
HAL Id: hal-03944422
https://hal.inrae.fr/hal-03944422

Submitted on 18 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Genotyping, the Usefulness of Imputation to Increase
SNP Density, and Imputation Methods and Tools

Florence Phocas

To cite this version:
Florence Phocas. Genotyping, the Usefulness of Imputation to Increase SNP Density, and Imputation
Methods and Tools. Genomic Prediction of Complex Traits, 2467, Springer US, pp.113-138, 2022,
Methods in Molecular Biology, �10.1007/978-1-0716-2205-6_4�. �hal-03944422�

https://hal.inrae.fr/hal-03944422
https://hal.archives-ouvertes.fr


1 

 

Chapter 4 - Genotyping, the usefulness of imputation to increase SNP density; imputation 1 

methods and tools  2 

Florence Phocas 3 

Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France 4 

florence.phocas@inrae.fr 5 

 6 

Running Head: Genotype imputation to increase genomic prediction accuracy 7 

 8 

Abstract  9 

Imputation has become a standard practice in modern genetic research to increase genome 10 

coverage and improve accuracy of genomic selection and genome-wide association study as a 11 

large number of samples can be genotyped at lower density (and lower cost) and, imputed up 12 

to denser marker panels or to sequence level, using information from a limited reference 13 

population. Most genotype imputation algorithms use information from relatives and 14 

population linkage disequilibrium. A number of softwaresfor imputation have been developed 15 

originally for human genetics and, more recently, for animal and plant genetics considering 16 

pedigree information and very sparse SNP arrays or Genotyping-By-Sequencing data. In 17 

comparison to human populations, the population structures in farmed species and their limited 18 

effective sizes allow to accurately impute high-density genotypes or sequences from very low-19 

density SNP panels and a limited set of reference individuals. Whatever the imputation method, 20 

the imputation accuracy, measured by the correct imputation rate or the correlation between 21 

true and imputed genotypes, increased with the increasing relatedness of the individual to be 22 

imputed with its denser genotyped ancestors and as its own genotype density increased. 23 

Increasing the imputation accuracy pushes up the genomic selection accuracy whatever the 24 

genomic evaluation method. Given the marker densities, the most important factors affecting 25 

imputation accuracy are clearly the size of the reference population and the relationship 26 

between individuals in the reference and target populations. 27 

 28 
Key Words: imputation accuracy, imputation error rate, phasing, haplotype, low density, high 29 
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1. Introduction  34 

A major challenge in genome-wide association studies (GWAS) and genomic selection (GS) 35 

programs in animal and plant species is the cost of genotyping. Indeed, large numbers of 36 

densely genotyped individuals are required to get accurate results thanks to a high SNP density 37 

along the genome that constructs strong linkage disequilibrium between SNP and causative 38 

mutations (1, 2). An appealing strategy is to use a cheaper and reduced-density SNP chip with 39 

markers optimized for imputation. Imputation is a term that denotes a statistical procedure that 40 

replaces the missing values in a data set by some plausible values. Genotype imputation 41 

describes the process of predicting genotypes that are not directly assayed in a sample of 42 

individuals. While it traditionally refers to the procedure of inferring the sporadic missing 43 

genotypes in an assay, it now commonly refers to the process of predicting untyped loci in a 44 

study sample genotyped for a marker low density panel (LDP) using observed genotypes in a 45 

reference population that has been genotyped for a greater number of loci with a high density 46 

panel (HDP) (3, 4). Genotype imputation is a crucial step in many genomic studies as all 47 

existing genotyping methods result in some missing data. Missing genotypes can be imputed in 48 

order to reach a 100% genotype call rate in a single assay. Imputation is also applied to combine 49 

sample sets genotyped with different marker panels, provided enough overlap exists between 50 

panels, to allow simple integration of data and/or meta-analysis of various study results by 51 

standardizing the set of targeted markers. Imputation has become a standard practice in modern 52 

genetic research to increase genome coverage and improve GS accuracy and GWAS resolution 53 

as a large number of samples can be genotyped at lower density (and lower cost) and, imputed 54 

up to denser marker panels or to sequence level, using information from a limited reference 55 

population.  56 

These low-cost genotyping strategies enable increased intensity of selection through the 57 

genotyping of large numbers of selection candidates or increased accuracy of estimated 58 

breeding values by expanding the training population (5). Current applications of GS are 59 

typically based on genotypes called from high and low-density SNP array data. However a lot 60 

of plant and animal species cannot afford a high development of genomic tools and genotyping-61 

by-sequencing (GBS) has been proposed as an attractive and low-cost alternative to SNP arrays 62 

(6, 7), where restriction enzymes are used to focus sequencing resources on a limited number 63 
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of cut sites. Because GBS makes possible the coverage of large portions of the genome, it may 64 

have some potential advantages for GS and GWAS in animal and plant breeding (2, 8, 9). GBS 65 

also helps to avoid ascertainment bias that happens with SNP data array when marker data are 66 

not obtained from a random sample of the polymorphisms in the population of interest. Low-67 

coverage GBS followed by imputation has also been proposed as a cost-effective genotyping 68 

approach for human disease and population genetics studies. The theoretical sequencing cover-69 

age (or depth) is the average number of times (for instance 10-fold referred as 10x) that each 70 

nucleotide is expected to be sequenced given a certain number of reads of a given length and 71 

the assumption that reads are randomly distributed across the reconstructed genome (Sims et 72 

al., 2014). In a proof-of-concept study, (10) demonstrated that very low coverage in DNA-73 

sequencing (at 0.1–1x), followed by imputation using genotypic data from a reference 74 

population (the map of human genome variation established in the framework of the 1000 75 

genomes project), captures almost as much of the common and low-frequency (minor allele 76 

frequency in-between 1 and 5%) variation as SNP arrays, and argued that this paradigm could 77 

become cost-effective for GWAS as sample preparation and sequencing costs would continue 78 

to fall. However, GBS data suffer from a large proportion of missing or incorrect genotype 79 

calls, in particular for low-coverage data. With GBS data, genotypes must be called from 80 

observed sequence reads that vary between loci and individuals. It is then challenging to 81 

accurately call an individual’s genotype when (almost) no reads are generated at a particular 82 

locus. Genotype calling accuracy can be increased by imputation, considering the haplotypes 83 

of other individuals in the population and detecting shared haplotype segments between 84 

individuals (11, 12). 85 

Several methods and efficient softwares for genotype imputation have been developed over the 86 

last decade. Most imputation methods are using a reference population (RP) that is distinct from 87 

the target population (TP) although it is preferable that the two populations have similar genetic 88 

background. In this case, two categories of methods are used to predict untyped loci, depending 89 

whether haplotypes are inferred only from linkage disequilibrium (LD) information between 90 

