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Abstract 
Context Treeline-ecotone spatial patterns and their 
dynamics reflect underlying processes. Changes in 
ecotone pattern may reflect changes in natural drivers 
or land-use practices. However, characterizing these 
dynamics presents a major challenge, limiting our 
ability to map, understand and predict changes in the 
upper limits of mountain forests.
Objective This paper proposes a new method using 
multiple pattern dimensions to describe treeline-
ecotone spatial pattern shifts. This standardized pro-
tocol should be able to (i) distinguish different types 
of treeline-ecotone patterns within a large study area, 

(ii) characterize temporal pattern shifts in spatial pat-
tern between two or more dates.
Method We mapped alpine treeline ecotones (ATE) 
at 648 sites in the eastern French Pyrenees using 
aerial images from ~ 1955 and ~ 2015, identify-
ing forest and non-forest areas at the hillslope scale. 
Extracted patch metrics were summarized using a 
Principle Component Analysis (PCA) and spatial pat-
tern change was quantified from the shift in the PCA 
space and compared to elevational shifts.
Results Three clusters of patterns were distin-
guished: diffuse, discrete and island-forming ATEs. 
Between 1955 and 2015, about half of the sites 
changed from one pattern cluster to another. Shifts 
into discrete ATEs were associated with smaller and 
negative elevational shifts, while shifts into diffuse 
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ATEs coincided with the highest positive elevational 
shifts.
Conclusion The proposed method allows a stand-
ardized and repeatable quantification of vegetation 
pattern change in alpine treeline ecotones based on 
historical aerial imagery. Seeing the importance of 
treeline-ecotone shifts for alpine biodiversity, we 
encourage the use of this protocol to better under-
stand treeline dynamics at treelines globally.

Keywords Alpine treeline ecotone · Landscape 
metrics · Structural shift · Spatio-temporal PCA · 
French Pyrenees

Introduction

Vegetation transitions such as treeline ecotones (in 
mountains and in subarctic areas) are widely recog-
nized as being sensitive to environmental changes in 
combination with anthropogenic changes (e.g. Cama-
rero and Gutiérrez 2004; Holtmeier and Broll 2005). 
This sensitivity results in ecotonal dynamics that have 
many implications (e.g. for biodiversity conserva-
tion, ecosystem restoration, and gravitational hazard 
management) and that have been evidenced for a long 
time (see Holtmeier and Broll 2019 for an historical 
overview). Spatio-temporal ecotonal dynamics can 
manifest in different ways. In most studies, treeline-
ecotone dynamics are characterized by elevational (or 
latitudinal) shifts (Ameztegui et al. 2016; Bonanomi 
et  al. 2018; Elliott and Cowell 2015). However, not 
only the position but also the spatial pattern of tree-
line ecotones is subject to change. Bader et al. (2021) 
recently proposed a typology of treeline-ecotone spa-
tial patterns, distinguishing, from a perpendicular 
top-down perspective, diffuse, discrete, and island 
patterns at the hillslope scale. They pointed out that 
these different patterns should reflect underlying pro-
cesses (e.g. tree mortality, environmental heterogene-
ity, wind and snow effects or even seed dispersal) and 
thus can be used to understand treeline dynamics.

Yet treeline-ecotone spatial patterns or forms can 
change over time (e.g. densification or upward scat-
tering of treeline ecotone; see Ameztegui et al. 2021) 
and recent studies have shown that such changes 
in patterns may not be systematically associated 
with an elevational shift (Feuillet et  al. 2020; Mor-
ley et  al. 2020; Treml and Chuman 2015). Whereas 

temperature is the major determinant of the position 
of the potential treeline, which will thus shift predict-
ably with global warming (Körner and Paulsen 2004), 
the spatio-temporal heterogeneity observed in treeline 
ecotones implies that climate change alone is not suf-
ficient to predict their dynamics. Clearly, other pro-
cesses interact locally to modulate treeline-ecotone 
position and dynamics. These scale-dependent under-
lying processes can be revealed by treeline spatial pat-
terns (Bader et al. 2021). As Harsch and Bader (2011) 
point out, these spatial patterns could be “a potential 
key to understanding treeline dynamics”. Therefore, 
characterizing treeline-ecotone spatial patterns and 
their time-dependent changes is a prerequisite to dis-
entangling the role of different environmental and 
anthropogenic factors in treeline-ecotone dynam-
ics worldwide (see Holtmeier and Broll 2007 for an 
overview of the biotic and abiotic factors potentially 
involved). However, the quantitative operationaliza-
tion of this characterization presents a major chal-
lenge, due to the multi-dimensionality and regional 
variability of the spatial patterns found in alpine tree-
line ecotones.

To date, no standard protocol for quantifying the 
temporal change in treeline-ecotone spatial pattern 
has been proposed. The consequent methodological 
heterogeneity makes results among studies hard to 
compare and may explain some of the inconsisten-
cies reported worldwide. The different methods used 
include, for example, neighborhood analysis (Beloiu 
and Beierkuhnlein 2019; Humphries et  al. 2008; 
Camarero et  al. 2015), computation of forest-cover 
density shifts (Sigdel et  al. 2020) or landscape met-
rics (Ameztegui et  al. 2021; Malandra et  al. 2019), 
and visual interpretation (Treml and Veblen 2017). 
Landscape—and more specifically treeline eco-
tone spatial patterns—can be described by the config-
uration of cover patches, which can be characterized 
by aspects such as patch density, shape, complexity, 
and the degrees of clumping and connectivity. To 
highlight spatial pattern shifts in terms of patch con-
figurations, these must therefore be characterized in a 
reproducible way, integrating all these aspects.

