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 7 

Abstract  8 

Leaf area is a key structural characteristic of forest canopies because of the role of leaves in 9 

controlling many biological and physical processes occurring at the biosphere-atmosphere 10 

transition. High pulse density Airborne Laser Scanning (ALS) holds promise to provide spatially 11 

resolved and accurate estimates of plant area density (PAD) in forested landscapes, a key step in 12 

understanding forest functioning: phenology, carbon uptake, transpiration, radiative balance etc. 13 

Inconsistencies between different ALS sensors is a barrier to generating globally harmonised PAD 14 

estimates. The basic assumption on which PAD estimation is based is that light attenuation is 15 

proportional to vegetation area density. This study shows that the recorded extinction strongly 16 

depends on target detectability which is influenced by laser characteristics (power, sensitivity, 17 

wavelength). Three different airborne laser scanners were flown over a wet tropical forest at the 18 

Paracou research station in French Guiana. Different sensors, flight heights and transmitted power 19 

levels were compared. Light attenuation was retrieved with an open source ray-tracing code 20 

(http://amapvox.org). Direct comparison revealed marked differences (up-to 25% difference in 21 

profile-averaged light attenuation rate and 50% difference at particular heights) that could only be 22 

explained by differences in scanner characteristics. We show how bias which may occur under 23 

various acquisition conditions can generally be mitigated by a sensor intercalibration. Alignment of 24 
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light weight lidar attenuation profiles to ALS reference attenuation profiles is not always 25 

satisfactory and we discuss what are the likely sources of discrepancies. Neglecting the 26 

dependency of apparent light attenuation on scanner properties may lead to biases in estimated 27 

vegetation density commensurate to those affecting light attenuation estimates. Applying 28 

intercalibration procedures supports estimation of plant area density independent of acquisition 29 

characteristics. 30 

 31 

Introduction 32 

Gas exchange processes between vegetation and the atmosphere are mediated by leaf surface. For 33 

example, canopy temperature, energy balance, and photosynthetic rate are related to the amount 34 

of leaf area (Bonan 2015) which is therefore a key variable in dynamic vegetation models. 35 

Estimation of Leaf Area Index in evergreen forests has nonetheless remained a challenge and LAI is 36 

still poorly resolved over space and time. This limits our ability to effectively 37 

initialize/calibrate/validate or otherwise constrain vegetation models. Ground-based methods of 38 

LAI measurements have well known limitations (Bréda 2003). Litterfall collection cannot provide 39 

direct information without prior knowledge of the leaf lifespan which itself is highly variable within 40 

site across species and environmental conditions (Osada et al. 2001; Reich et al. 2004; Laurans et 41 

al. 2012). Indirect optical methods such as LAI2000 instrument or hemispherical photographs 42 

essentially measure directional gap probability which allows to derive “effective LAI” rather than 43 

actual LAI (Chen et al. 1997). Effective LAI is the expected LAI given the observed directional gap 44 

probability under the assumption that light is intercepted only by leaves (no wood contribution) 45 

and that foliage has a spatially random distribution (no clumping).  46 
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Extending the definition of Leaf Area Index proposed by (Chen and Black 1991), Plant Area Index 47 

(PAI) can be defined as half the total plant area (considering all vegetation components including 48 

branches and trunks) per unit horizontal ground surface area  (Fang et al. 2019). Similarly, Plant 49 

Area Density (PAD) is then half the total plant area per unit volume of canopy. In the present study 50 

we are concerned with PAI and PAD only and will not address the problem of estimating the 51 

contribution of woody elements to PAI. 52 

Deriving PAI from Airborne Laser Scanning is an attractive alternative compared to other means of 53 

estimation (Morsdorf et al. 2006; Hopkinson and Chasmer 2007; Solberg et al. 2009; Vincent et al. 54 

2017; Almeida et al. 2019; Arnqvist et al. 2020). In contrast with direct ground measurements of 55 

PAI which typically have a limited spatial coverage (Olivas et al. 2013), ALS can produce consistent 56 

estimates over large areas capturing spatial variability of plant area density, leading to more 57 

accurate spatially integrated estimates. Mapping PAI at landscape scale opens-up new 58 

opportunities to study sources of variation of PAI, or to use such information as initial condition for 59 

dynamic vegetation models (Longo et al. 2020). A key advantage of lidar over passive optical 60 

methods is that it provides 3D-explicit information on light attenuation which allows to estimate 61 

PAD per small unit volumes rather than for the entire canopy, thereby reducing the clumping bias 62 

issue to the subunit volume scale (Vincent et al. 2017). 63 

Direct estimate of LAI from passive optical remote sensing are based on the selective absorption of 64 

solar radiation by green leaves in red and infrared bands. They tend to saturate at high LAI values 65 

(Zheng and Moskal 2009). For instance the Normalized Difference Vegetation Index (NDVI) 66 

saturates around LAI = 3.5 (Shabanov et al. 2005). Retrieval algorithms based on look-up tables 67 

derived for typical canopy structures using stochastic radiative transfer equations are more 68 
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sensitive than direct correlative approaches. However uncertainty at high LAI remains high due to 69 

the sensitivity of retrieval algorithm to the surface reflectance precision which is limited by 70 

frequent cloud and aerosol contamination in the tropics (Fang et al. 2019). ALS derived estimates of 71 

PAI may also saturate in tall dense vegetation. Dense vegetation may indeed favour high pulse 72 

fragmentation rate with multiple returns of lower intensity. A significant fraction of the returns 73 

may remain below the sensor’s detection threshold, but this issue has received little attention so 74 

far. 75 

The recent increase in the number of surveys of individual sites that have multi-temporal lidar data 76 

has however led to greater scrutiny of the consistency between acquisitions, notably in terms of 77 

sensor induced systematic difference in PAI estimate. Shao et al. (2019) for instance have built on 78 

the Sustainable Landscape Brazil data set and compared 4 sensors and 16 pairs of multitemporal 79 

measurements. Each pair consisted of two lidar surveys conducted in different years. That study 80 

showed that a statistical intercalibration between sensors using a single multiplicative factor 81 

significantly improved consistency in PAI estimates obtained with different sensors.  82 

 83 

Extending the analysis of Shao et al. (2019), in the present study we compare light extinction 84 

profiles in a tropical forest canopy obtained with three different lidar sensors and under various 85 

settings (different flight heights, or different transmitted power). The objectives were to evaluate 86 

the level of sensitivity of light extinction profiles to acquisition conditions and also to identify the 87 

sources of bias in order to better take them into account in multiple site or multiple date 88 

vegetation surveys when identical acquisition settings are not granted.  89 

 90 
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The manuscript is organised as follows. The material and methods section briefly describes the 91 

general modelling assumptions, the ray tracing software used to process the lidar data 92 

(http://amapvox.org), the study site, the laser systems tested and the different flight plans operated. 93 

Then the analysis is conducted in two steps. The first step consists in analysing, for the different 94 

scanning scenarios, the level of completeness of retrieval of lidar backscattered energy and the 95 

variability in lidar returns intensity. The objective of this first part is to determine a robust estimate 96 

of the contribution of individual returns to the interception of an emitted laser pulse. The second 97 

part explores the differences in light extinction profiles (proportional to PAD profiles) for the 98 

different scanning scenarios. Those profiles are produced by using the return weighting scheme 99 

determined in the first step. Different light extinction profile inter-calibration procedures are 100 

tested. The discussion section examines both sets of results and further explores how an absolute 101 

calibration might be achieved. 102 

 103 

Material & Methods 104 

Theoretical background 105 

PAD estimation from ALS data 106 

Most methods proposed for estimating PAI from airborne lidar data build on the fundamental 107 

dependency between plant area density and light extinction rate. The theory describing light 108 

attenuation through canopies has a long history (e.g. (Miller 1967; Ross 1981)) and has served as 109 

the basis for describing lidar pulse extinction in forest canopies.  110 

The Beer-Lambert law is commonly used to describe light extinction through a canopy layer. 111 

��

��
= ����−
 �
    Equation 1 
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Where I0 is the incoming light intensity, I� is the remaining light intensity after travelling a distance 112 