SNP (known as “population-based” imputation), or they are inferred using both LD and 91 

pedigree information (known as “family-based” imputation). A third category of imputation 92 

methods (known as “free reference panel-based” imputation) does not imply the use of a 93 

reference population and is useful for animal and plant species that have less genomic data and 94 

tools than the main farmed species and rely on GBS strategies. 95 
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Imputation from lower density towards higher density genotype (or sequence) may be thought 96 

as a cost-effective strategy to get accurate GS and GWAS, but the accuracy of SNP imputation 97 

needs to be assessed by comparing imputed genotypes with true genotypes. Imputation 98 

accuracy is measured at the population level as the genotype correct rate (also called 99 

concordance rate) or the Pearson correlation between true and imputed genotypes in the target 100 

population. Several factors affect imputation accuracy, including the choice of the imputation 101 

method, the size of the reference population, the degree of relatedness between the reference 102 

and the target populations, the minor allele frequency (MAF) of the SNP being imputed. All 103 

these factors as well as the choice of the genomic evaluation model in relation to the number 104 

and importance of the quantitative trait loci (QTL) affect the GS accuracy.  105 

The first objective of this review is to give an overview of the imputation methods and the 106 

advantages and drawbacks of the associated tools. The second objective is to shed light on how 107 

and under which circumstances marker density affects the imputation accuracy and thereby the 108 

genomic prediction quality. 109 

2. Imputation methods and tools: advantages and drawbacks 110 

Imputation requires haplotype reconstruction (known as phasing) from genotype data. 111 

Haplotype phasing is the result of a statistical inference procedure exploiting patterns of LD 112 

between SNPs by modeling haplotype frequencies and local haplotype sharing between 113 

individuals to estimate haplotype phases for a number of samples together, often augmented by 114 

a reference panel of previously estimated haplotypes (3, 13, 14, 15).  115 

Haplotypes are needed for both individuals in TP and RP for imputation methods that require a 116 

reference population. In that case, the dense genotypes of the RP members is used to build a 117 

reference panel of haplotypes that exhibit high LD over a region of tightly linked markers, and 118 

use these haplotypes to fill untyped SNP for target individuals genotyped at LDP (Figure 1). 119 

The tag SNP that are common to both RP and TP serve as anchors for guiding genotype 120 

imputation of unobserved haplotypes within the LD block. Pre-phasing of genotypes in TP has 121 

been suggested to speed up the imputation process (16). To this end, haplotypes are constructed 122 

once and stored so they can be used for subsequent imputations. The quality of the phasing in 123 

RP is the most important factor for the accuracy of TP haplotypes (17). Some accurate phasing 124 

tools can be used such as SHAPEIT2 for common variants (17, 18) or its extension SHAPEITR 125 

for achieving greater accuracy for rare variants (19).  Most of the widely used phasing methods 126 

iteratively update each individual’s haplotype estimates conditional upon the current haplotype 127 
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estimates of all other individuals. When a new reference set with larger numbers of variants and 128 

haplotypes is made available, TP need to be reimputed and the computational cost of this can 129 

be considerably reduced if target individuals can be ‘pre-phased’. Indeed imputation to give the 130 

resulting haplotypes is considerably faster without appreciable loss of downstream accuracy 131 

when RP and TP are unrelated as it is often the case for human genomic studies (17). Because 132 

pre-phasing can only be effectively implemented in situations where individuals newly 133 

genotyped with the high density panel are not closely related to the target individuals, it is not 134 

well suited for animal and plant applications where the numbers of markers in the LDP are 135 

sparse and the genotypes of parents of young individuals are continually added to RP. In such 136 

a case, the use of pre-phased haplotypes will not lead to optimal imputation accuracy for the 137 

target individuals (20).  138 

For the last decade, the increase in the size of RP and in the density of marker panels, on one 139 

hand, and the development of GBS technology, on the other hand, have motivated the 140 

development of many new computational methods and the optimization of the oldest ones 141 

(Table 1). Current imputation methods are making use of a rich palette of computational 142 

techniques, including the use of pre-phasing to reduce computational complexity (16), the use 143 

of identity-by-descent (IBD) (21, 22), haplotype clustering (23, 24) and linear interpolation (25) 144 

to reduce the state space in haplotype models, and the use of specific reference file formats to 145 

reduce size and memory needs (23, 25, 26). For instance, it is now possible to provide 146 

imputation using RP with tens of thousands of individuals as a free web service (23). Due to 147 

this recent and tremendous development of computational strategies, the different imputation 148 

algorithms may strongly differ in accuracy (especially for rare variants), computing speed and 149 

memory requirement (20, 22, 26, 27). 150 

When using a reference panel, imputation methods can be broadly divided into population-151 

based methods, which use population LD information (28) and pedigree-based methods, which 152 

use linkage information from close relatives.  153 

 154 

2.1. Population-based methods requiring a reference panel 155 

Population-based methods assume that individuals are unrelated. They do not make use of close 156 

relationships directly. However, they can still capture close relationships between individuals 157 

by finding long shared haplotypes (29, 30). Long haplotype blocks of individuals in the target 158 

population can be phased and imputed using a group of surrogate parents (individuals sharing 159 
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IBD regions with the target individuals) instead of true parents (29). Population-based methods 160 

are highly accurate if both number of markers and number of reference individuals are high 161 

enough, but they are computationally intensive. In general, population-based imputation 162 

methods use a hidden Markov model (HMM) of the full set of typed and untyped loci for each 163 

target sample to infer missing genotypes by maximum likelihood optimization, considering that 164 

each reference haplotype represents a hidden state path of the HMM (4). Additionally, SNP 165 

tagging-based imputation approaches such as the one proposed in PLINK (31) carry out 166 

genotype imputation using LD information on tag SNP. Specifically, for each SNP to be 167 

imputed, the reference haplotypes are used to search for a small set of tag SNPs in the flanking 168 

region that forms a local haplotype background in high LD with the target SNP to be imputed.  169 

The most popular imputation algorithms, Beagle (32), IMPUTE2 (22) and MaCH (3) were 170 

initially developed for applications in human genetics. Beagle’s first two versions (released in 171 