In this study we propose an easily replicable 
methodology for characterizing treeline-ecotone 
pattern shifts based on patch-based techniques 
for quantifying landscape characteristics (Hes-
selbarth et  al. 2019; McGarigal et  al. 2009; Kup-
fer 2012). We set out to quantify treeline ecotone 
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spatial pattern changes at the hillslope scale, rep-
licating sites at a regional scale, integrating the 
multiple dimensions of spatial patterns. To achieve 
this objective, we characterized treeline spatial pat-
terns and changes in these patterns within a multi-
dimensional space. We aimed to (i) characterize 
treeline ecotone patterns within a large study area, 
(ii) characterize temporal pattern shifts, and (iii) 
relate pattern shifts to elevational shifts.

Data and methods

Treeline-shaping ecological processes and their 
hierarchy could evolve over time, resulting in 
changes in spatial patterns or the pathways of 
ongoing pattern development. The protocol devel-
oped here aims to evaluate, in a standardized way, 
changes in alpine treeline ecotone (ATE) spatial 
pattern between two dates based on repeat aerial 
photography. The protocol is easily replicable, 
the workflow being implemented entirely using R 

software and open source packages (R core Team, 
2022; Hesselbarth et  al. 2019). Figure  1 graphi-
cally sums up the proposed methodological proto-
col described below.

Study area

Analyses were applied to the ATE of the French 
eastern Pyrenees (Fig.  2), covering the Pyrénées-
Orientales and Ariège departments. The study area 
includes some major massifs: the Canigou (2,785 m 
a.s.l.), Puigmal (2,910 m a.s.l.), Carlit (2,921 m a.s.l.) 
and Madrès (2,469  m a.s.l.) in the Pyrénées-Orien-
tales department, and the Trois-Seigneurs (2,199  m 
a.s.l.), Montcalm (3,077  m a.s.l.), and Mont Valier 
(2,838 m a.s.l.) in the Ariège department. It includes 
various climatic, topo-geomorphologic and anthro-
pogenic conditions, with for example: (i) a climate 
gradient with Mediterranean influence increasing 
towards the Pyrénées-Orientales, with a concurrent 
increase in summer droughts and decrease in ocean-
ity; (ii) lithological variation with crystalline (e.g. 
Canigou and Carlit) and sedimentary (e.g. Puigmal) 

Fig. 1  Graphic summary of the proposed protocol to quan-
tify alpine-treeline ecotone spatial pattern change, applied 
in the eastern part of the French Pyrenees with aerial images 
from ~ 1955 and ~ 2015. Active individuals (active ind., green 
dots) refers to patterns (in plots) used to construct the PCA, i.e. 

those from ~ 1955. Supplementary individuals (supp. ind. pur-
ple dots) refers to patterns for which coordinates are predicted 
based on the PCA constructed from active individuals, but who 
did not contribute to the PCA building
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massifs; and (iii) a more marked abandonment of 
both the agro-silvo-patoral system and the extraction 
of metals in the Pyrénées-Orientales from the mid-
nineteenth century (Milian et al. 2012; Saulnier et al. 
2020; Métailié and Paegelow 2004; Vacquié 2015). 
Mountain pine (Pinus uncinata Ramond ex. DC.) is 
the most prevalent species at the forest upper limit, 
along with various deciduous tree species like Fagus 
sylvatica, mainly in the western part of the study area 
(Ariège). Pinus uncinata, which presents an ecologi-
cal optimum in the upper-montane forest, is the main 
tree species found at Pyrenean ATE (Feuillet et  al. 
2020; Améztegui et  al. 2010; Cantegrel 2019; Can-
tegrel 1986). Since the alpine vegetation is generally 
dominated by herbaceous species, the spectral con-
trast with the dark-colored P. uncinata trees is strong 
and classification of panchromatic and visible-color 
aerial imagery was feasible in our study area.

Data acquisition

Because tree growth and colonization processes 
tend to be slow in treeline ecotones, we aimed at 
covering the longest possible time span available in 
aerial photographs for the study area and were lucky 
to have high-quality images available already from 
the 1950s. Spatial patterns at the upper forest limit 
in the study area were therefore delimited from 
panchromatic historical (1956 and 1953 respec-
tively for Ariège and Pyrénées-Orientales) and 
recent colored RGB (2016 and 2015 respectively for 
Ariège and Pyrénées-Orientales) 0.5-m resolution 
orthophotographs. These data were provided by the 
National Institute of Geographic and Forest Infor-
mation - IGN (https:// www. ign. fr/ insti tut/ ident ity- 
card). Radiometric pre-processing and ortho-rec-
tification with digital terrain models were carried 
out by the data provider (IGN; https:// geose rvices. 
ign. fr/ docum entat ion/ donne es/ ortho/ bdort ho). We 
assessed the spatial fit of the two image dates by 
measuring the distance between 144 distinctive 