�  through the canopy and 
  is the attenuation coefficient.  This attenuation coefficient is 113 

proportional to the Plant Area Density (m2.m-3) and is also affected by other vegetation 114 

characteristics such as clumping and orientation of scatterers which may further introduce a 115 

dependency of attenuation on light incidence angle (Bréda 2003).  116 

 117 

ALS derived canopy transmittance is obtained from the analysis of the return pulse waves of light 118 

reflected by the targets. Multiple hits occur if successive targets only partially intercept the source 119 

light pulse. If the targets are sufficiently large and sufficiently distant from each other, then distinct 120 

returns can be recorded. For each emitted pulse, some systems record all detectable returns (e.g. 121 

Riegl LMSQ 780, Riegl VUX-1UAV this study). Other systems are limited to a fixed maximum 122 

number of returns (e.g. five returns for the Riegl miniVUX, this study). Lidar systems typically 123 

record the strength of the backscattered echoes (often the peak power). However, a proper 124 

radiometric calibration is required to gain access to the echo energy (Wagner 2010).  125 

 126 

In a detailed simulation study, Yin et al. (2020) examined the performance of various descriptors 127 

extracted from ALS data which had previously been used to estimate canopy transmittance and 128 

PAI. The metrics considered were derived from a ratio of traversing pulses over entering pulses. 129 

They differed however in the choice of the return numbers used for calculation (first, last, both, all) 130 

and whether these were weighted or not, and in the former case how they were weighted: by the 131 

inverse of the echo number per shot or by the recorded return intensity. They concluded that 132 

methods using return intensity for weighting the echoes were more accurate overall and less 133 
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influenced by variations in footprint size, leaf area, vegetation cover, and foliar dimensions than 134 

the methods based on return counts only. Unfortunately, even when the individual echo energy is 135 

retrievable from the recorded signal, the physically based approach advocated by the authors may 136 

not be generally applicable. Indeed, the heterogeneity of a forest canopy and the high variability in 137 

optical properties of natural surfaces which affect the amount of light reflected towards the sensor 138 

may largely obscure the link between the target projected area and the returned energy (see 139 

below). 140 

The lidar signal may also vary with atmospheric characteristics. If atmospheric conditions are known, the 141 

attenuation of lidar signal can be estimated from atmospheric transfer simulations (Wagner 2010). 142 

Alternatively, flight campaign calibration using targets of known optical properties can be attempted. 143 

Atmospheric extinction generally results both from scattering and absorption. Effect of 144 

atmospheric water content in the infra-red range was examined for laser ranger finders operating 145 

at 905 nm and 1550nm (Wojtanowski et al. 2014). That study reported a low impact of 146 

atmospheric humidity on extinction coefficients at both wavelengths. Fog however significantly 147 

decreased the detection range at both wavelengths and more so at 1550nm.  148 

Surface wetness may also affect lidar return signal strength significantly. Kaasalainen et al. (2009) reported a 149 

decrease in reflectance of a series of targets (sand, brick, concrete) of 30-50% between dry and wet surfac-150 

es. WeiChen et al. (2015) operating a Leica ALS60 under different acquisition configurations reported a pen-151 

etration rate (defined as the proportion of pulses generating a ground return to the total number of emitted 152 

laser pulses ) reduced by approximately 25% in case of wet ground. This was attributed to the low reflec-153 

tance of water in the near infrared range beyond 800 nm.  154 

 155 
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Lidar back-scattering model 156 

For a target with Lambertian surface, larger than the foot print size and of solid angle π steradians 157 

the following relation between the received Power Pr to the transmitted power Pt has been 158 

proposed (Höfle and Pfeifer 2007) 159 

 160 

�� =
����

��

���
�������� !"#     Equation 2 161 

 162 

Where R is the distance from sensor to target, # is the incidence angle, ηsys and ηatm are system 163 

and atmospheric transmission factors respectively, Dr is the receiver aperture diameter, and ρ is 164 

the target reflectance. 165 

ηsys, Dr are considered constant for a given flight campaign and variation in ηatm between flight 166 

lines may be neglected in first approximation. Variation in ηatm is implicitly neglected between 167 

flight campaigns. 168 

  169 

Critically, when using lidar one derives transmittance (or attenuation) from a measurement of 170 

reflected, not transmitted light. An implicit assumption is that all the hits will generate a return 171 

wave detectable by the sensor or, at least, that undetectable targets are sufficiently few to be 172 

ignored without significantly biasing transmittance estimation. However, this may not hold true at 173 

all times. Vegetation is typically composed of many scatterers, irregular in their spatial distribution, 174 

size, orientation and shape. Small or poorly reflective targets may not backscatter enough energy 175 

towards the sensor for a return to be detected. A fraction of the laser pulses may also be deflected 176 

away from sensor due to specular reflection as it is commonly observed over water bodies.  177 
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The energy associated with each return will depend on the fraction of the pulse which is 178 

intercepted as well as on the reflectivity and orientation of the intercepting surface (Höfle and 179 

Pfeifer 2007; Yin et al. 2020). Natural surfaces, however, tend to have highly variable optical 180 

properties (across material e.g. wood versus leaves, between ground and vegetation, depending 181 

on surface wetness, etc) which limits our ability to precisely characterise those properties.  182 

 183 

Light attenuation profile computation  184 

AMAPVox (http://AMAPVox.org) is an open source software designed to analyze lidar-vegetation 185 

interactions. It can process various discrete lidar data type: single or multiple returns, terrestrial or 186 

airborne.  187 

AMAPvox tracks every laser pulse through a 3D grid (voxelized space) from the laser head to the 188 

last recorded hit. The effective sampling area of each laser pulse (or fraction of pulse in case of 189 

multiple hits) is computed from the theoretical beam section (a function of distance from laser and 190 

divergence of laser beam) and the remaining beam fraction entering a voxel. Different weighting 191 

options of individual returns are available which may include the individual return intensity. This 192 

information is combined with the optical path length of each pulse entering a voxel to compute the 193 

local attenuation per voxel. Different estimation procedures are provided in the AMAPVox 194 

software (Vincent et al. 2021). In the present study we used the maximum likelihood estimate of 195 

the attenuation coefficient coined “Potential Path Length” in AMAPvox (Vincent et al. 2021). This 196 

3D description of local attenuation can then be horizontally integrated under consideration of the 197 

ground elevation to compute canopy attenuation profiles. 198 

 199 
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Study location 200 

The lidar overflights were conducted over the experimental site of Paracou in French Guiana (see 201 

location map in (Vincent et al. 2012)) during the annual long dry season (September-November) in 202 

2016, 2019 and 2020. The mean canopy height of the forest at Paracou is c. 27.8 m (standard 203 

deviation = 3.0) and the mean basal area c. 30m2/ha in the unlogged plots (Vincent et al. 2010; 204 

Vincent et al. 2012). Two regions of interest were arbitrarily selected (a 1.4-ha plot and a 2-ha plot) 205 

that are covered with undisturbed old growth tropical moist forest (Figure 1). 206 

 207 

 208 

Figure 1: Paracou canopy height model (2019) with outline of ROI1 (red) and ROI2 (blue) 
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Lidar Systems  209 

The RIEGL miniVUX-1UAV (905 nm) is a lightweight UAV-borne laser scanner, designed specifically 210 

for integration with UAV (Table 1). It uses online waveform processing, multi-target resolution (up-211 

to 5 target echoes per laser shot). Beam divergence (measured at 50% peak intensity) is less than 212 

1.6 x 0.5 mrad (RIEGL Laser Measurement Systems 2020). The long axis of the resulting elongated 213 

footprint is 16 cm and the short axis 5cm at 100m distance with a resulting footprint area of 0.008 214 

m2. 215 

 216 

The RIEGL VUX-1UAV (1550nm) is about twice as powerful (Table 1) and heavy as the miniVUX. The 217 

Pulse Repetition Rate (PRR) of the VUX is adjustable from 50kHz to 550kHz. As the product of PRR 218 

and pulse power is constant changing PRR also affects pulse power (RIEGL Laser Measurement 219 

Systems 2020).  The divergence is less than 0.5 mrad (1/e2). The foot print diameter is 5 cm at 220 