2006-2007) were only dedicated to haplotype phasing and sporadic missing data inference in 172 

unrelated individuals (32). Late 2008, the major release of version 3.0 added phasing of parent-173 

offspring trios and imputation of ungenotyped markers that have been genotyped in a reference 174 

panel (24). The Beagle imputation method constructs a tree of haplotypes and summarizes it in 175 

a direct acyclic graph model by joining nodes of the tree based on haplotype similarity in order 176 

to cluster haplotypes at each marker. Then Beagle uses a HMM to find the most likely haplotype 177 

pairs based on the individual’s known genotypes. It works iteratively by fitting the model to the 178 

current set of estimated haplotypes and then resampling new estimated haplotypes for each 179 

individual using the fitted model. Beagle predicts the most likely genotype at missing SNP from 180 

the model that is fitted at the final iteration. 181 

The three popular imputation algorithms, Beagle, IMPUTE and MaCH are currently in their 182 

fifth major version (Table 1). Methods are all based on a HMM based pedigree-free imputation 183 

approach and have been compared to each other in several studies (4, 23, 26, 27). Generally 184 

speaking they give similar results in terms of accuracy, but computation times and memory 185 

requirements vary strongly depending on the versions of the algorithms. In general, the RP in 186 

human includes a sample of representative individuals that are unrelated to the target 187 

individuals. Genotype imputation must be performed using the largest available RP because the 188 

number of accurately imputed variants increases with the RP size. However, one impediment 189 

to using larger RP is the increased computational cost of imputation. Therefore, the latest 190 

versions of the imputation algorithms are less memory-intensive and more computationally 191 

efficient implementations of the original ones with comparable imputation accuracy. 192 
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For instance, Minimac4 is the latest version in the series of genotype imputation software - 193 

preceded by Minimac3 (23), Minimac2 (33), Minimac (16) and MaCH (3). Das et al. (23) 194 

showed that Minimac3 was twice as fast that Beagle 4.1 and about 30 times faster than 195 

IMPUTE2 or Minimac2 when considering 100 individuals in the target sample and about 196 

30,000 sequenced individuals in the reference panel. In addition, increasing panel size of 197 

sequenced indviduals about 30 fold (from ~1,000 to 30,000) increased memory requirement 198 

only sixfold while Beagle 4.1, Minimac2 and Impute2 memory requirement increased almost 199 

linearly with panel size.  200 

Browning et al. (27) showed that the Beagle 5.0 computational cost of imputation from large 201 

reference panels is drastically reduced compared to Beagle 4.1, IMPUTE4 and Minimac4 when 202 

considering 1000 phased individuals in the target sample and 10k, 100k, 1M, and 10M 203 

individuals in reference panels, although all methods produce nearly identical accuracy. In 204 

addition, Beagle 5.0 has the best scaling of computation time with increasing reference panel 205 

size: its computation time is 33 (10k), 123 (100k), 433 (1M), and 5333 (10M) faster than the 206 

fastest alternative method. 207 

Recently, a new version IMPUTE5 (26) has been developped from the initial IMPUTE2 208 

algorithm (22) that can also scale to RP with millions of samples and appears to be even faster 209 

than Beagle 5.1 for such large RP sizes. IMPUTE5 assumes that both the reference and target 210 

samples are phased and contain no missing alleles at any site. This method continues to refine 211 

the observation made in the IMPUTE2 method, that imputation accuracy is optimized via the 212 

use of a custom subset of haplotypes when imputing each individual. It achieves fast, accurate, 213 

and memory-efficient imputation by selecting best matching haplotypes using the Positional 214 

Burrows Wheeler Transform. The method then uses the selected haplotypes as conditioning 215 

states within the IMPUTE HHM. Using a reference panel with 65,000 sequenced haplotypes, 216 

(26) showed that IMPUTE5 was up to 30x faster than Minimac4 and up to 3x faster than 217 

BEAGLE5.1, and used less memory than both these methods. They also showed that IMPUTE5 218 

scales sub-linearly with reference panel size: less than twice the initial computation time is 219 

required for an increase of 10,000 to 1 million reference haplotypes, because IMPUTE5 is able 220 

to utilize a smaller number of reference haplotypes. Therefore at the end of 2020, IMPUTE5 221 

appeared to be the most computationnaly efficient software for population-based imputation 222 

handling large reference panels with millions of haplotypes, including ones with unphased and 223 

incomplete genotypes. 224 

https://genome.sph.umich.edu/wiki/Minimac3
https://genome.sph.umich.edu/wiki/Minimac2
https://genome.sph.umich.edu/wiki/Minimac
https://genome.sph.umich.edu/wiki/MaCH
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Finallly, we mention in this section two other programs, GeneImp (34) and GLIMPSE (35) that 225 

perform genotype imputation to a dense reference panel given genotype likelihoods computed 226 

from low coverage (< 1X) sequencing as inputs. Compared to SNP genotyping, low-coverage 227 

sequencing data present a different challenge for imputation because we are not certain about 228 

any genotypes. It requires a probabilistic representation of the genotypes in the form of 229 

genotype probabilities or genotype likelihoods, rather than fixed genotype calling. Imputation 230 

is used to refine the genotype likelihoods and to fill in the gaps between the sparsely mapped 231 

reads by leveraging information from a large reference panel of thousands of haplotypes, 232 

assuming that these haplotypes adequately represent the target haplotypes over short unaltered 233 

regions. Most recent versions of the popular imputation algorithms are not well suited for this 234 

situation, as they rely on prephasing for computational efficiency, and, without definite 235 

genotype calls, the prephasing task becomes computationally expensive. It should be noticed 236 

that genotype likelihood input is not supported by the latest versions of Beagle (after Beagle 237 

4.1 which does not scale to RP larger than a few tens of thousand genomes) (25). GeneImp was 238 

shown to achieve imputation accuracy very close to that of Beagle 4.1, but needed one to two 239 

orders of magnitude less time for similar memory requirements (34). GLIMPSE achieved 240 

higher imputation accuracy than GeneImp and, in a lesser extent, than Beagle 4.1 for common 241 

variants, but it outperformed the two methods with an increased accuracy of more than 20% for 242 

rare variants.  243 

2.2. Pedigree-based imputation methods 244 

Pedigree-based imputation consists in the use of HDP genotypes for a subset of individuals in 245 

a pedigree to infer genotypes for the remaining relatives genotyped with a LDP. It uses the 246 

correlation of genotypes among relatives derived from sharing of IBD genomic segments within 247 

pedigree. 248 

While all population-based imputation methods are based upon HMM to model haplotype 249 

frequencies and are computationally intensive due to an intensive sampling process under such 250 

probabilistic approaches, most of the pedigree-based methods are mainly deterministic, rule-251 

based methods (29) and thus are less-time consuming. They are reasonably accurate in 252 

comparison to population-based methods, especially if the target individuals are genotyped at 253 

very low density.   In human, two main software were developped using pedigree-based 254 

imputation methods: Merlin and GIGI (Table 1). Merlin (36, 37) relys on a deterministic 255 

approach, uses pedigree structure to identify inheritance vectors within a family, then 256 
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propagates genotypes at high-density markers observed in a subset of individuals to others 257 

individuals in the pedigree genotyped at LDP. GIGI (Genotype Imputation Given Inheritance) 258 

uses a two-stage procedure to infer inheritance vectors at sparse markers, then uses Markov 259 

chain Monte Carlo sampling method to estimate genotypes of a dense marker set (38).  260 