Fig. 2  Study area location map and sampling design. a Distri-
bution of the sites (n = 648) in the Eastern Pyrenees. Shades of 
blue and green indicate 1-km elevational bands from lowland 
(blue) to > 3000 m (yellowish green), the dark blue to the east 
is the Mediterranean Sea. b  Location and spatial configura-
tion of the example sites shown in c and d. c Historical aerial 
image showing two plots with the binary forest/non-forest clas-

sification (~ 1955). d The same sites as in c on recent imagery 
showing the respective plots and binary classification (~ 2015). 
Image source: BD-ORTHO/BD-ORTHO Histo IGN-f (0.5-m 
resolution).  Source for a: From “Contour des departements 
français issus d’OpenStreetMap”, © the contributors of Open-
StreetMap under license from ODbL (02/01/2018) and ©Euro-
Geographics for the administrative boundaries

https://www.ign.fr/institut/identity-card
https://www.ign.fr/institut/identity-card
https://geoservices.ign.fr/documentation/donnees/ortho/bdortho
https://geoservices.ign.fr/documentation/donnees/ortho/bdortho
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landscape features (e.g. rocks) on the two overlain 
images. The average shift was 2.3 m.

Image classification

For each site, orthophotographs (with a 0.5-m digi-
tal resolution) were first segmented using the seg-
ment mean shift algorithm (ArcMap v.10.5.1) to 
group contiguous close mean value pixels in the same 
segment. A supervised classification based on the 
random forest algorithm was then applied to these 
segmented images using the EnMAP-Box toolbox 
(Breiman 2001; Van der Linden et al. 2015; EnMAP-
Box Developers, 2019) based on the scikit-learn 
Python library (Pedregosa et al. 2011). Accuracy val-
ues were computed based on confusion matrices from 
a sample of 500 random points for each year and each 
department (Table 1). Historic and recent forest/non-
forest binary classifications were obtained for each 
site set (Fig. 1).

These classifications were visually checked and 
manually corrected. Finally, the classifications were 
sifted to keep only the forest patches formed of more 
than 100 pixels (25  m²). This threshold was deter-
mined visually to exclude the smallest forest patches 
and small isolated trees as we work at the resolution 
of small clusters of trees and to focus only on the 
lower part of the ATE (near the timberline). Exclud-
ing these small tree-covered patches has important 
implications for the interpretation, as discussed below 
("Discussion" section). This threshold was also deter-
mined to exclude artifacts, such as boulders classified 
as trees, which were sometimes unavoidable in the 
classification of the panchromatic images.

Sampling design

Sets of two (one for each year) rectangular plots 
(300  m x 200  m, following the study of Dearborn 
and Danby 2020) were arranged along the upper 
forest limit parallel to the main slope centered on 
the upper forest limits visually identify as the tran-
sition zone between forest and alpine grassland of 
the respective year and spaced about 500  m apart 
on the classified orthophotographs. Thus each plot 
incorporates approximately 50% forest and 50% 
grassland so as to be centered on the ecotone. Each 
plot was manually arranged by the same operator 
to control for sampling bias. A total of 648 plots 
per year was delineated, 457 in Ariège and 191 in 
Pyrénées-Orientales (Fig.  2). Each site was there-
fore described by two (recent and historical) plots, 
more or less overlapping depending on the eleva-
tional change of the treeline ecotone between the 
two dates (Fig. 2).

Spatial pattern characterization by landscape metrics

The ATE spatial pattern was characterized within 
each rectangular plot from the computation of land-
scape metrics at the class level (forest / non-forest) 
using the “landscapemetrics” package (Hesselbarth 
et  al. 2019) in the R software (version 4.0.5; R 
Core Team, 2022). We used 19 landscape metrics 
(Table  2) in four categories (aggregation, area and 
edge, core area, and spatial pattern) to describe the 
spatial patterns. Apart from the mean of the metric 
for each plot, we also calculated dispersion param-
eters (variation coefficient and standard deviation) 
for those metrics that were calculated at the patch 

Table 1  Accuracy assessment (n = 500) of each classifica-
tion performed on historical (~ 1955) and recent (~ 2015) 
orthophotographs for each French departement (Ariège and 
Pyrénées-Orientales) before visual control and manual correc-

tion. P_accuracy = Producer accuracy (refers to false negative 
segments); U_accuracy = User accuracy (refers to false positive 
segments); Kappa = Overall agreement between classified pix-
els and ground truth. 1 = forest area, 0 = non-forest area

Year Department P_accuracy U_accuracy Kappa

1 0 1 0

~ 1955 Ariège 0.88 0.97 0.92 0.96 0.87
PO 0.72 0.99 0.86 0.97 0.76

~ 2015 Ariège 0.85 0.93 0.91 0.88 0.79
PO 0.83 0.98 0.94 0.93 0.83
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level, to quantify heterogeneity within each plot. 
This resulted in a total of 33 (19 + 14) metrics that 
were included in the principal component analysis 
(PCA; see below).