100m distance (0.002 m2). 221 

 222 

The RIEGL LMS-Q780 (1064 nm) is designed to be carried onboard a manned aircraft. It is a digital 223 

full waveform sensor that provides access to detailed target characteristics by digitizing the echo 224 

signal online during data acquisition and also allowing subsequent full waveform analysis. Beam 225 

divergence (measured at the 1/e2 point) is less than 0.25 mrad (RIEGL Laser Measurement Systems 226 

2015). The footprint diameter is 22.5 cm at 900m distance (area of 0.04 m2) and 11.25 cm at 450m 227 

(area of 0.01 m2). 228 

 229 
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Beam divergence increases from 0.25 mrad (LMS-Q780) estimated at 0.135 peak power to 1.6*0.5 230 

mrad (minivux) estimated at 50% of peak power. The footprint shape of the miniVUX is not circu-231 

lar and the divergence is given in two orthogonal directions. The difference in divergence is large 232 

and not easy to properly quantify given the different definition used for the miniVUX and the oth-233 

er two sensors. Importantly increased beam divergence means more rapid decrease in target irra-234 

diance (i.e. radiant flux received per unit area) which varies as the inverse of footprint area.  235 

Table 1: Lidar sensor characteristics 

Characteristic LMSQ780 VUX-1UAV miniVux -1 

UAV 

Comments 

Weight 20 kg 3.65kg 1.6kg -  

Laser wavelength 1064 nm 1550 nm 905 nm -  

Beam divergence (mrad) <=0.25 <=0.5 <=1.6*0.5 Different definition of 

divergence used for 

miniVux 

Footprint diameter  22.5 cm @ 

900m 

5cm @ 100m 16*5 cm @ 

100m 

Non-spherical foot print 

of miniVUX 

Pulse duration and range 

resolution 

4.5 ns  

(0.75 m) 

3 ns 

(0.45 m) 

6 ns 

(0.9 m) 

range resolution is de-

fined as (group velocity * 

pulse duration) /2 (Wag-

ner et al. 2006) 

Adjustable power Yes Yes  No  

Maximum range (natural 

target of reflectivity > 

60%)  

2400m 

@25% pow-

er 

660m  

@100% 

power 

290m 

@100% 

Power 

Assuming 23 km visibility, 

flat target in excess of 

foot print size, orthogo-

nal to laser beam 

Maximum number of 

recorded returns per 

pulse  

Unlimited 

(observed 7) 

Unlimited 

(observed 9) 

5  

(observed 5) 

 

 236 

We used the extra-byte information provided by RIEGL instruments (Riegl  Laser Measurement 237 

Systems 2019) to normalize the return intensity with regard to distance as explained in the next 238 

paragraph.  239 

All three instruments record the signal amplitude which is the optical input power relative to the 240 

instrument detection threshold (in dB).  241 
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For the miniVUX-1UAV and the VUX the normalized intensity was simply taken as the target 242 

relative reflectance value, i.e. the ratio of the actual echo amplitude to the amplitude of a white 243 

flat target at the same range, orientated orthonormal to the beam axis, and with a size in excess of 244 

the laser footprint. This was expressed as a fraction (between 0 and 1) rather than in dB, so that 245 

reflectance of successive echoes generated from a single emitted pulse could be meaningfully 246 

summed. 247 

For the LMSQ780, normalized intensity was taken as (Vincent et al. 2017)  248 

 249 

$ = 10'/)* ∗ ,- ∗ . ∗ /   equation 3 250 

  251 

Where A (amplitude) is the optical power in dB, d (range) is the distance from source to target in 252 

m, W (pulse width) is defined as full width at half maximum of the received echo signal and is 253 

measured in nanoseconds (ns), and K is an arbitrary constant. 254 

In the rest of the manuscript, intensity refers to the above-mentioned normalized intensities which 255 

are corrected for target range dependency. Note that while intensity values can be meaningfully 256 

compared for VUX and miniVUX data, the LMSQ780 values are provided on a different scale. 257 

 258 

Flight plans 259 

Two different tracts of undisturbed forest outlined on Figure 1 served to compare sensors, 260 

hereafter referred to as ROI1 (1.4ha) and ROI2 (2ha).  261 

 262 

ROI1 flight plans 263 
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On this area we compared the LMSQ780 (different transmitted power and different flight heights) 264 

with the miniVUX-1UAV (operated at different flight heights). Scanning angles of all flights were 265 

limited to +/- 15 degrees off nadir to control for possible anisotropy in light extinction.  266 

 267 

We considered two different campaigns operating the LMSQ780 over the same region of interest. 268 

Those campaigns took place in October 2016 and November 2019, both during the dry season.  269 

Due to variation in flight altitude and number of contributing flight lines (Table 2 and Table 3) the 270 

final pulse density varied across the different flight configurations from 9 to 22 pls. m-2.  271 

Pulse density achieved with the miniVUX-1UAV (MNVX) was an order of magnitude higher, 272 

between 175 and 186 pls. m-2 (Table 3). 273 

 274 

List of flights over ROI 1 275 

• LMSQ780 (ALS) 19 September 2016, 3 flight heights (430m, 630m and 830m) and 2 276 

transmitted power (6% and 12% full power)  277 

• LMSQ780 (ALS) 15 November 2019, single flight height (900m), 25% full power 278 

• MNVX (UAV-LS) 19-20 October 2020, 3 flight heights  279 

 280 

ROI2 flight plans 281 

Over the second ROI all data were acquired the same year during the dry season. Scanning angles 282 

of all flights were also limited to +/- 15 degrees off nadir. 283 

List of flights over ROI 2 284 

• LMSQ780 (ALS) 15 November 2019 single flight height, 25% full power, pulse density 19 285 

pls.m-2. 286 
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• MNVX (UAV-LS) 18 October 2019 single flight height, pulse density 85 pls.m-2. 287 

• VUX (UAV-LS) 10-21 October 2019 single flight height, 3 power levels (100%, 33%, 18%) and 288 

pulse densities (64, 187 and 369 pls.m-2). 289 

 290 

Lidar data processing and data analysis 291 

The complete LMSQ780 2019 data set was used to produce a Digital Terrain Model. The 292 

consolidated pulse density was 40 pls.m-2 for a scanning swath angle of +/- 30 degrees. Ground 293 

point filtering procedure is described in Appendix 1. All returns less than 50cm above the modelled 294 

ground surface were considered ground points to compute the three following indicators: ground 295 

point density (pt.m-2), fraction of transmitted pulses reaching the ground (%), and proportion of 296 

energy reaching the ground. In the latter case, ground returns were weighted by the inverse of 297 

their return rank. 298 

 299 

In the first part, we analyse the overall statistics per flight to firmly establish that target detection 300 

rate varies with at-canopy-irradiance (radiant power received per unit area of surface) for all three 301 

sensors.  302 

Focusing on single (i.e. potentially unfragmented) returns we then investigate how reflectance 303 

varies across space. We illustrate the variability in reflectance across individual crowns by mapping 304 

single return intensity for the three sensors (ROI2). We further examine the dependency of single 305 

return intensity to canopy depth and height above the ground for the different sensors using 306 

multiple linear models. We also examine how individual return intensity varies with return rank. 307 

These pieces of information are combined to determine the individual return contribution to light 308 

interception used when computing light extinction with AMAPVox (part 2). 309 
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 310 

In the second part we move on to compare light extinction profiles for the different flights. The 311 

LMSQ780 2019 data were considered as the reference data when intercalibrating profiles as this 312 

campaign covered both ROIs. 313 

Lidar data were voxelized at 2x2x2 m resolution. This resolution ensured that at least 90% of the 314 

lower most voxels were sampled by the reference lidar campaign (Appendix 2). A mean 315 

attenuation profile was computed for each flight over the areas of interest. Sensitivity of 316 

attenuation profiles to pulse density was found to be low. For instance, a 50% thinning of lidar 317 

pulses applied to the reference flight (density reduced to 10 emitted pulses per m2, c. 20 return 318 

pulses) generated a relative Root Mean Square Error (RMSE) of less than 2% in the attenuation 319 

profile values. This was in line with previous observations reporting stable LAD profiles (at ¼ ha 320 

resolution) above 20 return pulses per m2 (Shao et al. 2019). 321 

 322 

The calibration procedure involved fitting the targeted attenuation profile to the reference profile. 323 