Animal and plant breeding populations present some interesting advantages for rapid, pedigree-261 

based, imputation. Firstly, they are populations of small effective sizes in comparison to human 262 

populations. This limits the number of haplotypes and conserved haplotypes are long within 263 

population, which makes haplotype inference easier; all individuals are related and, therefore, 264 

share haplotypes which differ in length and frequency based on their relationships. Secondly, 265 

there is a large contribution of recent ancestors to the gene pool of each breeding population. 266 

Genotyping these ancestors to constitute the reference panel greatly help imputation, as 267 

conserved haplotypes from ancestors to present individuals are then very long. So, despite the 268 

existence of softwares dedicated to pedigree-based imputation in human, specific methods and 269 

softwares were developed for pedigreed animal and plant populations (Table 1). Indeed 270 

computing time of algorithms dedicated to human genetics is considered to be incompatible 271 

with the very large candidate populations and with the frequent routine genetic evaluation runs 272 

in farmed species. Fast and deterministic approaches which make use of family information 273 

have been developped for animal and plant breeding, the two most popular algorithms being 274 

AlphaImpute (39) and FImpute (20). 275 

AlphaImpute involves simple phasing and imputation rules, long-range phasing and haplotype 276 

library imputation (29) as implemented in AlphaPhase1.1 (40). It uses information from close 277 

and distant relatives and from close and distant SNP loci to impute genotypes for individuals 278 

for which genotype information may or may not be available, and for individuals which have 279 

close or distant relatives densely genotyped. According to (39), imputation accuracy is greater 280 

with AlphaImpute than with IMPUTE2 (22), the higher accuracy of AlphaImpute over 281 

IMPUTE2 increasing with reducing marker density of the LDP. As the marker density of the 282 

panel increases, the importance of pedigree information decreases because the likelihood of 283 

finding truely shared haplotypes increases, especially for short segments, and increases 284 

crossover resolution (41). 285 

FImpute (20) was mainly developed for large scale genotype imputation in livestock where 286 

hundreds of thousands of individuals are genotyped with different marker panels. Imputation 287 

and phasing are more accurate when using information from close relatives (i.e. long haplotypes 288 

with usually low frequency) than when using information from distant relatives (i.e. shorter 289 
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haplotypes with usually higher frequency). Therefore, the key idea of FImpute algorithm (20) 290 

is to exploit the pedigree relationships between individuals by searching for haplotypes from 291 

the longest to the shortest. It is worth mentioning that FImpute has an option to impute missing 292 

genotypes based on population and/or pedigree information. The importance of pedigree 293 

information increases with the decrease of marker density in the LDP. The method starts with 294 

family imputation if pedigree information is available, and then exploits close relationships by 295 

searching for long haplotype similarities between target and reference individuals using 296 

overlapping sliding windows. After each chromosome sweep, the window size is shrunk by a 297 

constant factor allowing for shorter haplotype similarity to be taken into account and the search 298 

continues in order to capture more distant relationships. The algorithm assums that all 299 

individuals are related to each other at different degrees. To speed up the imputation process, 300 

FImpute has the capability to use pre-constructed haplotypes. However, for livestock 301 

populations, the use of pre-phased haplotypes for imputation is not a recommended option and 302 

reducing the reference population to a group of animals that have high genomic relationships 303 

with the target individuals might be a better strategy than using pre-constructed haplotypes (20). 304 

FImpute (version v2) computing requirements are considerably lower than those of Beagle 3.3 305 

and IMPUTE2 (20). In addition, FImpute gives higher or similar imputation accuracy than 306 

Beagle 3.3 and IMPUTE2 in cattle data sets when all available information is used (20). 307 

However these results should be updated to most recent versions of FImpute (v3), Beagle (v5) 308 

and IMPUTE (v5). When close relatives of target individuals are present in the reference panel, 309 

FImpute results in higher accuracy compared to the other two methods even when the pedigree 310 

is not used. Rare variants (e.g. MAF < 0.05) are also imputed with higher accuracy (20, 42). 311 

FImpute imputes rare alleles with high accuracy because it is efficient at finding the long 312 

haplotype matches on which rare alleles are most likely located (43).  313 

Accurate imputation of SNP with rare alleles is important when the imputed genotypes are to 314 

be used in GWAS. Rare alleles may contribute substantially to the genetic variance and may 315 

account for a substantial part of the so-called “missing heritability” (44). To identify those rare 316 

variants, study of unrelated individuals is not as efficient as family study. Indeed, rare 317 

population variants can be frequent in families where a founder has the variant. However, the 318 

family-based approach tends to have a lower representation of the global set of rare variants as 319 

a limited number of families will be observed at a constant RP size. Pedigree-based methods 320 

provide much higher accuracy in calling rare alleles than population-based methods, because 321 

explicitly modeling the transmission of IBD genomic segments via the pedigree structure allows 322 
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rare alleles on such segments to be reliably called. It has been shown that family-based 323 

algorithms such as FImpute but also GIGI or MERLIN outperformed population-based 324 

approaches such as Beagle 3.3 or IMPUTE2 in calling rare alleles (20, 38, 45).  325 

2.3. Imputation methods that do not require a reference panel 326 

Most imputation algorithms rely not only on reference panels, but also on physical or genetic 327 

maps for ordering SNP and are not suitable for use in species with limited genomic resources. 328 

Such species can only rely on GBS technology to perform at the same time SNP discovery, 329 

GWAS and GS (46, 47, 48). Compared to SNP array, it is much challenging to accurately call 330 

an individual’s genotype with GBS technologies, specialy when (almost) no reads are generated 331 

at a particular locus. Genotype calling accuracy can be increased by imputation, considering 332 

the haplotypes of other individuals in the population and detecting shared haplotype segments 333 

between individuals (11, 12). However, the quality of genotypes obtained with GBS tends to 334 

be lower than with SNP array since it depends on the genome-wide sequence read depth (x). 335 

By increasing x, the proportion of correctly called genotypes increases but so do the costs. Since 336 

x varies along each sequenced genome, the number and the quality of genotype calls also vary 337 

along the genome of each individual. It complicates the use of GBS data, but can be partially 338 

overcome by specific imputation algorithms (Table 1) recently developped to provide powerful 339 

new ways to obtain accurate GWAS and GS at lower prices than with SNP arrays. 340 

While methods such as Beagle in its version 4 (25), findhap (49) in its version 4 (50) or 341 