Information reduction by PCA

A reduction of the information by principal compo-
nent analysis (PCA) was carried out based on the 
metrics calculated for the historical ecotone plots, 
while adding recent ecotones as supplementary 
individuals (note that in factor analysis, supplemen-
tary individuals do not contribute to the component 
building but do have factorial coordinates and can 
then be positioned in the factorial spaces). This first 
step thus allowed to synthesize with a reduced num-
ber of variables (the so-called principal components) 
the information contained in the initial 33 variables. 
This analysis served as a basis for clustering plots in 
groups with similar characteristics, for quantifying 
profiles of pattern change, as described below, and 
for identifying the dominant dimensions distinguish-
ing spatial patterns in our study area. The number of 
PCA dimensions for subsequent analysis was cho-
sen based on three main constraints: PCA eigenval-
ues; explained variance; and multifactorial analysis 
interpretability. The PCA was performed using the 
FactoMineR R package (Le et  al. 2008) and visual-
ized using the Factoextra R package (Kassambara and 
Mundt 2020).

Clustering and qualitative assessment of spatial 
pattern change

A hierarchical classification on principal components 
(HCPC) of historical ecotones was performed, also 
using the FactoMineR R package (Le et  al. 2008). 
Since a HCPC based on the first four principal com-
ponents showed that the first two components pro-
vided an almost perfect distinction of the clusters, we 
then used only the two first principal components to 
build clusters, facilitating visualization and the com-
parison between the years. The number of clusters 
was derived from the tree partition that maximized 
the relative loss of within-cluster inertia. The facto-
rial plane was then divided into subspaces corre-
sponding to the cluster map based on a Voronoi tes-
sellation with an aggregation of polygons per cluster 
(Fig. 4). Recent ecotones were then projected in these 

cluster-based subspaces in order to count the shifts of 
ecotones from one cluster to another. The “v.test” sta-
tistics (Escofier and Pagès 2008; Feuillet et al. 2012) 
was used to describe what patch metrics differ signifi-
cantly between the clusters and thus define them. The 
resulting clusters were associated with the pattern 
typology described by Bader et  al. (2021) and pre-
sented graphically by the most representative ecotone 
plots, i.e. those located closest to the centroid of the 
cluster. Shifts between clusters, i.e. from one treeline-
ecotone type to another, between the two dates were 
recorded as a qualitative measure of pattern change.

Quantitative assessment of spatial pattern change

Changes in pattern between the two dates were quan-
tified through a spatio-temporal PCA (Cossart et  al. 
2020). The patch metrics of the recent plots were pro-
jected onto the factorial plane defined by the histori-
cal metrics, and coordinates on the first and second 
axes were then extracted for each site both for the 
historical and the recent plot. The distance between 
these pairs of plots was calculated from these coor-
dinates. This distance then defined the degree of 
change in the ecotone spatial pattern within each site: 
the greater the distance, the more the ecotone pattern 
had shifted. Additionally, we calculated a directional 
pattern shift by extracting the absolute shift along the 
first PCA axis, along which the three pattern types 
were most strongly distinguished. Here, positive dis-
tances indicated a shift towards more diffuse and neg-
ative distances a shift towards more discrete treeline-
ecotone types.

Characterization of elevational shift and comparison 
with pattern shift

Elevational shift was determined using a digital 
elevation model (1  m in resolution, provided by 
the National Institute of Geographic and Forest 
Information - IGN) by computing the difference in 
elevation of the five highest forest pixels at the two 
dates following the method developed in Feuillet 
et al. (2020), based on the two previously described 
supervised classifications. The relationship between 
spatial pattern change and elevational shifts was 
then determined by performing bivariate descriptive 
analyses. Correlations (Kendall rank correlation 
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coefficients) were estimated to evaluate the associa-
tion between quantifications of the spatial patterns 
change (distance in factorial plane) and the eleva-
tional treeline shift. Finally, LOESS regression was 
estimated for testing the ability to predict quantita-
tive spatial pattern change based on the elevational 
shift indicator.

The differences in elevational shift between 
groups of sites with qualitatively different spa-
tial pattern shifts was determined by performing 
Kruskall-Wallis tests. Finally, a pairwise compari-
son Tukey’s test was performed to identify signifi-
cant differences between the treeline-ecotone plot 
clusters.

Results

Descriptive statistics

The two sets of 648 plots were located at an aver-
age of 1850 and 1885  m a.s.l. for plots centered 
on historic and recent treelines, respectively. The 

elevational change in ATE position, as defined by 
the five uppermost forest pixels, was 39.4  m on 
average across the entire study area with a range 
from − 212.0 m to + 307.8 m.

Information reduction by PCA

The first four PCA axes had eigenvalues of 14.2, 
6.0, 3.2 and 2.0. The first and second axes accounted 
for 65.2% of the total variance with respectively 
45.8% and 19.4% (Fig. 3), while the third and fourth 
accounted for respectively 10.4% and 6.6%. Due to 
the strong reduction in information between the first 
two and the third and fourth dimensions, we selected 
only the first two dimensions for subsequent analyses.

The first PCA axis reflects 13 area and edge, 
shape, core area and aggregation metrics, which 
contribute more than 70% to its construction. 
Among these metrics, 11 are strongly positively 
correlated with it (r > 0.75; p < 0.05) and two are 
negatively correlated with it (r < − 0.75; p < 0.05; 
Table  S1). Thus, an increase in this first dimen-
sion is associated with an increase in total core area 
(“tca”), core area (“ca”), percentage of landscape 

Fig. 3  Correlation of the 
landscape metrics describ-
ing 648 alpine treeline-
ecotone sites in the French 
Pyrenees with the first two 
PCA axes based on the his-
torical (~1955) landscape 
metrics. The length and 
color of the arrows indicate 
their contribution in percent 
to the construction of the 
two main dimensions (see 
color scale). See table 2 for 
abbreviations
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(“pland”), largest patch area (“lpi”), variability of 
radius of gyration (“gyrate_sd” and “gyrate_cv”), 
core (core_sd), total area (area_sd), aggrega-
tion, cohesion and clumpiness (“clumpy”), and a 
decrease of division index (“division”) and normal-
ized landscape shape index (“nlsi”). This dimension 
thus describes the aggregation level and the size of 
the patches forming the forest landscape with posi-
tive values indicating ecotones with few large and 
aggregated patches, and negative values indicating 
many dispersed small patches.

