiotic effects of isolated	ANN MICROBIOL	4261 0377	2019	10.1007/s13213-018-1407-2	3/1/2022
	Megasphaera elsdenii strains in Mehraban		-			
Sedighi, R; Alipour, D	sheep and Holstein lactating cows	ANIM FEED SCI TECH	8401 1466	2019	10.1016/j.anifeedsci.2019.01.007	3/1/2022
Vaidya, JD; Hornung, BVH; Smidt, H;	Propionibacterium ruminifibrarum SP. Nov.,		-			
Edwards, JE; Plugge, CM	isolated from cow rumen fibrous content Isolation and identification of phosphate	INT J SYST EVOL MICR	5026	2019	10.1099/ijsem.0.003544	3/1/2022
	solubilizing bacteria from indigenous		1823			
Astriani, M; Zubaidah, S; Abadi, AL;	microorganisms (IMO) of cow rumen in East		-			
Suarsini, E	Java, Indonesia as eco-friendly biofertilizer Electricity production of microbial fuel cells BY	MALAYS J MICROBIOL	8262 0304	2020	10.21161/mjm.190536	3/1/2022
Cao, LB; MA, YM; Deng, DD; Jiang, HC;	degrading cellulose coupling with CR(VI)		-			
Wang, JX; Liu, Y	removal	J HAZARD MATER	3894	2020	10.1016/j.jhazmat.2020.122184	3/1/2022
Friedersdorff, JCA; Kingston-Smith, AH;	The Isolation and Genome Sequencing of Five		1664			
Pachebat, JA; Cookson, AR; Rooke, D;	Novel Bacteriophages From the Rumen Active		-			
Creevey, CJ	againstbutyrivibrio fibrisolvens Effects of Lactic Acid Bacteria Isolated From	FRONT MICROBIOL	302X	2020	10.3389/fmicb.2020.01588	3/1/2022
	Rumen Fluid and Feces of Dairy Cows on		1664			
Guo, LN; Yao, DD; Li, DX; Lin, YL;	Fermentation Quality, Microbial Community,		-			
Bureenok, S; Ni, KK; Yang, FY	and in vitro Digestibility of Alfalfa Silage Complete Genome Sequencing and	FRONT MICROBIOL	302X	2020	10.3389/fmicb.2019.02998	3/1/2022
	Transcriptome Analysis of Nitrogen Metabolism		1664			
	ofsuccinivibrio dextrinosolvensstrain Z6 Isolated		-			
Hailemariam, S; Zhao, SG; Wang, JQ	From Dairy Cow Rumen	FRONT MICROBIOL	302X	2020	10.3389/fmicb.2020.01826	3/1/2022
	Assessing anaerobic gut fungal diversity in		1462			
Hanafy, RA; Johnson, B; Youssef, NH;	herbivores usingd1/d2large ribosomal subunit		-			
Elshahed, MS	sequencing and multi-year isolation Seven new Neocallimastigomycota genera from	ENVIRON MICROBIOL	2912	2020	10.1111/1462-2920.15164	3/1/2022
Hanafy, RA; Lanjekar, VB; Dhakephalkar,	wild, zoo-housed, and domesticated herbivores		0027			
PK; Callaghan, TM; Dagar, SS; Griffith,	greatly expand the taxonomic diversity of the		-			
GW; Elshahed, MS; Youssef, NH	phylum Complete genome analysis of a novel mucolytic	MYCOLOGIA	5514 0021	2020	10.1080/00275514.2019.1696619	3/1/2022
Hong, SJ; Kim, DH; Jung, DJS; Hague, MN;	bacterium, Prevotella mucinisolvens SP. Nov.,		-			
Baik, M	isolated from bovine rumen epithelium Characterization and survey in cattle of a rumen	J ANIM SCI	8812 0168	2020	10.1093/jas/skaa278.711	3/1/2022