GLIMPSE (35) can be applied for genotype calling and imputation from GBS data, they are 342 

tailored to work with reference panels. The first method specifically dedicated to genotype 343 

imputation in population samples of any species sequenced at low coverage is named STITCH 344 

for Sequencing To Imputation Through Constructing Haplotypes (11). It is based on HMM, but 345 

does not require a haplotype reference panel. However STITCH needs a high-quality reference 346 

assembly for read-mapping and SNP ordering, which is still a limiting factor for a large set of 347 

animal and plant species. In addition, (35) pointed out that while STITCH can be used 348 

efficiently to capture variation at common variants, its performance drops considerably at rare 349 

variants compared to reference-based approaches such as GLIMPSE or Beagle. Recently, (51) 350 

presented a novel deep learning model called SCDA for reference-free genotype imputation 351 

based on sparse convolutional denoising autoencoders. This SCDA model seems to achieve 352 

good imputation accuracy and to be robust to high levels of missing data and heterogeneity of 353 

genotype data. However, as the SCDA is based on a deep learning architecture, training the 354 
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model is a computationally very demanding process and further developments are still needed 355 

to propose more efficient training mechanisms and automatic hyperparameter learning before 356 

that kind of algorithms can be efficiently applied to solve large routine genotype imputation 357 

issues.  358 

In plant breeding, low-coverage GBS technology has become a cost-effective tool for 359 

multiparental populations produced to increase genetic diversity and resolution in QTL 360 

mapping (52). In the last decade, several genotype imputation methods have focused on 361 

biparental populations in experimental plant crosses (53, 54, 55). More recently, (56) proposed 362 

a more general approach for genotype imputation from low-coverage GBS data, applicable to 363 

many scenarios in experimental plant crosses where the target individuals are produced by 364 

multigenerational crossing from two or more founders. This algorithm is called magicImpute 365 

and is based on HMM. It integrates with genotype calling to account for the uncertainties in 366 

identifying heterozygous genotypes due to low read numbers (< 1X) in GBS data. The founders 367 

of multiparental populations are used as the reference panel for genotype imputation. It applies 368 

to both bi- and multiparental populations, realizes parental phasing and can be used even if 369 

some founders’ genotypes are not available as it particularly happens if both founders and 370 

offspring are genotyped by low-coverage sequencing (57).   371 

Money et al. (58) introduced LinkImpute, a software package based on a k nearest neighbor 372 

genotype imputation method which was designed for unordered markers (no physical nor 373 

genetic map required) and for unphased genotype data. LinkImpute exploits the fact that 374 

markers useful for imputation often are not physically close to the missing genotype but rather 375 

distributed throughout the genome. Using GBS data from diverse and heterozygous accessions 376 

of apples, grapes, and maize, (58) showed that their algorithm has a runtime similar to Beagle 377 

4.0 on all three datasets while achieving slightly better accuracy. However LinkImpute is 378 

applied to a table of genotypes that have been called by a genotype calling algorithm and 379 

therefore is not using genotypes likelihoods, which limit its interest for low coverage GBS. 380 

Money et al. (59) proposed a new version called LinkImputeR that exploits the read count 381 

information and makes use of all available DNA sequence information for the purposes of 382 

genotype calling and imputation. They demonstrated that LinkImputeR can significantly 383 

improve both the quantity and quality of genotype data generated from next-generation 384 

sequencing technologies. 385 

However, all these previous algorithms are not designed to exploit the specific structure of 386 

haplotype sharing observed in large outbred full-sib families which is a population structure 387 
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commonly found in animal and plant breeding programs. In the context of an outbred full-sib 388 

family, imputation can be simplified by recognizing that we only need to consider the four 389 

parental haplotypes and identify which pair of haplotypes the offspring inherited at each locus. 390 

AlphaFamImpute (60) considers this particular population structure to improve the accuracy of 391 

calling, phasing and imputing genome-wide genotypes and to decrease run-time as 392 

demonstrated by comparison with Beagle 4.0 (25). AlphaFamImpute performs imputation 393 

using a two-step approach. In the first step, it phases and imputes parental genotypes based on 394 

the segregation states of their offspring (i.e. which pair of parental haplotypes the offspring 395 

inherited). In the second step, it phases and imputes the offspring genotypes by detecting which 396 

haplotype segments the offspring inherited from their parents. AlphaFamImpute achieves a 397 

higher imputation accuracy than Beagle 4.0, in both presence and absence of parental GBS data. 398 

It was possible to obtain a very high imputation accuracy (> 0.99) when sufficient sequencing 399 

resources (> 2x) were spent on the offspring, even if the parents were not sequenced. In 400 

addition, the computational costs were strongly decreased: when imputing 100 full-sib families 401 

with 100 offspring each, AlphaFamImpute took less than 1 minute for 1000 loci on one 402 

chromosome while Beagle 4.0 took 11h for similar memory needs (60). 403 

3. Factors affecting imputation accuracy and subsequent genomic prediction 404 

quality 405 

Empirical evidence from various animal and plant breeding populations (52, 61, 62, 63, 64, 65, 406 

66, 67) suggest that imputation of low density to higher density genotypes can be highly 407 

accurate and that the estimated breeding values (EBV) derived from imputed genotypes can 408 

reach similar levels of accuracy to that derived from high density genotypes. 409 

Nevertheless, accuracy of EBV increases when imputation error rate decreases (67, 68). It is 410 

therefore important to define what are the most influential factors affecting the imputation 411 

accuracy and, when possible, methods to optimize those characteristics. Both the imputation 412 

and GS accuracies depend on: (a) the imputation method; (b) the characteristics of the low-413 

density marker panel with respect to the MAF of the SNP, their number, localization, spacing 414 

and linkage between adjacent SNP; (c) the characteristics of the reference population including 415 

its size and its relationship and proportion of common genotyped SNPs with the target 416 

population; (d) the genomic evaluation method linked to the genetic architecture of the 417 

evaluated trait.  418 
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3.1. Choice of the imputation method 419 

An optimal imputation strategy for application in animal and plant breeding programs must : 420 

(a) allow both ungenotyped and low-density genotyped individuals to be imputed ; (b) functions 421 

well in small and large datasets of moderately related individuals; (c) use information from 422 

close and distant relatives and from close and distant SNP loci; (d) accurately impute genotypes 423 

for all individuals in the pedigree for all SNP (including rare variants) and whatever the position 424 

of high-density genotyped individuals in the pedigree; (e) have efficient computing time and 425 

memory usage when routine genomic evaluations are required. 426 

Imputation accuracy can be measured as the allele correct rate, the genotype correct rate (also 427 

called concordance rate) or the Pearson correlation between true and imputed genotypes in the 428 

target population. Genotype error (i.e 1 – concordance rate) is the proportion of genotypes 429 

called incorrectly and allele error is the proportion of alleles called incorrectly. Those two rates 430 

give similar results although allele error is approximately half of genotype error, because all 431 

methods that are likely to impute one allele correctly are unlikely to impute both alleles 432 

incorrectly. Those statistics of sample imputation quality can also be derived at the SNP level.  433 