For the second component, the six most corre-
lated metrics (r > |0.75|; p < 0.05; Table S1) contrib-
ute more than 65% to its formation. An increase in 
this second dimension is associated with an increase 
of contiguity and core area indices (“contig_cv”, 

“contig_sd”, “cai_cv” and “cai_sd”) and a decrease 
in the average of these indexes (“contig_mn” and 
“cai “mn”). This dimension thus describes the level 
of connectedness within the ecotone. Positive values 
in this dimension are associated with ecotones formed 
by heterogeneous connections between small patches 
and negative values with well-connected and large 
patches.

Clustering of historical and recent treeline ecotone 
plots

Three clusters were distinguished, and these sepa-
rated out most strongly along the first PCA axis. The 
first cluster is located to the left, the second cluster in 
the middle towards the top (high values on the second 

Fig. 4  a  Clusters of treeline-ecotone plots based on a hierar-
chical classification in a PCA-space based on patch metrics 
from historical (~1955) aerial imagery. b  Subdivision of the 
factorial plane into subspaces based on a Voronoi tessellation 
and assignment of each polygon to the cluster map. c Recent 

(~2015; red dots) plots projected on the historical cluster-based 
subspaces and comparison with  historical treeline-ecotone 
(black dots). Cluster 1 (blue) = diffuse, cluster 2 (yellow) = 
island and cluster 3 (grey) = discrete treeline ecotone

Fig. 5  Identification of 
the variables significantly 
(p < 0.05) associated with 
each historical (~ 1955) 
treeline-ecotone clusters. 
No dot is shown for non-
significant associations. 
Positive and negative 
v.test values indicate high 
and low metrics values 
respectively, i.e. those that 
are over- or under-repre-
sented within each cluster. 
Colors indicate the general 
category of the metric. See 
Table 2 for abbreviations of 
the metrics
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axis), and the third one to the bottom right (Fig.  4, 
Table S2).

Characterization of the clusters

The majority of the patch metrics differ between the 
three clusters (Fig.  5). The three historical (~ 1955) 
clusters made it possible to distinguish three types of 
forest treeline-ecotone plots: diffuse, island and dis-
crete (Fig. 6). These were characterized by an aggre-
gation and increasing patch size, and a decrease in the 
number of patches from diffuse to discrete, through 
island. The transition between the forest below and 
non-forest vegetation above became increasingly 
distinct from cluster 1 to cluster 3, as illustrated in 
Fig. 6. These terms are based on the terminology sug-
gested in Bader et al. (2021), although we apply the 
term “diffuse” more broadly, including patterns with 
small patches rather than just those with spreading 
single trees.

Profiles of change

The distance calculated between recent and histori-
cal plot coordinates projected in the historical PCA 
(Fig. 4c) constitutes the change in the spatial pattern 
of the treeline-ecotone site at the two dates. Thus, the 
greater the distance between two points of a plot pair, 
the greater the change in spatial pattern has been.

Of the 648 ecotone sites, 52% (n = 337) experi-
enced changes in spatial patterns between ~ 1955 
and ~ 2015: changing clusters from diffuse to island 
or discrete (n = 163), from island to diffuse or dis-
crete (n = 125), or from discrete to diffuse or island 
(n = 49). The average distance between the treeline-
ecotone plots of 1955 and 2015 in the factorial plane 
is 5.0, with a range from 0.3 to 16.8.

Overall, there was a shift towards more dis-
crete patterns, with the number of diffuse treelines 
decreasing and the number of island and discrete 
treelines increasing over time (with 333, 220 and 95 
plots in 1955, and 240, 262 and 146 plots in 2015, 
respectively for cluster 1, 2 and 3; Table  S2). More 
than half of the 333 plots with a diffuse spatial pat-
tern in ~ 1955 remained in this cluster in 2015 (51%, 
n = 170), while 40% (n = 134) evolved into an island 
form and 9% (n = 29) evolved towards a discrete 
form (Fig.  7). Of the 220 plots with an island spa-
tial pattern, 43% (n = 95) remained in this cluster in 
2015, 25% (n = 54) shifted to a diffuse form and 32% 
(n = 71) to a discrete form. Of the 95 plots with a dis-
crete spatial pattern, 48% remained in this cluster in 
2015 (n = 46), 35% shifted to an island form (n = 33) 
and 17% to a diffuse form (n = 16). As expected, the 
shifts in the factorial plane were smallest for the sites 
not changing cluster and largest for the sites changing 
between cluster 1 and 3 or vice versa (Fig. 7).