Kang, S; Khan, S; Webb, R; Denman, S;	Pyrimadobacter SP. Which degrades the plant	FEMS MICROBIOL	-			
Mcsweeney, C	toxin fluoroacetate Reductive acetogens isolated from ruminants	ECOL	6496 2672	2020	10.1093/femsec/fiaa077	3/1/2022
	and their effect on in vitro methane mitigation	J ANIM SCI AND	-			
Kim, SH; Mamuad, LL; Islam, M; Lee, SS	and milk performance in Holstein cows	TECHNOLOGY	0191 2076	2020	10.5187/jast.2020.62.1.1	3/1/2022
Kuppusamy, P; Kim, D; Soundharrajan, I;	Low-Carbohydrate Tolerant LAB Strains		-			
Park, HS; Jung, JS; Yang, SH; Choi, KC	Identified from Rumen Fluid: Investigation of	MICROORGANISMS	2607	2020	10.3390/microorganisms8071044	3/1/2022

Li, Y; Guo, BZ; Li, C; Wang, WW; Wu, ZK;	Probiotic Activity and Legume Silage Fermentation Isolation of a Highly Efficient Antigenic-Protein- degradingbacillus amyloliquefaciensand		2076 -			
Liu, GH; Cai, HY Mishra, P; Tulsani, NJ; Jakhesara, SJ; Dafale, NA; Patil, NV; Purohit, HJ;	Assessment of Its Safety Exploring the eukaryotic diversity in rumen of Indian camel (Camelus dromedarius) using 18S	ANIMALS	2615 0302 -	2020	10.3390/ani10071144	3/1/2022
Koringa, PG; Joshi, CG	rrna amplicon sequencing The deliberate killing of a sheep with a fire	ARCH MICROBIOL	8933 1547	2020	10.1007/s00203-020-01897-w	3/1/2022
Peters, M; Wohlsein, P	extinguisher: a case report and experimental reconstruction study	FORENSIC SCI MED PAT INTERNATIONAL SYMPOSIUM OF INNOVATIVE BIO- PRODUCTION INDONESIA ON BIOTECHNOLOGY	- 769X	2020	10.1007/s12024-020-00245-0	3/1/2022
	The amylase production BY Actinobacteria	AND BIOENGINEERING	1755 -			
Ratnakomala, S; Perwitasari, U; Yopi Stabel, M; Hanafy, RA; Schweitzer, T;	isolated from rumen fluid Aestipascuomycesdupliciliberans gen. Nov, SP.	2019	1307	2020	10.1088/1755-1315/439/1/012019	3/1/2022
Greif, M; Aliyu, H; Flad, V; Young, D;	Nov., the First Cultured Representative of the		2076			
Lebuhn, M; Elshahed, MS;	Uncultured SK4 Clade from Aoudad Sheep and		-			
Ochsenreither, K; Youssef, NH	Alpaca A novel biocatalyst,Enterobacter aerogeneslu2,	MICROORGANISMS	2607	2020	10.3390/microorganisms8111734	3/1/2022
Crezerba III Komen Jenezera F. Dudziek	for efficient production of succinic acid using whey permeate as a cost-effective carbon	DIOTECUNIO	1754			
Szczerba, H; Komon-Janczara, E; Dudziak, K; Wasko, A; Targonski, Z	source	BIOTECHNOL BIOFUELS	- 6834	2020	10.1186/s13068-020-01739-3	3/1/2022
K, Wusko, A, Turgonski, Z	Conjugated linoleic acid producing potential of	DIGI OLLO	1011	2020	10.1100/313000 020 01/35 5	5/1/2022
Tyagi, AK; Kumar, S; Choudhury, PK;	lactobacilli isolated from goat (AXB) rumen fluid	ASIAN AUSTRAL J	-			
Tyagi, B; Tyagi, N	samples Enzymatic profiles of hydrolysis of	ANIM	2367	2020	10.5713/ajas.19.0080	3/1/2022