This was achieved by linear regression using R software (R Core Team. 2022) . Calibration functions 324 

were adjusted at the level of the vegetation profile rather than the individual voxel level. Indeed, 325 

given the uncertainty of individual voxel estimations (which acted as the predictors in the 326 

regression as well as the response variable) the regressions would have been biased (Frost and 327 

Thompson 2000). This uncertainty at voxel scale was systematically higher for lower vegetation 328 

layers due to the lower sampling intensity consecutive to the attenuation of the lidar signal 329 

travelling down the canopy. This uncertainty was further amplified by the time difference between 330 

some of the campaigns which were compared (e.g. LMSQ780-2019 vs MNVX-2020 or LMSQ780-331 

2019 vs LMSQ780-2016). 332 
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Simple linear regressions without intercept were always considered first (corresponding to a single 333 

calibration coefficient). Additional predictors such as mean distance to laser or mean canopy depth 334 

(i.e. distance from top of canopy) were also tested to try to improve the fit.  335 

Results  336 

Global statistics per flight 337 

During the ALS campaign conducted in 2016 various flight heights and laser power settings were 338 

compared. Reducing transmitted power (compare column 2 and 3, in Table 2) led to a decrease in 339 

mean number of returns per pulse, and a decrease in the cumulated fraction of pulses reaching 340 

the ground. Reducing flight height (compare column 1 to 2 in Table 2) led to an increase in mean 341 

return number per pulse, an increase in the proportion of pulses triggering a ground return and an 342 

increase in the cumulative fraction of pulses reaching the ground.  343 

MiniVUX (Table 3) and VUX (Table 4) had lower penetration than LMSQ780 as measured by the 344 

lower fraction of pulses reaching the ground and the lower cumulated fraction of pulses reaching 345 

ground. MiniVUX and VUX also had fewer returns per pulse and fewer pulses generating more than 346 

one return. The miniVUX and VUX sensors showed trends in relation to change in canopy 347 

irradiance similar to the LMSQ780 both in terms of number of returns per pulse and penetration.  348 

 349 
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Table 2: ROI 1 (1.4 ha) statistics computed for 2016 ALS flights (2016) –  

LMSQ780 - flight height High Low Low 

Power setting 12% 12% 6% 

Number of Flight lines 4 1 2 

Median Height above ground in m 

+ [min;max]  

835 

[802;849] 

422 

[421;425] 

427 

[424;436] 

Average Foot print size at ground level (cm2)  342 87 90 

Reflectance detection threshold at ground level 

Beam orthogonal to target, no fragmentation, clear sky* 

11% <5% 5% 

Mean scan angle from vertical (deg)  

+  [min;max] 

-2.14 

[-7;+2] 

-0.05 

[-13;+13] 

-3.83 

[-13;+5] 

Pulse density (pls.m-2) 19  9 17 

Ground point density ** (pt.m-2) 0.89 0.70 0.97 

Shots reaching ground ** 4.8 % 7.6 % 5.7% 

Cumulated fraction of returns 

reaching ground *** 

1.6 % 2.1% 1.7% 

Mean Number Of Returns per pulse 1.95 2.23 2.05 

Fraction of Single Returns 0.36 0.29 0.34 

* (RIEGL Laser Measurement Systems 2022) 350 
** all returns up to 50cm above the modelled ground surface included 351 
*** assuming balanced fragmentation 352 
 353 

 354 

Table 3: ROI 1 (1.4 ha) statistics computed for DLS (2020) and LMSQ780 (2019) flights-  

 LMSQ780 MNVX  

Lowest 

height 

MNVX  

Medium 

height 

MNVX 

Highest 

Flight code  195113 110932 201241 

Power setting 25% 100% 100% 100% 

Median Height above ground in m 

+ [min;max]  

891  

[865;937] 

58 

[56;61] 

71 

[68;74] 

104 

[101;108] 

Reflectance detection threshold at ground level 

Beam orthogonal to target, no fragmentation, 

clear sky* 

7% <5% <5% 8% 

Average Foot print size at ground level (cm2) 360 27 40 87 

Mean scan angle from vertical (degrees) +0.36 +0.16 +0.05 -0.02 

Pulse density ** 22 (40) 160 (557) 175 (678) 173 (602) 

Ground point density *** (pt.m-2) 1.21 3.95 3.63 3.21 

Shots reaching ground *** 5.4% 2.5% 2.1% 1.9% 

Cumulated fraction of returns 

reaching ground **** 

2.1 % 1.1% 1.0% 0.9% 

Mean number of return per pulse 2.2 1.45 1.42 1.40 

Fraction of single returns 0.28 0.64 0.66 0.66 

* (RIEGL Laser Measurement Systems 2022) 355 
 356 
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**+/-15 degrees (full density in brackets) 357 
*** all returns up to 50cm above the modelled ground surface included 358 
**** assuming balanced fragmentation 359 
 360 

Table 4 : ROI 2 (2 ha) statistics computed for 2019 ALS, MNVX and VUX flights-  

 LMSQ780 MNVX VUX 

100kHz 

VUX 

330kHz 

VUX 

550kHz 

Power setting 25% 100% 100% 33% 18% 

Median Height above ground in m 

+ [min;max]  

904  

[878;927] 

82 

[78;85] 

118 

[105;129] 

117 

[105;127] 

117 

[106;127] 

Reflectance detection threshold at ground 

level ; Beam orthogonal to target, no fragmen-

tation, clear sky* 

7% <5% <5% 5% 9% 

Estimated Foot print size 

 at ground level (cm2) 

401  54 27  27 27 

Mean scan angle 1.08 1.24 0.59 0.62 0.65 

Pulse density ** 19 (34) 82 

(218) 

65 (141) 187 (408) 369 (792) 

Ground point density*** (pt.m-2) 0.97 0.71 2.58 5.70 8.82 

Shots reaching ground*** 5.2% 0.9% 4.0% 3.0% 2.4% 

Cumulated fraction of pulses  

reaching ground**** 

2.0 % 0.4% 1.4% 1.2% 1.1% 

Mean number of returns per pulse 2.2 1.4 1.8 1.7 1.6 

Fraction of single returns 0.29 0.66 0.47 0.49 0.53 

* (RIEGL Laser Measurement Systems 2022) 361 
**+/-15 degrees scan angle (full density in brackets) 362 
***all returns up to 50cm above the modelled ground surface included 363 
**** assuming balanced fragmentation 364 
 365 

Variability in backscattered energy 366 

Single returns intensity varies across crowns 367 

We selected single returns classified as vegetation in 3 sample datasets over ROI2 (LMSQ780 25% 368 

power, VUX full power, miniVUX) to map the canopy reflectance (Figure 2). Single return intensity 369 

was clearly structured per crown. It was also noticeable that ranking of individual crown 370 

reflectance was not consistent across sensors. 371 
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On Figure 2- right panel the high intensity returns which appear in yellow can distinctively be traced 372 

to branches and trunks by examining the point cloud. Wood reflectivity is indeed typically higher 373 

than leaf reflectivity at 1550 nm (Brede et al. 2022).  374 

 375 

 376 

Figure 2: Intensity of single returns (ROI 2) by three sensors of different wavelength illustrating crown to crown 

variation. Left miniVUX 905nm, center ALS 1064nm, right VUX (scan angle restricted to +/-15 degrees) - Different 

absolute scales are used for different sensors; Some crowns are highlighted to illustrate the fact that intensity ranking is 

not preserved across laser wavelengths 
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Single return intensity varies with canopy depth  377 

We examined whether a systematic change in reflectivity along the vertical canopy profile would 378 

occur as a consequence of a change in vegetation characteristics (leaf/wood ratio or leaf water 379 

content for instance). Because position in canopy and return rank were highly correlated due to 380 

the overhanging scanning position, we restricted the analysis to single returns for all flights, 381 

excluding ground points. We normalized individual return intensity by dividing by the mean return 382 

intensity for each flight. We then fitted a linear model with a fixed intercept equal to one (the 383 

overall mean intensity), with height above ground (HAG) and distance from top of canopy (DTC) as 384 

continuous predictors (no interaction term). Albeit both predictors were correlated (typically 385 

r~0.75) dropping one of the predictors often significantly reduced the goodness of fit (Table 5).  386 

 387 

While the proportion of total variance in single return intensity attributable to position in canopy 388 