Fig. 6  Treeline-ecotone 
plots closest to the center 
of each cluster, as defined 
on the first two PCA axes 
based on landscape metrics 
of forest cover, for historical 
(~ 1955) treeline ecotones in 
the French Pyrenees

Cluster 1 (Diffuse) Cluster 2 (Island) Cluster 3 (Discrete)

Historical 
classification (black = 

forest pixels)

Historical 
orthophotography
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Comparison between pattern shifts and elevational 
shift

The Kendall correlation between elevational shifts 
and extent of the spatial pattern changes was not sig-
nificant (p = 0.9) and the LOESS regression indicated 
the absence of any relationship between elevational 
shifts and the distance of pattern shift in the PCA 
plane (Fig. 8a). This result indicates that elevational 
shifts can take place without large shifts in the pat-
tern and vice versa. However, these two types of 
shifts are not independent, which becomes clear 

when considering the quality of the pattern shift 
rather than just the distance. Shifts into discrete ATE 
types tended to coincide with small or downward 
elevational shifts, while changes into diffuse ATE 
types coincided with larger upward elevational shifts 
(Fig. 8b). Directional change along the first PCA axis 
showed a negative correlation with elevational shift 
(Pearson r = −  0.23, p < 0.05). This confirms that 
ATE becoming more diffuse had a larger upward shift 
while those becoming more discrete moved the least 
or downward in elevation.

Fig. 7  Number of Pyrenean 
treeline-ecotone sites (in 
color) changing from one 
ecotone type to another 
between ~1955 and ~2015 
(total n = 648 sites), and 
the average distance moved 
in the PCA plane by this 
groups, shown as numbers 
(unitless)

Fig. 8  a  LOESS regression of pattern change against eleva-
tional shift. Pattern change is defined as the distance between 
historical (~1955) and recent (~2015) landscape metrics in 
the historical factorial PCA plane, irrespective of the direction 
of change. Kendall’s tau is indicated at the top left. n.s: non-
significant. The colors of the points correspond to the pattern 

type in year. b  Comparison of elevational shifts between dif-
ferent pattern transitions between historical (~1955) and recent 
(~2015) ecotones in the historical factorial plane. Black points 
indicate the means. The dotted red line refers to the overall 
mean.
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The observed elevational and pattern change dif-
fered between the clusters, i.e. between ecotone 
spatial types. Historically as well as, more clearly, 
recently diffuse patterns changed the least in terms 
of the pattern metrics (Fig.  9a and b), although 
overall their elevational change was similar to that 
of the other forms (Fig.  9c and d). They were situ-
ated at the highest elevation compared to the other 
spatial patterns (Fig.  9e and f). Those ecotones that 
were already diffuse in 1955 and remained diffuse 
until 2015 were located at the highest elevations of 
all, while most ecotones that transitioned from being 
diffuse to discrete were situated at lower elevations, 
similar to ecotones that were discrete already in 1955 
(Fig. 9f).

Discussion

The new method used demonstrated that the studied 
alpine-treeline ecotones showed variable and partly 
strong shifts in their spatial pattern, and that these 
shifts were not necessarily accompanied by a strong 
elevational shift. Likewise, strong elevational shifts 

(up to 200 m upwards or 100 m downwards) not nec-
essarily implied strong changes in the spatial pattern, 
as also suggested by Feuillet et  al. (2020) based on 
forest cover density as a proxy of spatial pattern. So 
the intensity of the change was not correlated, but 
the directions of the shifts were clearly related: shifts 
towards discrete ecotones were associated with small 
or downwards elevational shifts while shifts towards 
diffuse patterns were associated with the largest 
upwards shifts. These associations align with theo-
retical predictions, since discrete treelines, especially 
when also abrupt (i.e. an abrupt change in vegetation 
height from tallish trees to low-stature alpine vegeta-
tion; in contrast to discreteness, which refers only to 
the change in forest cover, as seen from above) are 
thought to be caused by disturbances (i.e. mortal-
ity above but not inside the ecotone1), while diffuse 

Fig. 9  Violin plots comparing different treeline-ecotone spa-
tial types according to a clustering of landscape metrics, either 
historical ~1955 (a and c) or recent ~2015 (b and d) in terms 
of spatial pattern shifts (a and b), elevational shifts (c and d), 
or recent elevation (e). f Violin plots comparing the recent ele-

vation of ecotones at which different transitions between tree-
line-ecotone spatial types have taken place. Black points refer 
to average values. Dashed red line corresponds to the mean of 
all sites. Pairwise p-values (in a–d) are based Tukey’s pairwise 
comparison tests

1 Mortality outside the ecotone or outside of existing forest 
patches could also be due to shade dependence or frost sensi-
tivity of treeline tree species, i.e. stress rather than disturbance 
(Bader et al. 2021). However, in our study area all treeline eco-
tones were composed of P. uncinata, and climatic gradients 
were mild, so that different patterns were unlikely caused by 
such species-specific sensitivities and more likely by distur-
bance history.
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treelines may indicate an active colonization by trees 
of the alpine zone (Bader et al. 2021).