The allele/genotype correct rates are allele-frequency dependent. With a naive imputation 434 

procedure based on the most frequent genotypes, the proportion of genotypes correctly imputed 435 

approaches 100% as allele frequencies approach zero or one (39). When considering rare 436 

alleles, it is therefore recommended to look at the correlation between imputed and true 437 

genotypes rather than to the rate of correct allele/genotype as the latter will always be high 438 

when the MAF are low despite the fact that the rare alleles will not be well-predicted (39, 42).  439 

Browning and Browing (24) also proposed the squared correlation between the allele dosage 440 

(number of minor alleles) of the most likely imputed genotype and the allele dosage of the true 441 

genotype as a metrics of imputation accuracy at the marker level. They called this quantity, the 442 

allelic R2. Its interpretation does not depend on allele frequency. Allelic R2 measures the loss 443 

of power when the most likely imputed genotypes are used in place of the true genotypes for a 444 

marker. Browning and Browing (24) showed that allelic R2 can be estimated from the imputed 445 

posterior genotype probabilities without knowledge of the true genotypes, which is an important 446 

feature because the true genotype is generally unknown. This internal quality metrics of 447 

imputation is given by softwares such as Beagle or Minimac. Another internal quality metrics, 448 

the INFO score, is proposed in IMPUTE2. Both imputation quality scores were shown to give 449 

highly correlated results (25). Their values range from 0 to 1, where a higher value indicates 450 
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increased quality of an imputed SNP. The allelic R2 and the INFO score can be used for 451 

identifying or excluding markers with poor imputation accuracy prior to downstream analysis. 452 

In a study that was independent of any of the co-authors of imputation algorithms, (42) 453 

compared the five most popular imputation algorithms in animal and plant breeding, using SNP 454 

array (Beagle 3.3, IMPUTE2, findhap, AlphaImpute and FImpute). Two dairy cattle datasets 455 

with low (3K), medium (54K) and high (777K) density SNP panels were used to investigate 456 

imputation accuracy, considering about 30% of individuals in the reference panels and 457 

relatedness between target and reference individuals. Results demonstrated that the accuracy 458 

was always high (allele correct rate > 93%), but lower when imputing from 3K to 54K (93 – 459 

97%) than from 54K to 777K (97 – 99%). IMPUTE2 and Beagle 3.3 resulted in higher 460 

accuracies and were more robust under various conditions than the other 3 methods when 461 

imputing from 3K to 54K. The accuracy of imputation using FImpute was similar to the ones 462 

of Beagle and IMPUTE2 when imputing from 54K to 777K, and higher than findhap and 463 

AlphaImpute. Considering computing time and memory usage, FImpute was proposed as a 464 

relevant alternative tool to IMPUTE2 and Beagle 3.3. (69) also investigated the imputation 465 

accuracies for dairy cattle when the reference population, genotyped with 50K SNP panel, 466 

contained sires, halfsibs, or both sires and halfsibs of the individuals in the target population 467 

genotyped with a low density panel using three imputation softwares (FImpute, findhap and 468 

Beagle 3.3). They showed that FImpute performed the best in all cases, with correlations 469 

between true and imputed genotypes from 0.92 to 0.98 when imputing from sires to their 470 

daughters or between halfsibs. Recently a study compared Beagle 4.1 and FImpute for phasing 471 

quality (70). Although similar phasing quality was observed when at least one parent was 472 

genotyped and pedigree information was considered for FImpute, (70) concluded that, since in 473 

most actual breeding programs there will be a certain amount of individuals without genotyped 474 

parents and progeny, Beagle 4.1 was the most robust and recommendable option for phasing 475 

quality, despite a 29 times longer computing time compared to FImpute for their poultry dataset. 476 

Currently, efficient algorithms for imputation of missing genotypes in GBS data are still in their 477 

earliest steps of development, especially with regard to very low sequencing read depth (< 1x). 478 

Therefore there are yet not enough independent studies from the co-authors of imputation 479 

algorithms that can help to define the best algorithms for GBS data imputation. In a recent 480 

study, (71) compared Beagle, IMPUTE2 and FImpute softwares based on simulated GBS data 481 

of livestock population. Sequencing read depth varyed between 2 and 10 and different MAF 482 

editing criteria (from no lower limit to MAF > 0.03) were investigated. The results showed that 483 
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imputation accuracies were all low (r < 0.90) for GBS at 2x, but FImpute had a slightly lower 484 

imputation accuracy than Beagle and IMPUTE2 at this depth. The three algorithms had similar 485 

imputation accuracy of r > 0.95, when the depth of sequencing read depth was ≥ 4x. As the 486 

depth increased to 10x, the prediction accuracies approached those using true genotypes in the 487 

GBS loci. The authors also analysed the reliability of genomic prediction with the different 488 

imputation hypotheses. They concluded that, retaining more SNPs with no MAF limit resulted 489 

in higher reliability of genomic prediction. 490 

To sum up, there are nowadays a rich palette of imputation methods and algorithms useful for 491 

either low density SNP array or low coverage GBS data, although none of them appears to be 492 

efficient for all situation in terms of both genomic ressources (reference assembly genome, 493 

density of SNP panels, RP size) and target population structure. In most cases, Beagle and 494 

FImpute performed better than other methods. An obvious advantage of FImpute over Beagle 495 

is that it uses much less computing time. However comparisons have only been performed with 496 

early versions of Beagle. Due to the computational efforts made in the latest version of Beagle 497 

(v5.1) and the recent development of specific softwares for GBS data in plant and animal 498 

breeding, new comparison studies of imputation quality and computational costs are needeed 499 

to help users in choosing the relevant imputation software according to the characteristics of 500 

their genotyping datasets.  501 

3.2. Characteristics of the low-density panel and its optimized choice 502 

3.2.1. Characteristics of LDP influencing the imputation accuracy  503 

For all species and study populations, a limit exists upon which increasing the number of SNP 504 

in the array used for GS will not induce higher prediction accuracy (72, 73, 74). The upper 505 

bound of GS accuracy is the proportion of the genetic variance which is captured by the array 506 

and is determined by the LD between the markers and the causative mutations affecting the 507 

trait. Thus this upper limit depends on the genetic architecure of the traits. In wheat, (52) 508 

hypothesized that the limit will be reach at a lower density level for monogenic traits than for 509 

polygenic traits for which imputed SNP increased the chances of capturing most of the QTL 510 

linked to these traits.  511 

If the major factor affecting the imputation quality of a low-density panel is its number of SNP 512 