Alves, JMD; Rocha, PJD; Duarte, ER;	lignocellulosic materials from Aspergillus		1878			
Maia, HAR; Freitas, CES; Pimenta, MAS;	terreus strains isolated from the rumen of beef	BIOCATAL AGRI	-			
Valerio, HM	cattle from Brazil	BIOTECH	8181	2021	10.1016/j.bcab.2021.102143	3/1/2022
Auchar D. Laniekar M. Kehimagar D.	Buffalo rumen harbours diverse thermotolerant		0960			
Avchar, R; Lanjekar, V; Kshirsagar, P; Dhakephalkar, PK; Dagar, SS; Baghela, A	yeasts capable of producing second-generation bioethanol from lignocellulosic biomass Biochemical properties of partially purified	RENEW ENERG	- 1481	2021	10.1016/j.renene.2021.04.002	3/1/2022
Badejo, OA; Olaniyi, OO; Ayodeji, AO;	surfactant-tolerant alkalophilic endo beta-1,4 xylanase and acidophilic beta-mannanase from	BIOCATAL AGRI	1878			
Lawal, OT DE Sousa, BL; Azevedo, AC; Oliveira, IMF;	bacteria resident in ruminants' guts PCR screening reveals abundance of bovicin-like	BIOTECH	8181 1364	2021	10.1016/j.bcab.2021.101982	3/1/2022
Bento, CBP; Santana, MF; Bazzolli, DMS; Mantovani, HC	bacteriocins among ruminal Streptococcus spp. Isolated from beef and dairy cattle	J APPL MICROBIOL	- 5072	2021	10.1111/jam.15069	3/1/2022

1	Hydrolysis of lignocellulosic forages BY		1878			
Duarte, ER; Maia, HAR; Freitas, CES;	Trichoderma longibrachiatum isolate from	BIOCATAL AGRI	-			
Alves, JMD; Valerio, HM; Cota, J	bovine rumen	BIOTECH	8181	2021	10.1016/j.bcab.2021.102135	3/1/2022
	Ruminococcus bovis SP. Nov., a novel species of		1466			
Gaffney, J; Embree, J; Gilmore, S;	amylolytic Ruminococcus isolated from the		-			
Embree, M	rumen of a dairy cow	INT J SYST EVOL MICR	5026	2021	10.1099/ijsem.0.004924	3/1/2022
	Improvement of fermentation quality and		10.54			
Li li Tana Vi Zhao, li Chan Ci Miana Ci	cellulose convertibility of Napier grass silage BY		1364			
Li, J; Tang, X; Zhao, J; Chen, S; Wang, S;	inoculation of cellulolytic bacteria from Tibetan		-	2021	10 1111 /icm 14017	2/1/2022
Shao, T Mahoney-Kurpe, SC; Palevich, N; Noel,	yak (Bos grunniens) Complete Genome Sequences of Three	J APPL MICROBIOL MICROBIOLOGY	5072 2576	2021	10.1111/jam.14917	3/1/2022
SJ; Kumar, S; Gagic, D; Biggs, PJ; Janssen,	Clostridiales R-7 Group Strains Isolated from	RESOURCE	-			
PH; Attwood, GT; Moon, CD	the Bovine Rumen in New Zealand	ANNOUNCEMENTS	- 098X	2021	10.1128/MRA.00310-21	3/1/2022
Medhi, D; Ali, E; Choudhury, LC; Baruah,	Isolation, identification and characterization of	ANNOONCEMENTS	0367	2021	10.1120/100310-21	5/1/2022
KK; Santra, A; Dubey, S; Agarwal, P;	rumen bacteria and estimation of their fibre		-			
Chakravarty, P	degradable enzymes in yak (Bos grunniens)	INDIAN J ANIM SCIS	8318	2021		3/1/2022
NA, SW; Chun, BH; Beak, SH; Khan, SA;	Pseudoprevotella muciniphila gen. Nov., SP.		1932			-, _, _ = = = = =