Since treeline elevational shift and pattern shift are 
not necessarily correlated (as shown here and previ-
ously in Feuillet et  al. 2020), but pattern shifts can 
have important consequences for ecosystem function-
ing in the treeline ecotone, quantifying directional 
pattern change is important. As shown here, a reduc-
tion of the information held in different pattern met-
rics via PCA can be a useful way of identifying the 
main dimensions of spatial pattern and defining the 
direction of pattern change. In contrast to most pre-
vious studies on treeline-ecotone change, which have 
focused mainly on infilling processes, quantified as 
increases in tree cover or density within the ecotone 
(e.g. Treml and Chuman 2015; Batllori et  al. 2010), 
our method explicitly uses landscape metrics that 
describe ecologically meaningful pattern properties 
like clumping, connectivity and core-edge ratios. On 
the one hand, these patterns describe the landscape 
available to e.g. animals and establishing plants. On 
the other hand, just like point patterns based on elab-
orate field sampling of tree locations (e.g. Batllori 
et al. 2010; Wang et al. 2016; Camarero et al. 2000), 
they indicate which processes are acting to form and 
perhaps shift the treeline ecotone (Bader et al. 2021).

Since the PCA is sensitive to the metrics included, 
with both the variability within metrics and the 
number of correlated metrics describing certain pat-
tern dimensions (e.g. connectivity) determining the 
principal components, the array of metrics included 
needs to be determined with care. For specific ques-
tions about ecotone pattern change, metrics could be 
considered individually or in tailored combinations 
(e.g. if connectivity of either forest or alpine habitats 
for animal movement within the ecotone is of inter-
est). Likewise, such specific studies could deter-
mine cluster boundaries and define clusters (ecotone 
types) based on specific criteria taking into account 
functional properties of these metrics. However, for 
more general and explorative studies like the one pre-
sented here, the use of the full array of pattern dimen-
sions, reduced to manageable dimensions allowing 
the interpretation of shift directions by PCA, holds 
the advantage of capturing a maximum of informa-
tion about the patterns, reducing the risk of missing 
subtle changes. Likewise, the statistical approach to 
defining clusters used avoids subjective decisions on 
cluster boundaries and is suitable to describe change 

trends. Until the scientific community agrees on the 
quantitative criteria for defining treeline-ecotone spa-
tial types, such a statistical approach is the best we 
can do.

Since the contrast between the P. uncinata cano-
pies and the soil and vegetation background in our 
study area was strong, it was possible to identify 
trees even on panchromatic aerial imagery from the 
1950s. However, even under these favorable condi-
tions, and even on the more modern multispectral 
images, an automated identification of single trees, 
especially smaller trees as found towards the tree-
line, is challenging at best on imagery with a 0.5-m 
resolution. To avoid spurious results, we decided to 
exclude the smallest segments, which may represent 
single trees but also rocks and their shadows, espe-
cially on the panchromatic images. As a result, the 
diffuseness and possibly the elevational advance of 
the studied treeline ecotones were probably underesti-
mated. This does not invalidate the method, however, 
which can also be applied in cases where single trees 
can be identified unequivocally thanks to very-high 
resolution spectral imagery and/or the additional use 
of Lidar data to allow a clearer demarcation of tree 
cover. If sizes of individual trees can be derived, e.g. 
from Lidar data (e.g. Coops et al. 2013) or by corre-
lating horizontal canopy sizes or shade lengths (Dial 
et al. 2022) to tree height, we recommend including 
additional metrics describing the treeline ecotone in 
three dimensions, such as the height of the uppermost 
trees, the rate of height change with elevation, and the 
distribution of height-to-width ratios of the trees (to 
detect Krummholz forms). In most cases, such met-
rics will not be available for historical ecotones, and 
the spatial resolution may not allow the same level of 
detail as for recent images. Since for detecting change 
the same resolution should be used for historical 
and recent data, the historical data set the standard. 
However, additionally having access to more detailed 
metrics for recent ecotones is useful both for future 
change detection and for better understanding the pro-
cesses that have led to the recent pattern. For exam-
ple, whether advancing trees are stunted to Krum-
mholz tells us whether they suffer from dieback, e.g. 
due to strong winds or frost desiccation, which would 
limit further advance. And whether a stable dis-
crete treeline is composed of tall trees or not tells us 
whether these trees are growth limited or not – if they 
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are not, disturbance is likely maintaining the discrete 
form.

Our treeline ecotones were relatively simple to 
work with, not only because the trees were easily dis-
tinguished, but also because they are composed on a 
single dominant tree species among herbs and small 
shrubs. This contrasts strongly with e.g. tropical tree-
line ecotones, where species richness of trees and tall 
shrubs can be very high and although many ecotones 
are very abrupt and discrete, those that are not tend to 
show no clear binary distinction between forest and 
alpine vegetation due to the presence of tall shrub 
vegetation (e.g. Bader et  al. 2007; Hofstede et  al. 
2014).This does not preclude the use of the proposed 
methodology though. More complex vegetation pat-
terns (i.e. with more than two classes) may also 
be quantified by landscape metrics. Although this 
remains to be tested, we expect that these can then be 
used to distinguish pattern types and to detect pattern 
shifts in the same way as described here.

We developed the method with this case study 
based on images from two dates 60 years apart. 
Shorter and multiple time intervals would have 
allowed a finer matching of changes to potential driv-
ers, especially for changes due to disturbances. How-
ever, we consider that generally for alpine treelines, 
where processes tend to be slow (disturbance is fast 
but the resulting patterns will last until dispersal and 
growth have permitted a recolonization by trees), 
this long time period is suitable to describe change, 
if only two dates area going to be compared. On the 
other hand, the method could also be applied to other 
spatial objects for which spatial pattern shifts may be 
much faster, such as urban sprawl patterns, urban eco-
system services (Schwarz 2010; Grafius et al. 2018), 
the effects of natural disaster  such as typhoons on 
landscapes (Lin et  al. 2006), or ecological connec-
tivity (Herrera et al. 2018). In such cases data points 
should clearly be chosen at shorter time intervals. 
Analyzing more than two points in time can be done, 
as long as data are available and can be processed, 
using the same methodology  and is useful to refine 
the description and interpretation of spatial pattern 
shifts.