it is composed of, in relation with the existing LD between adjacent SNP (5, 62, 64, 66), 513 

imputation quality and GS accuracy are also dependent of the MAF and location of tag SNP in 514 

the low density panel. The individual SNP imputation accuracy is strongly dependent of the 515 
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MAF as reported in maize (39), sheep (76), cattle (42), pig (65) or salmon (77). This is specialy 516 

the case for SNP with MAF below 10% that are difficult to correctly impute unless the tag SNP 517 

density is sufficient and the size of reference panel is large (78). Regarding localization along 518 

the chromosomes, lower accuracy are generally observed for SNP located at the two end of the 519 

chromosomes, in centromeres and more generally in regions with high similarity or high 520 

recombination rates (such as HLA/MHC in humans). The telomeres have very long patterns of 521 

repeats which generate problems in reads mapping and imputation. Another explanation for the 522 

low imputation accuracy is that SNP imputation relies on surrounding markers, but for SNP at 523 

the very end of the telomere, surrounding information is only on one side of the chromosome 524 

(79). An additionnal explanation is the fact that recombination is higher around the telomeres, 525 

which may decrease the precision of haplotype reconstruction and imputation accuracy (61, 65, 526 

79). Therefore it is often recommended to increase the number of SNP at the chromosome 527 

extremities (80). (81) observed that imputation accuracy was positively associated with 528 

chromosome size due to the fact that longer chromosomes harbour more markers, and hence 529 

provide more information for inferring unknown haplotypes. In longer chromosomes, the 530 

problem of low imputation accuracy at the beginning and end of the chromosomes are relatively 531 

less important than in shorter chromosomes. Low imputation accuracies have also been 532 

observed in some centromere regions (61) that might be attributed to incorrect order of markers 533 

on the reference genome in regions difficult to assemble (82). By contrast, in other studies the 534 

imputation accuracy of SNP in centromere regions was close to 1 (65, 79). 535 

3.2.2. Optimization of the low-density panel 536 

Several avenues are possible to optimize the design of the low-density chips. In animal and 537 

plant breeding, the choice of SNP for low-density arrays is often based on the selection of 538 

markers that are uniformly distributed along the genome (equidistant spacing based on physical 539 

position along the genome) and that have high MAF to ensure segregation (80, 83). This 540 

strategy was shown to be more relevant than choosing at random the SNP (74), especially for 541 

traits with large-effect QTL for which prediction accuracy crucially depends on capturing 542 

specific regions that explain a high proportion of the phenotypic variance. If the optimal choice 543 

of SNP in a LDP chip is crucial for the accuracy of genomic prediction only based on low-544 

density genotypes, it also significantly impacts the accuracy of genomic prediction based on 545 

high-density imputed genotypes as SNP in the LDP are the only ones that are not subject to 546 

imputation errors. 547 
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However, it has also been shown that a LD-based strategy could allow more accurate imputation 548 

(84, 85) and that densification of markers at recombination hot spots and telomeres improves 549 

accuracy (64, 86). A mixed strategy combining LD and physical distance has also been 550 

proposed to design low-density chips. It consists in LD based marker pruning in user-defined 551 

sliding windows. 552 

An alternative strategy is to choose the markers for their effects on the important traits to be 553 

improved (88, 89, 90). Results suggest that a low density panel comprising SNP with the largest 554 

effects has the potential to preserve the accuracy of genomic prediction from higher density 555 

panels (91). However, this strategy limits the interest of the genotyping tool to a single 556 

population and a limited number of traits with similar genetic architectures (83). 557 

While arrays with at least 3000 SNP must be used in dairy cattle to obtain mean allelic 558 

imputation error rates below 5% (66, 89, 92), very low density SNP  (< 900 SNP)  panels and 559 

associated cost-effective genotyping tools can be used in populations with higher LD at long 560 

distance and close relationship between reference and target populations. This kind of “light” 561 

genomic selection was initially proposed in pig and poultry (5, 63, 86, 93) using panels of ~ 562 

400 SNPs to reduce GS costs with less than 5% loss in prediction accuracy compared to GS 563 

using only high density genotyping. Considering the parents of previous generations as 564 

reference population reduces the cost of high density genotyping per generation to a few 565 

hundred breeding individuals. More recently the interest of this approach has been shown in 566 

Atlantic salmon (77, 94) with extremely low density panels (~200 SNP). When considering 600 567 

SNP in the low density panel, imputation makes it possible to obtain similar accuracy than with 568 

the high density panels. The loss of accuracy was small when considering only 200 SNPs and 569 

the genotyping cost of the breeding program was reduced by 62% (94). However, it is not 570 

obvious that the same very low density chip allows precise imputation for genetically diverse 571 

populations, because the accuracy of imputation depends on the existence of a sufficiently 572 

strong linkage between adjacent markers. If as many low density chips have to be developed as 573 

there are different populations to be evaluated within a species, then the chip orders cannot be 574 

pooled to reduce costs and the economic interest of such technical optimization may vanish.  575 

A last strategy is to exploit GBS data for developing genomic selection in farmed species 576 

because it makes it possible to cover large fractions of the genome and to vary the sequence 577 

read depth per individual. Gorjanc et al. (8) quantified by simulation the value of GBS to 578 

increase genetic gain, considering three parameters (i) using SNP array genotyping or GBS with 579 

sequence read depth (x) varying per individual from 0.01x to 20x; (ii) number of genotyped 580 



19 

 

markers from 3000 to 300 000; and (iii) size of training and validation sets from 500 to 50 000 581 

individuals. The latter was achieved by distributing the total available x of 1000x, 5000x, or 10 582 

000x per genotyped locus among the varying number of individuals. Gorjanc et al. (8) found 583 

that accuracies of genomic predictions using GBS data or SNP array data were comparable 584 

when large numbers of markers were used and x per individual was ~1x or higher. The bias of 585 

genomic predictions was very high at a very low x. When the total available x was distributed 586 

among the training individuals, the GS accuracy was maximized with the large number of 587 

individuals genotyped with low x for a large number of loci. Similarly, response to selection 588 

was maximized under the same conditions due to increased both GS accuracy and selection 589 

intensity. 590 

3.3. Characteristics of the reference population and its optimized choice 591 

3.2.1. Characteristics of RP influencing the imputation accuracy  592 

A crucial component of most genotype-imputation methods is to correctly infer the local 593 

haplotypes from reference populations (3, 22). If a pedigree-free imputation method is used, 594 

the most important characteristics of the RP affecting the accuracy of imputation appear to be 595 

its size and its ability to capture the genetic diversity of the target population (25, 66, 82). 596 

Whenever a significantly larger reference population becomes available, it is useful to re-597 

impute the target population for subsequent analysis. The size of the RP is less important when 598 

pedigree-based imputation is used and the initial RP already includes parents from the TP (79).  599 