Haque, MN; Lee, JS; Jeon, CO; Lee, SS;	Nov., a mucin-degrading bacterium attached to		-			
Baik, M	the bovine rumen epithelium	PLOS ONE	6203	2021	10.1371/journal.pone.0251791	3/1/2022
	A novel identified Pseudomonas aeruginosa,					
	which exhibited nitrate- and nitrite-dependent					
	methane oxidation abilities, could alleviate the		1751			
Pang, J; Liu, LH; Liu, XP; Wang, Y; Chen,	disadvantages caused BY nitrate		-			
B; Wu, SR; Yao, JH; Xu, XR	supplementation in rumen fluid fermentation	MICROB BIOTECHNOL	7915	2021	10.1111/1751-7915.13726	3/1/2022
	Original The macronuclear genome of					
	anaerobic ciliate Entodinium caudatum reveals		0888			
Park, T; Wijeratne, S; Meulia, T; Firkins,	its biological features adapted to the distinct		-			
JL; Yu, ZT	rumen environment	GENOMICS	7543	2021	10.1016/j.ygeno.2021.03.014	3/1/2022
	Unraveling the camel rumen microbiome		0302			
Srivastava, S; Dafale, NA; Jakhesara, SJ;	through metaculturomics approach for		-	2024	10 1007/ 00000 000 00010	2/1/2022
Joshi, CG; Patil, NV; Purohit, HJ	agriculture waste hydrolytic potential Isolation and Characterization of Yeasts from	ARCH MICROBIOL	8933 2306	2021	10.1007/s00203-020-02010-x	3/1/2022
Suntara, C; Cherdthong, A; Wanapat, M; Uriyapongson, S; Leelavatcharamas, V;	Rumen Fluids for Potential Use as Additives in	VETERINARY	2500			
Sawaengkaew, J; Chanjula, P; Foiklang, S	Ruminant Feeding	SCIENCES	- 7381	2021	10.3390/vetsci8030052	3/1/2022
Sawachgkacw, J, Chanjula, F, Folklang, J	Paenibacillus barengoltzii A1_50L2 as a Source	JCIENCES	1877	2021	10.5550/ 0013018050052	5/1/2022
Ticona, ARP; Ullah, SF; Hamann, PRV;	of Plant Cell Wall Degrading Enzymes and Its	WASTE BIOMASS	-			
Lopes, FAC; Noronha, EF	Use on Lignocellulosic Biomass Hydrolysis	VALORI	2641	2021	10.1007/s12649-020-00975-w	3/1/2022
	Growth and morphologic response of rumen	112011	1344	2021	10.1007/012013 020 00570 1	0,1,2022
Wakai, M; Hayashi, S; Chiba, Y; Koike, S;	methanogenic archaea and bacteria to cashew		-			
Nagashima, K; Kobayashi, Y	nut shell liquid and its alkylphenol components	ANIM SCI J	3941	2021	10.1111/asj.13598	3/1/2022
	Isolation and Identification of a Rumen					
	Lactobacillus Bacteria and Its Degradation		2076			
Wang, WK; Li, WJ; Wu, QC; Wang, YL; Li,	Potential of Gossypol in Cottonseed Meal		-			
SL; Yang, HJ	during Solid-State Fermentation	MICROORGANISMS	2607	2021	10.3390/microorganisms9112200	3/1/2022
Wang, Z; Wu, WQ; Cui, LC; Li, X; Kulyar,	Isolation, characterization, and interaction of		0233			
MFEA; Xiong, HQ; Zhou, NA; Yin, HH; Li,	lignin-degrading bacteria from rumen of buffalo		-			- /- /
JK; Li, X	(Bubalus bubalis)	J BASIC MICROB	111X	2021	10.1002/jobm.202100068	3/1/2022