The fact that diffuse treelines occurred at higher 
elevations than discrete ones and that ecotones chang-
ing from diffuse to abrupt ended up located at much 
lower elevations than those remaining diffuse, sug-
gests that the discrete ecotones were, in the majority 

of cases, formed by the removal of forest patches, 
likely by disturbances. In addition, (re)colonization of 
the area above the closed forest is either not yet com-
pleted (trees being smaller than our lower size thresh-
old) or hindered completely by repeated disturbances, 
either natural or anthropogenic, or limitations to 
seedling establishment imposed by the substrate (e.g. 
a lack of soil). For some tree species, shade-depend-
ence or sensitivity to frost at the seedlings stage 
may also limit tree establishment outside the protec-
tion of forest (this mechanism probably explains the 
maintenance of discrete abrupt treelines in southern-
hemisphere treelines composed by Nothofagaceae, 
Wardle 2008). Although such a mechanism may play 
a role for the beech (Fagus sylvatica) treelines in the 
western part of our study area, it cannot explain the 
variety of patterns observed in the eastern part of the 
study area, where one single tree species, Pinus unci-
nata, composed all the ecotones. Although our results 
cannot exclude the possibility that the more diffuse 
forms are also shaped by disturbances, especially land 
use practices like cutting and grazing, it appears that 
in the Eastern Pyrenees, the more diffuse treelines 
represent the least disturbed.

Interestingly, the spatial pattern appeared to have 
only a weak predictive value for future elevational 
or pattern shifts, while it reflected past pattern shifts 
but not elevational shifts within the last 60 years. 
This may appear to contradict theoretical expecta-
tions, where diffuse treelines are predicted to be more 
dynamic and more responsive to climate change than 
discrete treelines (Bader et  al. 2021). However, this 
prediction holds only if the processes leading to cer-
tain treeline forms are not changed. If patterns are 
caused by disturbance (e.g. due to human land-use), 
as is often (though not always) the case with abrupt 
discrete treelines, and this disturbance stops, then the 
dynamics will change (in this case, trees will likely 
colonize the space above the closed forest) and the 
pattern loses predictive power. Also, in treeline eco-
tones that are all composed of the same tree species 
(like in the eastern part of our study area), the spatial 
patterns are less likely to reflect fundamentally dif-
ferent ecological processes between sites, but rather 
reflect disturbance history. Disturbances are predict-
able only to a small extent. Lastly, excluding the 
smaller single trees from the classification and pat-
tern descriptions prevented the detection of recent 
colonization patterns, important indicators of ongoing 
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shifts in pattern and elevation. Thereby “recent” can 
sometimes comprise even the 60 years covered by 
this study, since trees tend to grow very slowly when 
approaching treeline. As mentioned above, a higher 
resolution of aerial imagery and auxiliary spatial data 
could at least partially lift this limitation.

As demonstrated, our protocol can be applied to 
characterize spatial pattern changes at the regional 
scale. However, it presents a limitation inherent to 
geomatics, for our analysis allows us to characterize 
treeline-ecotone pattern change only in a two-dimen-
sional (2D) way, as seen from above. Thus, some 
treeline-ecotone characteristics remain invisible from 
this viewpoint and at this scale (e.g. tree dimensions, 
species composition, age and growth form), whereas 
a field survey could reveal them (Treml and Veblen 
2017; Camarero et al. 2000, 2004). Conversely, a field 
survey does not allow as many sites to be compared 
as a remote-sensing-based analysis does. In order 
to articulate the advantages of both approaches, we 
advise first carrying out a geomatic analysis and then 
a field survey, for a detailed study of a subset of sites. 
This dual work (geomatic and field) thus allows one 
to target sites that are often difficult to access, and to 
carry out a representative sampling of the diversity of 
spatial pattern change.

Conclusion

The study of treeline-ecotone spatial patterns is key 
to understanding the underlying mechanisms at 
work, in order to disentangle the multiple interac-
tions associated with its dynamics. A first step con-
sists in characterizing the spatial patterns and their 
temporal change. However, as spatial pattern change 
is understudied compared to elevational shift, no 
standardized methodology has been proposed so far. 
The methodology presented here takes into account 
the multidimensional nature of spatial  patterns. Our 
change analysis emphasizes the variety in the evolu-
tion of treeline-ecotone spatial patterns. This suggests 
a variety of associated underlying processes, and thus 
the importance of capturing spatial pattern tempo-
ral shifts when analyzing treeline-ecotone dynamics. 
Finally, to interpret the observed changes in spatial 
pattern, we recommend exploring spatial associations 
between these changes and  potential drivers (e.g. 

climate and anthropogenic land use change, topo-
geomorphology). Combined with such  an analysis, 
the methodology presented here allows another step 
forward in understanding what drives the dynam-
ics of alpine treeline ecotones and how mountain 
ecosystems will respond to global change in all its 
multiplicity.
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