(HAG + DTC) was always low to very low (Table 5) it was also statistically highly significant. When 389 

considered individually, DTC usually made a larger contribution than HAG to r2 (Table 5, last two 390 

columns). Recorded intensity by the VUX (1550nm) showed the largest variation with canopy 391 

depth. 392 

 393 

Table 5 : R2 of linear prediction model of single return intensity as a function of HAG, DTC or both (Full); HAG: Height 394 

Above Ground, DTC: Distance to Top of Canopy; All models have F statistic with p value < 0.001). The coefficients of 395 

both predictors for the full model are also reported (HAG eff. And DTC eff.)  396 

ROI Sensor Flight  Full model HAG eff. DTC eff.  HAG DTC 

1 miniVUX 58m AGL 0.024 -7.5E-03 -1.1E-03  0.004 0.011 

1 miniVUX 71m AGL 0.003 -1.7E-03 -4.2E-04  0.001 0.000 

1 miniVUX 104m AGL 0.021 -5.8E-03 -7.8E-04  0.002 0.011 

1 LMSQ780 430m AGL 12% power 0.010 7.7E-03 2.3E-04  0.000 0.010 

1 LMSQ780 430m AGL 6% power 0.002 2.8E-03 3.5E-05  0.000 0.002 

1 LMSQ780 830m AGL 12% power 0.006 5.5E-03 5.1E-05  0.000 0.006 

1 LMSQ780 900m AGL 25% power 0.001 -5.9E-04 -2.7E-04  0.001 0.000 
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 397 

 398 

 399 

For each flight we then corrected the complete data for HAG and DTC estimated effects by 400 

applying the same multiplicative correction factor (function of HAG and DTC) which was estimated 401 

for single returns, to the entire set of vegetation returns. On this corrected data set we analyzed 402 

how the cumulated intensity per emitted pulse would vary with the number of returns per pulse. 403 

We also conducted this analysis on the uncorrected data set for comparative purposes (Figure 3).  404 

As a result of this correction, the initially observed trend for the VUX of mean cumulative return intensity to 405 

increase with pulse fragmentation almost disappeared (Figure 3F). This correction affected less the energy 406 

conservation patterns of the other sensors. It increased slightly the apparent loss with fragmentation 407 

observed for the miniVUX. 408 

 409 

The mean cumulated intensity per shot varied with the level of pulse fragmentation (Figure 3). A 410 

decrease in mean return energy was noticeable from single to multiple return shots for LMSQ780 411 

and miniVUX (both plots). This decrease in cumulated intensity was more pronounced for lower 412 

flight heights (at a given laser power) or for higher laser power (at a given flight height) see Figure 413 

3A.  414 

  415 

         

2 VUX 100kHz-100% power 0.025 -1.0E-02 -1.1E-03  0.002 0.017 

2 VUX 330kHz-33% power 0.041 -1.2E-02 -1.3E-03  0.002 0.028 

2 VUX 550kHz-18% power 0.044 -1.1E-02 -1.3E-03  0.002 0.030 

2 LMSQ780 900m AGL, 25% power 0.002 3.5E-03 1.3E-04  0.000 0.002 

2 miniVUX 82m AGL 0.002 -1.7E-03 -3.2E-04  0.001 0.001 
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 416 

 417 

 418 

    419 

Figure 3 Mean cumulative intensity per shot (intensity) as a function of the number of detected returns (Number of 

returns); only shots not triggering a ground echo are considered. First line (A &B) considers different scanning settings 

for the same sensor. Second line (C & D) shows response for two different sensors. Third line (E & F) compares three 

different sensors.  A, C & E  (left): no intensity correction for canopy depth. B, D & F (right): systematic change in 

intensity occurring with canopy depth was corrected prior to analysis (see text). 
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The uncorrected VUX data showed an increase in cumulated intensity with degree of 420 

fragmentation (Figure 3E). After correcting for systematic variation of intensity with canopy depth 421 

this trend was barely discernible (Figure 3F). The strong dependence of return intensity on canopy 422 

depth, which was probably not completely compensated for, make this data set difficult to 423 

interpret in terms of patterns of backscattered energy retrieval. However, it can be noted that 424 

increasing the VUX power from 18% to 100% increased the mean vegetation single return intensity 425 

by 17% (from 0.24 to 0.29, Table 6), indicating that a fraction of the single returns were incomplete 426 

returns, at least when power was less than 100%.  427 

 428 

Somewhat unexpectedly, decreasing the miniVUX flight height (and thereby increasing irradiance 429 

and detection rate) did not lead to a systematic increase in mean vegetation single return intensity 430 

(instead a less than 4% and non-monotonous change was observed across flights; intensity of 431 

single returns was 0.33, 0.32 and 0.34 for 58 m, 71 m and 104 m height of flights, ROI1-CNES). 432 

However, the decrease in cumulated return intensity with fragmentation was more pronounced at 433 

higher at-canopy irradiance (Figure 3C and 3D, dotted lines). This is consistent with an increased 434 

proportion of “incomplete returns” and a lower detection rate (lower number of returns) with 435 

decreased irradiance (Table 3) for higher flights.  436 

 437 

In the case of the LSMQ780, it was observed that, like for the miniVUX (ROI1), higher at-canopy-438 

irradiance was associated with a stronger decrease in cumulated intensity following fragmentation 439 

(compare for instance 900m_25% and 830m_12% or 430m_12% and 430m_6%, in Figure 3A or 2B). 440 

It was also found, like for the VUX (ROI2), that higher irradiance determined a higher mean 441 
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vegetation single return intensity. For instance, single return intensity at 12% power was 649 and 442 

702 (arbitrary units) for 830 and 430m flight height, i.e. an 8% increase followed from at-canopy-443 

irradiance being multiplied by 4 (as footprint area was divided by 4). 444 

 445 

The cumulated retrieved energy per shot appeared to plateau (or even to increase, see for ex. 446 

830m_12% flight in Figure 3A or 3B) as the number of returns increased for the lowest at-canopy-447 

irradiance values.   448 

 449 

In addition, the mean vegetation to ground intensity ratio varied with wavelength as reported for 450 

ROI2 in Table 6. Values higher than one indicate a higher reflectivity of ground which may 451 

negatively bias the estimation of light extinction by vegetation. Indeed, if the compact background 452 

is more reflective than the porous medium in the foreground then it will be detected more 453 

effectively than potential targets in the foreground and transmittance may be overestimated. 454 

Conversely values lower than one may positively bias estimates of attenuation by vegetation. 455 

Those effects will affect detection rate more significantly under lower irradiance.  456 

Mean single return ground intensity was larger than mean vegetation single return intensity for the 457 

VUX, and the ratio increased with at-canopy-radiance. So did the mean single return intensity as 458 

more partial hits were detected.  459 

Table 6: Mean intensity of ground and vegetation single returns (ROI 2); standard deviation given in parenthesis 

 

 

 

 460 

Sensor Flight spec. Ground  Vegetation  Ratio 

VUX 100kHz - 100% power 0.415 (0.155) 0.286 (0.092) 1.45 

VUX 330kHz - 33% power 0.375 (0.127) 0.262 (0.078) 1.43 

VUX 550kHz - 18% power 0.320 (0.095) 0.239 (0.068) 1.34 

LMSQ780 25% power – 900m AGL 211 (119) 209 (62) 1.01 

miniVUX 82m AGL 0.303 (0.085) 0.334 (0.077) 0.90  
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We computed the intensity per rank (per number of return) for all flights over each ROI (Table 7) 461 

excluding all shots reaching the ground. The common general pattern was for intensity per return 462 

pulse to decrease with successive hits as the pulse effective footprint size (i.e. remaining foot print 463 

size after partial interception) was gradually reduced. As the number of returns increases above 4 464 

or 5, a conditional sampling effect tended to compensate for this, since likelihood of detecting 465 

more targets is reduced if foremost targets are larger. 466 

 467 

The weighting of individual return which was finally used for computing the attenuation profiles 468 

(next section) is depicted in Table 7 below. It was derived from data collected using LMSQ780 at 469 

25% power over ROI 2. Note that for number of returns larger than 7 data from VUX at 100% 470 

power were used instead since no pulses with more than 7 returns were recorded using the 471 