Zada, S; Alam, S; AL Ayoubi, S; Shakeela, Q; Nisa, S; Niaz, Z; Khan, I; Ahmed, W; Bibi, Y; Ahmed, S; Qayyum, A	Biological Transformation of Zearalenone BY Some Bacterial Isolates Associated with Ruminant and Food Samples Screening and Identification of Latilactobacillus	TOXINS	2072 - 6651	2021	10.3390/toxins13100712	3/1/2022
Zhang, Y; Liang, S; Zhao, MD; Yang, X; Choi, SH; Li, GY	curvatus Z12 From Rumen Fluid of AN Adult Female Sika Deer as a Potential Probiotic for Feed Additives Characterization and identification of cellulase-	FRONT VET SCI	2297 - 1769	2021	10.3389/fvets.2021.753527	3/1/2022
Zhao, J; Shao, T; Chen, S; Tao, X; Li, J	producing Enterococcus species isolated from Tibetan yak (Bos grunniens) rumen and their application in various forage silages	J APPL MICROBIOL	1364 - 5072	2021	10.1111/jam.15014	3/1/2022
Zhao, JY; Jiang, YD; Gong, LM; Chen, XF; Xie, QL; Jin, Y; Du, J; Wang, SF; Liu, G Wang Y; Youssef N.	Mechanism of beta-cypermethrin metabolism BY Bacillus cereus GW-01 Molecular Dating of the Emergence of	CHEM ENG J	1385 - 8947 2379	2022	10.1016/j.cej.2021.132961	3/1/2022
H; Couger M.B; Hanafy R.A;Elshahed M.S ; Stajich J.E	Anaerobic Rumen Fungi and the Impact of Laterally Acquired Genes	MSYSTEMS	- 5077 0028	2019	10.1128/mSystems.00247-19	18/05/202 2
Beijer W.H	Methane fermentation in the rumen of cattle	NATURE	- 0836 0022	1952	10.1038/170576a0	18/05/202 2
Oppermann R.A; Nelson, W.O; Brown, R.E	In Vitro Studies on Methanogenic Rumen Bacteria	JOURNAL OF DAIRY SCIENCE	- 0302 0021	1957	10.3168/jds.S0022-0302(57)94554-X	18/05/202 2
Smith P.H; Hungate R.E;	Isolation and characterization of Methanobacterium ruminantium n. sp	JOURNAL OF BACTERIOLOGY INTERNATIONAL	- 9193	1958	10.1128/jb.75.6.713-718.1958	18/05/202 2
Rea S; Bowman J.P;	Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth	JOURNAL OF SYSTEMATIC AND EVOLUTIONARY	1466	2007	10.1099/ijs.0.63984-0	18/05/202 2
Popovski S; Pimm C; Wright ADG Lovley D.R;Greening R.C; Ferry J.G	Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate.	MICROBIOLOGY APPLIED AND ENVIRONMENTAL MICROBIOLOGY	5026 0099 - 2240	2007	10.1099/ijs.0.63984-0 10.1128/aem.48.1.81-87.1984	2 18/05/202 2
Li Y; Leahy S.C; Jeyanathan J; Henderson G; Cox F; Altermann E; Kelly W.J;	The complete genome sequence of the methanogenic archaeon ISO4-H5 provides insights into the methylotrophic lifestyle of a		1944	1001		_
Lambie S.C; Janssen P.H; Rakonjac J, Attwood G.T	ruminal representative of the Methanomassiliicoccales Complete Genome Sequence of Methanogenic	STANDARDS IN GENOMIC SCIENCES	3277	2016	10.1186/s40793-016-0183-5	18/05/202 2
Kelly W.J; Li D; Lambie S.C; Jeyanathan J; Cox F; Li Y; Attwood G.T; Altermann E; Leahy S.C	Archaeon ISO4-G1, a Member of the Methanomassiliicoccales, Isolated from a Sheep Rumen	GENOMES ANNOUNCEMENTS	2169 - 8287	2016	10.1128/genomeA.00221-16	18/05/202 2