Transgenerational epigenetics in quail
Chloé Cerutti, Sophie Leroux, Paul Terzian, Joanna Lledo, David Gourichon, Rémy-Félix Serre, Céline Vandecasteele, Christophe C. Klopp, Carole Iampietro, Christine Gaspin, et al.

To cite this version:
Chloé Cerutti, Sophie Leroux, Paul Terzian, Joanna Lledo, David Gourichon, et al.. Transgenerational epigenetics in quail: whole genome DNA methylation analysis. ECCB2022 - 21st European Conference on Computational Biology, Sep 2022, Sitges, Spain. hal-03935584

HAL Id: hal-03935584
https://hal.inrae.fr/hal-03935584
Submitted on 12 Jan 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The influence of the prenatal environment on the adult phenotype development is partially mediated by epigenetic phenomena. Recently, an increasing number of studies highlighted the transmission of epigenetic marks between generations following an environmental exposure. However, there is much debate about their acquired transmission beyond the exposed individuals. Recent studies revealed that non-genetic inheritance was probably present in avian species. In one of them, fertilized eggs were injected with an endocrine disruptor (genistein) and after several traits were impacted by the ancestor treatment such as the inheritance (genistein). In one of them, fertilized eggs were injected with an endocrine disruptor and after there is much debate about their acquired transmission beyond the exposed individuals. Recent studies revealed that non-genetic inheritance was probably present in avian species. In one of them, fertilized eggs were injected with an endocrine disruptor (genistein) and after several traits were impacted by the ancestor treatment such as the inheritance (genistein).

Here we analyse the DNA methylation between control and treated lines of the third generation.