LMSQ780 (Table 1).   472 

 473 

Table 7: Mean relative intensity per return (corrected for systematic variation with canopy depth and height above 474 

ground)- ROI2 LMSQ780-25% complemented with VUX 100kHz for number of returns >7; relative standard error (%) of 475 

mean intensity in parenthesis. Excluding all shots reaching the ground. 476 
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Return 

rank 

Number 

of 

returns 

1 2 3 4 5 6 7 8 9 

1 1.00 

(0.04) 

- - - - - - - - 

2 0.66 

(0.06) 

0.34 

(0.10) 

- - - - - - - 

3 0.45 

(0.09) 

0.35 

(0.10) 

0.20 

(0.13) 

- - - - - - 

4 0.33 

(0.17) 

0.30 

(0.16) 

0.22 

(0.18) 

0.15 

(0.20) 

- - - - - 

5 0.25 

(0.37) 

0.24 

(0.35) 

0.21 

(0.36) 

0.17 

(0.38) 

0.13 

(0.39) 

- - - - 

6 0.19 

(1.01) 

0.21 

(0.94) 

0.18 

(0.94) 

0.17 

(0.98) 

0.14 

(0.97) 

0.11 

(0.98) 

- - - 

7 0.15 

(3.29) 

0.17 

(2.94) 

0.16 

(3.17) 

0.16 

(3.28) 

0.14 

(3.38) 

0.12 

(3.30) 

0.10 

(3.18) 

- - 

8 0.11 

(13.20) 

0.19 

(10.18) 

0.23 

(12.71) 

0.08 

(18.80) 

0.09 

(15.12) 

0.15 

(12.47) 

0.08 

(12.75) 

0.07 

(15.22) 

- 

9 0.28 

(10.86) 

0.18 

(70.55) 

0.05 

(40.13) 

0.05 

(57.98) 

0.22 

(87.69) 

0.14 

(10.79) 

0.03 

(71.11) 

0.02 

(96.60) 

0.03 

(3.01) 
 477 

By considering a single matrix of weights for all flights we assumed those weights to be valid across 478 

scanning scenarios. The actual pattern of pulse fragmentation is not expected to depend on the 479 

wavelength or the transmitted power. However, differences in detection rate across scanning 480 

scenarios will inevitably affect the relative intensity per return and therefore the mean weight per 481 

return. The matrix used is therefore necessarily approximate. 482 

We also considered the option consisting in adjusting a matrix of weights derived from each flight 483 

data (with or without prior correction of intensity variation with canopy depth). Doing so did not 484 

systematically or significantly reduce discrepancy between raw profiles or corrected profiles (i.e. 485 

profiles obtained after applying a calibration function, see next section).  486 

 487 
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Concurrently to the decrease in return intensity with increasing return rank (Table 7), we observed 488 

(Figure 3 A, B, C, D) that higher fragmentation (higher number of returns per emitted pulse) was 489 

associated with a lower cumulative intensity.  490 

 491 

Intercalibration of ALS flights 492 

Can ALS flights be intercalibrated in such a way that overflights conducted under different 493 

acquisition settings at different dates or at different sites may still be compared meaningfully in 494 

terms of PAD? Attenuation profiles were adjusted to a reference profile derived for each ROI from 495 

the LMSQ780-2019 flight which covered both ROIs (Figure 1). Adjustment consisted in minimizing 496 

the squared distance between profiles. Two different models were used to fit the targeted profiles 497 

to the reference profile. The first one consisted in finding a single calibration coefficient, by fitting a 498 

linear regression without intercept between profile values. The second model included an 499 

intercept and an additional covariate, the mean distance to sensor of each vegetation layer. Note 500 

that this covariate was highly correlated with height above ground at plot scale (r>0.99). 501 

 502 

Model 1  503 

0123�04 = 2�5�2�6 �4. # + 9 4                                     equation 4 504 

Model 2 505 

0123�04 = 2�5�2�6 �4. # + ,:"016 �4. ; + < + 9 4   equation 5 506 

Where 507 

i is an index referring to height (varies from 1 to 45 m above ground) 508 

targeti is the observed attenuation value at height i of profile to be adjusted  509 

referencei is the reference profile attenuation value at height i 510 
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distancei is the mean distance to laser of profile to be adjusted at height i  511 

 94 the error term to be minimized 512 

A more complex model including mean canopy depth per layer as an additional predictor was also 513 

tested but did not improve the fit significantly. 514 

 515 

ROI1. ALS extinction profiles (variable flight height and variable transmitted power) are presented 516 

in Figure 4. MiniVUX (multiple flight heights) extinction profiles are presented in Figure 5. 517 

Corresponding adjustment statistics are reported in Table 8.  518 

ROI2. VUX (various transmitted power) and miniVUX (single flight) are presented in Figure 6. 519 

Corresponding adjustment statistics are reported in Table 9. 520 
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Figure 4: Inter calibration of ALS attenuation profiles obtained for different nominal flight heights (430m, 630m, 830m 

and 900m) and transmitted power (6%, 12% or 25% of full power). Left panel : raw profiles; center panel : profiles are 

adjusted to reference flight (900m 25%) by a simple constant correction coefficient; right panel : adjustment includes a 

linear effect of distance to laser. 
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Table 8: Attenuation profile adjustment statistics (ROI 1) - In bold lowest AIC and lowest residual 

standard error (rse) are highlighted showing improvement in fit when distance to laser is added as 

a predictor.  

flight rmse rse_simple calib. coef rse_dist AIC_simple AIC_dist 

ALS_430m_12pct 0.019 0.008 1.16 0.008 -203 -203 

ALS_430m_6pct 0.009 0.007 1.05 0.005 -210 -224 

ALS_830m_12pct 0.014 0.013 0.95 0.008 -172 -197 

mnvx_low 0.019 0.011 0.89 0.007 -180 -205 

mnvx_medium 0.028 0.011 0.83 0.008 -179 -200 

mnvx_high 0.044 0.009 0.74 0.009 -197 -194 
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Figure 5: MiniVUX attenuation profiles obtained for different median flight heights above ground 

level (low = 58m, medium = 71m and high = 104m) plotted along ALS reference flight profile. Left 

panel: raw profiles; center panel: profiles are adjusted by means of a simple calibration coefficient ; 

right panel: calibration includes a linear effect of distance to laser.  
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 521 

Figure 6: VUX attenuation profiles obtained for different power settings, with miniVUX profile and 

with ALS reference profile. Left panel: raw profiles; center panel:profiles are adjusted by means of 

a simple calibration coefficient ; right panel: fitting incorporates a linear effect of distance to laser 

 522 

Table 9: Attenuation profile adjustment statistics (ROI 2) of UAV lidar flights against reference ALS profile - In bold 

lowest AIC and lowest rse are highlighted showing improvement in fit when distance to laser is added as model 

predictor.  

drone rmse rse_simple Calib.coef rse_dist AIC_simple AIC_dist 

MiniVux 0.039 0.020 0.81 0.009 -112 -145 

Vux_100kHz 0.018 0.018 0.96 0.006 -117 -163 

Vux_330kHz 0.035 0.024 0.84 0.013 -104 -129 

Vux_550kHz 0.044 0.025 0.79 0.015 -102 -123 
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 523 

Divergence between 2016-ALS profiles and reference 2019-ALS profile were globally smaller than the 524 

divergence between UAV and 2019-ALS (Table 5 and Table 6). Lower at-canopy-irradiance flights had 525 

profiles showing higher attenuation (e.g. ALS_830m_12%, Figure 4-left panel), higher at-canopy-irradiance 526 

showed lower attenuation (e.g. ALS_430m_12%, Figure 4-left panel). 527 

Divergence between UAV profiles and reference ALS profile increased with height of flight (miniVUX Table 5) 528 

and with lower laser power (VUX Table 6).  529 

 530 

The model including distance-to-laser as a covariate usually improved the fit (lower rse) compared to the 531 

use of a simple calibration coefficient. The improvement was often very significant with a much lower AIC 532 

(Table 5 and Table 6). Improvement in consistency between profiles is illustrated in Figure 4, Figure 5 and 533 

Figure 6.  534 

Residual error of VUX low power profiles (300kz and 500kHz Pulse Repetition Rates) was larger than in any 535 

other situation (see misfit in Figure 6 right panel). 536 

Discussion 537 

A general pattern was observed by which increasing at-canopy-irradiance led to higher penetration 538 

and higher fragmentation rate. This was in line with previous studies which have reported similar 539 

observations for other lidar sensors. Lee and Wang (2013) reported higher penetration rate 540 

(proportion of ground point) at lower flying altitude over a subtropical forest, both with Optech 541 

HD400 and Riegl LMS-Q680i. Næsset (2009) compared an Optech ALTM 1233 and an Optech ALTM 542 

3100 operated at different flight heights and pulse repetition rates (PRR) over mature conifer 543 

forest. That study reported a decrease in the proportion of multiple echoes with increasing flying 544 

altitude and PRR. Such observations were made as part of a study exploring scanning settings 545 
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impact on digital terrain model quality (Lee and Wang 2013) or a study exploring scanning settings 546 

impact on forest canopy metrics (Næsset 2009). They have not been interpreted in the context of 547 

Plant Area Density estimation from lidar data and the implication of such observations in terms of 548 

target under-detection do not seem to have not been fully recognized. 549 

Part 1: individual return intensity analysis  550 

This first analysis showed that apparent reflectance of vegetation targets was highly variable across tree 551 

crowns (Figure 1) and that it also varied with canopy depth (Table 5). Both observations were true for the 3 552 

sensors tested but responses varied according to sensor wavelength. While reflectance is expected to vary 553 

with incident angle (see Equation 2 above), it is unlikely that spatial variation in leaf orientation might have 554 

been the main driver of the observed patterns of change in apparent reflectance since the response varied 555 

across sensors both in intensity and direction. The dependence of apparent reflectance on light incident 556 

angle could be further investigated taking advantage of the large field of view of the miniVUX and VUX 557 

sensors which were restricted to near-nadir incident angle in the present study (see Material and Methods 558 

section).  Dependence on canopy depth was particularly strong for the VUX operating at 1550nm. We also 559 

found that a more complete retrieval of backscattered energy was achieved in case of higher at-canopy-560 

irradiance and in case of lower fragmentation rate. 561 

Cumulative backscattered energy typically declined with increasing fragmentation (higher number of 562 

returns per pulse). This may be a direct consequence of the intensity detection threshold as more 563 

fragmented pulses are more likely to generate undetected returns. This may also indicate that a 564 

higher pulse fragmentation decreases the detection rate. Successive hits by a downward travelling 565 

pulse do not only gradually reduce its footprint but also its compactness (Figure S1). As a 566 

consequence, detectability of small targets (relative to foot print size) will decrease and the 567 

proportion of undetected interceptions (backscattered energy below the detection threshold) will 568 
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increase. This effect is expected to be dependent on the specific arrangement (size, density) of 569 

scatterers and its contribution is difficult to evaluate and likely to vary across vegetation types. 570 

Note that pulse compactness does not affect detectability of ground (non-porous target larger 571 

than foot print size) which will depend on ground reflectivity and remaining transmitted power. In 572 

some cases, we noted that higher fragmentation was associated with higher cumulative backscattered 573 

energy (see for ex. 830m_12% flight in Figure 3A or 2B). The underlying logic for what may appear as 574 

a paradox is in fact quite simple. The probability of detecting a target increases with target’s 575 

reflectivity. Therefore, a high number of returns is more likely to be observed if targets are more 576 

reflective than average which also increases the cumulated energy per pulse. This pattern is 577 

expected to be weaker or even absent under high at-canopy-irradiance since more complete 578 

detection is less dependent on target reflectivity. 579 

 580 

An increase in the at-canopy-irradiance was associated with a stronger drop in cumulative 581 

backscattered energy of multiple returns shots (fig 3). Such a pattern may be explained as follows . 582 

Pulses generating a single return may have been fully intercepted by a target larger than foot print 583 

size or, alternatively, may correspond to an incompletely obstructed pulse (a “partial hit”) which let 584 

too little energy through (or a too highly fragmented pulse, see figure S1) for a second return to be 585 

triggered further along the optical path. This might occur frequently given the porous structure of 586 

the canopy. A typical echo is likely to be generated by interception of multiple scattered elements 587 

of foliage which might allow some light to continue travelling undetected down the optical path. 588 

Increasing the irradiance will increase the detection rate of secondary targets and thereby reduce 589 

the frequency of single returns corresponding to only partially intercepted pulses by a single 590 
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target. As a result, the mean intensity of single returns (relative to the mean cumulated intensity of 591 

multiple returns) increases when at-canopy-irradiance increases.  592 

 593 

We have no clear explanation for the fact mean single return intensity did not increase with increased at-594 

canopy-irradiance for the miniVUX. This may be may be related to the change in size or shape of the 595 

footprint with distance. A lower flight height determines a smaller pulse footprint at the top of the 596 

canopy and hence a deeper penetration of pulse prior to triggering a return. The mean single 597 

return height was only slightly affected: respectively equal to 27.56, 27.40 and 27.26m for the 3 598 

flight heights. This will nonetheless have affected mean irradiance of target and target reflectivity. 599 

A General Additive Model of intensity as a function of canopy depth (not presented) showed a 600 

non-linear trend of single return intensity with canopy depth in the upper canopy which might 601 

have compensated the expected increase in intensity.  602 

 603 

High variability in target reflectivity made individual return intensity an unreliable proxy of the fraction of 604 

pulse intercepted per hit. Instead, we estimated the contribution of each return by the mean return 605 

intensity per return rank per return number (after excluding any shot reaching the ground). 606 

 607 

In a previous study (Vincent et al. 2017) conducted with a different sensor (Riegl LMSQ560, 1550nm), the 608 

mean cumulative returned intensity per emitted pulse was reported to be independent of the number of 609 

returns per pulse. This was taken as an argument that undetected backscattered energy would either be 610 

small or independent of the degree of fragmentation. Hence the average intensity (over all returns of 611 

identical relative rank) was taken as an estimate of the contribution of a return to pulse interception. In 612 

other words, averaging out the high variability of target reflectivity, the mean relative intensity per return 613 



  

 

38 

 

rank per number of returns, was expected to provide the best estimate of individual return contribution to 614 

laser pulse interception. 615 

A more thorough examination of patterns of return intensity which was permitted by the comparison across 616 

sensors and settings revealed that loss of returned energy was not generally negligible. 617 

 618 

It was found for two sensors that fragmentation reduced the cumulative retrieved energy (with losses of c. 619 

10%-20% Figure 3A & B). The third sensor (VUX) which operated at the same wavelength as the sensor used 620 

in the 2017 study, showed no reduction in cumulative intensity with fragmentation, but rather the opposite 621 

pattern (Figure 3C and D). This pattern largely disappeared however once the dependency of return 622 

intensity on canopy depth was corrected for. The apparently stable cumulative return intensity observed 623 

probably reflected an imperfect correction of the dependency of individual return intensity on canopy 624 

depth which was based on single returns. Not only was the correction model applied fairly crude but also 625 

single returns further away from the top of the canopy were more likely to be incomplete (partially 626 

intercepted without detectable additional return) than returns occurring higher up in the canopy. This might 627 

have introduced a negative bias in the correction model. 628 

The correction of this systematic variation in target reflectivity with canopy depth aimed at limiting the 629 

distortion between reflected energy and area of intercepting surface. However, it did not correct for 630 

detection bias. 631 

 632 

The LMSQ780 2019 data which covered both ROIs showed a low level of dependence of intensity on canopy 633 

depth (Table 5) and a balanced ground to vegetation intensity (Table 7). We selected that dataset to develop 634 

a single statistical model of contribution of successive returns to laser pulse interception. Weights were first 635 

computed per ROI and were found to be very consistent across ROIs (Appendix 3). We then applied the 636 

same single matrix of individual return weights to all flights to compute light attenuation in AMAPVox. 637 
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 638 

Part 2 : intercalibration of extinction profiles 639 

In this study we focused on two small ROIs (1.4 ha and 2 ha respectively) which did not capture the 640 

horizontal and vertical variability in vegetation structure found at the site level (10km2). Detection 641 

bias is expected to vary with vegetation structure and show some variability both within and across 642 

sites (under constant acquisition settings). Previous work (Shao et al. 2019) suggests however that 643 

single intercalibration functions/coefficients may hold at site level, at least in first approximation.  644 

 645 

Divergence of profiles (prior to intercalibration) 646 

A systematic pattern of higher apparent extinction coefficient under lower at-canopy-irradiance (left most 647 

panel of Figure 4, Figure 5 and Figure 6) was found.  648 

For a given system when the top of canopy irradiance increased (due to higher transmitted power, or lower 649 

flight height) the proportion of pulses reaching the ground (a measure of laser penetration) increased, i.e. 650 

ground detection rate increased (Table 1 & Table 2). Detection rate of the most distant targets was 651 

enhanced. While higher irradiance may, in principle, also improve detection of small close-by targets, the 652 

major impact was an increase in the detection of more distant targets.  653 

The larger beam divergence of the miniVUX was responsible for a more rapid decrease in irradiance with 654 

increasing distance to laser. In addition, the received power is proportional to the inverse of the squared 655 

distance from laser to target (Equation 2). For a low flying altitude DLS, this distance varies by a factor of 2 656 

and the power decreases by a factor 4 from top to bottom of canopy. Hence, detection rate by the miniVUX 657 

was expected to decrease significantly from top to bottom of canopy (Figure 4a). In fact, including this 658 

distance dependent correction proved critical for reducing residual standard error (Table 8) when flight 659 

height was lowest (and relative change in irradiance per unit distance was largest). 660 

 661 
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Effectiveness of intercalibration  662 

Overall, calibration by a constant coefficient reduced the inter-profile residual standard error by a 663 

factor of ~2 while including distance to laser reduced the error by a factor of ~3 (Table 8 & Table 9). 664 

The level of initial discrepancy and the level of reduction in error was however highly variable 665 

across flights. The poorest fit (RMSE >0.01, ~relative RMSE >10%) occurred for VUX operated at 666 

low power (330kHz and 550kHz).  667 

 668 

Source of residual misfit 669 

The different detectability of ground, wood and leaves at 1550nm (Table 6. and (Brede et al. 2022)) 670 

was probably responsible for a complex distortion pattern of the profile at low power setting which 671 

prevented a simple model to effectively correct for this bias. At high power the level of under 672 

detection seemed to be limited though and a correction using distance to laser as covariate 673 

effectively aligned the VUX 100kHz profile to the reference ALS profile. 674 

 675 

Absolute calibration 676 

We selected the LMSQ780-25% power 2019 ALS flight covering both ROIs as the reference flight to 677 

which the attenuation profiles were fitted. However, comparison with lower altitude flights and 678 

higher at-canopy irradiance flights conducted with the same sensor on ROI1 (e.g. ALS_430m_12%) 679 

indicated that this attenuation reference profile was probably positively biased (by at least 16%, 680 

see Table 8). The same conclusion (likely positive attenuation bias) can be drawn from the 681 

comparison of the number of shots triggering a ground echo (7.3% for ALS_430m_12% - Table 2 - 682 

against 5.2% for ALS_900m_25% reference flight - Table 3). 683 
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A method for absolute calibration would be desirable as a reference flight will not usually be 684 

available across campaigns. This could be attempted by simulating light transfer in the voxelized 685 

scene and comparing light transmittance maps with measurement taken in situ (Vincent et al. 686 

2017). However, given the high variation in time-integrated light intensity which is known to occur 687 

over short distances in the forest understory (Baraloto and Couteron 2010; Vincent et al. 2017), a 688 

dense ground sampling pattern would then be required, and any ground reference measurements 689 

would need to be accurately geo-positioned to be compared with the ALS data. 690 

Another strategy would be to use terrestrial laser scanning to derive reference extinction 691 

coefficients for sample plots. Some terrestrial lasers have ranges in excess of 500m. Hence, they 692 

are unlikely to suffer from significant under-detection of vegetation below 50m range. There is 693 

however a difference in acquisition geometry due to sensors position. In TLS, the vegetation layers 694 

close to the ground are mostly sampled by pulses emitted at inclination angles close to the 695 

horizontal whereas the upper canopy layers are predominantly sampled with an angle close to the 696 

vertical. In case of strong anisotropy in light extinction, direct adjustment of attenuation profile 697 

derived with one sensor to the attenuation profile derived with the other may not yield valid 698 

results. In addition, absolute calibration of TLS derived attenuation rates would still be required 699 

noting that TLS systems also vary in wavelength, pulse duration and recording capabilities. 700 

The most straightforward strategy would probably be to fly again over part of the scanned area at 701 

much higher at-canopy-irradiance, assuming that the under-detection bias would then be 702 

negligible. Comparing detection rate for gradually decreasing power may provide a way to check 703 

that detection rate reaches acceptable levels at maximum power. Modern lidar systems such as 704 

the LMSQ780 are designed for mapping large areas and are able to operate at high altitude (up to 705 
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4700m for the LMSQ780 according to the manufacturer’s technical data sheet (RIEGL Laser 706 

Measurement Systems 2015). Flying at 900m (the cruising altitude of our reference flight) the at-707 

canopy-irradiance could in principle be increased by a factor of 16 by increasing nominal power 708 

from 25% to 100% and decreasing PRR from 400KHz to 100KHz. At-canopy-irradiance could be 709 

increased further by flying lower if necessary. Hence there is a considerable margin to improve 710 

completeness of target detection without risking ocular hazard (Nominal Ocular Hazard Distance is 711 

given at 200m for the LMSQ780 lidar operated at full power 100kHz PRR) thereby achieving a 712 

robust estimate of the true detection bias affecting lidar data collected under standard settings.  713 

Conclusion 714 

We found that a more complete retrieval of backscattered energy was achieved in the case of 715 

higher at-canopy-irradiance. Incomplete target detection generated a positive bias in light 716 

attenuation coefficient and consequently in PAD. Positive bias was due to the fact that more 717 

distant targets were less consistently detected.  In a series of hits along an optical path, foremost 718 

interceptions will tend to be larger as pulse effective footprint is larger. Therefore, foremost targets 719 

are more systematically detected. The general pattern can be modulated by differential reflectivity 720 

of ground and vegetation or of different vegetation elements. 721 

 722 

Systematic increase of reflectivity with canopy depth observed at 1550nm had not been noted in a 723 

previous study conducted on the same site with another sensor operating at the same wavelength 724 

(Vincent et al. 2017). This variation in vegetation reflectivity probably masked a decrease in 725 

detection rate with fragmentation and led the authors to the wrong conclusion that detection bias 726 

was negligible. 727 
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 728 

Biases in light attenuation related to incomplete target detection may be large. Considering for 729 

instance the highest at-canopy irradiance experimented in the present study (ALS-430m 12% 730 

power) as the reference, it was observed that ALS attenuation profiles were typically 731 

overestimated by 15 to 20% and UAV by 20 to 25%. This means that PAD will also be overestimated 732 

in the same proportion. These are lower bound estimates of detection bias. True bias could be 733 

approached using as a reference a saturating at-canopy-irradiance (showing no increase in 734 

detection rate with further increase in at-canopy-irradiance). 735 

 736 

Intercalibration of lidar overflights conducted with the LMSQ780 or miniVUX at different altitude 737 

or power settings was satisfactory. Sensors operating at wavelengths more different from each 738 

other were more difficult to intercalibrate and simple methods like those presented here were not 739 

totally effective. They notably failed to properly align low power VUX flights with the rest of the 740 

flights. A fine calibration between sensors operating at different wavelength would probably 741 

require reformulating the model which describes pulse interception by vegetation elements at 742 

voxel level by including an estimate of censorship. Predicting the likelihood of local under-743 

detection may be possible but is not straightforward because target detectability will not only 744 

depend on effective footprint size and distance to laser as shown here, but also on unknown 745 

features such as optical properties, spatial arrangement and size of vegetation elements. TLS data 746 

which can give access to leaf-wood segmentation and, at least at close range, to the orientation of 747 

vegetation elements (Bailey and Mahaffee 2017; Vicari et al. 2019; Stovall et al. 2021) may provide 748 

an opportunity to integrate local correction for detection rate. However, transferability to 749 
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landscape scale ALS data would remain an issue. The use of simulated data (Yin et al. 2020) may 750 

offer another avenue to model censorship based on the statistical analysis of the point cloud 751 

geometric and radiometric features. 752 
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