The effect of the size of the RP depends also on the structure of the TP. For a TP of low genetic 600 

diversity, few RP individuals are required to achieve a given imputation accuracy because LD 601 

is high and individuals derive from a small set of ancestors. The accuracy of imputation for any 602 

variant depends on how well individuals of RP match individuals of TP in terms of ancestral 603 

haplotypes to be imputed (22, 25). Therefore, smaller number of animals in RP generally results 604 

in lower imputation accuracy, with the difference all the more evident that fewer ancestors are 605 

present in the reference population (82, 61). Reference sets composed of diverse lines very 606 

distantly related, as is often the case in plant breeding programs, do not provide highly accurate 607 

imputation because, in such cases, individuals share only short chromosome segments and this 608 

makes imputation of missing genotypes difficult, especially when TP is genotyped with a very 609 

low density panel (39). Indeed the importance of the size of RP is also strongly dependent on 610 

the number of common markers between the HDP and LDP arrays. The benefit of having less 611 



20 

 

missing genotypes in the target panel is higher with fewer individuals in the reference 612 

population (79). 613 

3.3.2. Optimization of the reference population 614 

One of the most important factor to optimize the accuracy of genotype imputation in farmed 615 

species is the degree of relationship between the individuals in the RP and in the TP. The 616 

importance of these genetic relationships has been well documented in various animal species 617 

such as cattle (42, 66, 82, 92), sheep (95), pig (5, 39, 86, 96), poultry (63, 85, 97) and fish (61). 618 

In particular, imputation accuracy strongly increase when parents of the TP are present in the 619 

RP (61, 63, 66, 92). Simulation studies (62) and (98) quantified the impact of successive 620 

generations of genotype imputation on genomic predictions. Results showed that GS accuracy 621 

decays substantially in one or two generations without updating, by a small proportion, the RP 622 

to reflect the genetic change in the TP at each generation. (62) argued that this decay was mainly 623 

due to the impact on the genomic estimated breeding values of the increase in genetic distance 624 

between TP and RP rather than due to a strong increase in imputation error rate. Indeed, 625 

concordance rates only decay by about 0.5% per generation in their study. When the RP was 626 

updated by either 1% or 5% of the top animals in the previous generations, decay of GS 627 

accuracy was substantially reduced (62).  In addition, (98) showed that GS accuracy for a trait 628 

of moderate heritability was higher using a small reference population of true genotypes than 629 

using a larger population of imputed genotypes. But, when the heritability was low (0.03), the 630 

accuracy of genomic predictions benefited from a larger RP, even if SNP were imputed. To 631 

reduce the accumulation of imputation errors over generations, it is then recommended to 632 

routinely generate dense genotypes on influential ancestors. 633 

Another characteristics of RP that can be optimized is the nature of the HDP. As already 634 

mentioned in section 3.2.1, the upper bound of GS accuracy is the proportion of the genetic 635 

variance which is captured by the SNP panel and is determined by the LD between the markers 636 

and the causative mutations affecting the trait. As proposed by (99), genomic prediction from 637 

whole-genome sequence data is attractive, as the accuracy of genomic prediction is no longer 638 

bounded by extent of LD between markers and causal mutations affecting the trait as the latter 639 

are then in the HDP. Thus a cost-effective strategy can be to sequence a small number of 640 

individuals to consititute the RP (100). The idea is to choose key individuals based on either 641 

pedigree relationships or haplotype diversity that maximized the number of unique haplotypes 642 

in the RP and that are a subset from the common ancestors of the TP. Based on a Belgian Blue 643 

cattle dataset, Druet el al. (100) investigated the optimum number of individuals to sequence 644 
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by fold coverage given a maximum total sequencing effort. At 600 total fold coverage (x 600), 645 

the optimum strategy was to sequence 75 individuals at eightfold coverage. At a constant 646 

sequencing cost, one interesting strategy was to sequence animals at variable fold coverage: 647 

key ancestors at x8 to ensure their alleles that are widespread in the population are called 648 

correctly, then a larger number of individuals sequenced at only x4 to capture rare alleles. 649 

Indeed, compared to dense SNP array genotypes, the use of sequence data increased GS 650 

accuracy only when many causal variants had a low MAF. The imputation accuracy of rare 651 

alleles could be also improved, by composing the RP with a set of the most common sires, 652 

instead of random animals, as it was shown in layer chickens populations (97). 653 

3.4. Choice of the genomic prediction method 654 

Imputation errors affect the accuracy of all genomic prediction methods. However, probably 655 

because LD between SNP and QTL is better exploited by Bayesian methods than by kinship-656 

based methods such as GBLUP (101), Bayesian methods seem to be more impacted by 657 

imputation errors than GBLUP when traits are affected by a few large QTL. For instance, the 658 

accuracy of Bayesian prediction methods were reported to be more impacted than the accuracy 659 

of GBLUP, for milk fat percentage, a trait affected by a few large QTL in dairy cattle (89). In 660 

this case, inclusion in the LDP of SNP with largest effects substantially improved the accuracy 661 

of Bayesian genomic prediction. A similar trend was observed in a simulation study without 662 

any imputed genotypes (102), where the accuracy of genomic prediction from low density 663 

panels declined much more rapidly for traits with a smaller number of QTL. 664 

Relative performance of Bayesian and GBLUP methods might be related to the distributions of 665 

imputation errors. If more imputation errors are distributed around the QTL, one can assume 666 

that Bayesian method may suffer more from these errors than GBLUP because, in genomic 667 

regions with a large QTL, Bayesian methods tend to select few relevant SNP surrounding the 668 

QTL while GBLUP picks all the SNP. As suggested by (89), Bayesian methods could suffer 669 

more if the few relevant SNP are imputed with error, but GBLUP would suffer from imputation 670 

errors accumulated over all SNP. Because the vast majority of economically important traits 671 

are complex traits that are controlled by hundreds or thousands of QTL with small effects, the 672 

impact of imputation errors on the GBLUP and Bayesian methods is expected to be very similar 673 

in most cases. 674 

4 conclusion 675 
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Nowadays there is a rich palette of imputation algorithms useful for either low density SNP 676 

array or low coverage GBS data, although none of them appears to be efficient for all situation 677 

in terms of both genomic ressources and target population structure. Regardless of the 678 

imputation method, accuracies of both genotype imputation and genomic selection increase 679 

with the relatedness of the target individuals with its denser genotyped ancestors and as their 680 

own genotype density increase. At given low and high density SNP panels, the most important 681 

factors affecting imputation accuracy are clearly the size of the reference population and the 682 

relationship between individuals in the reference and target populations. 683 

  684 
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Table 1. List of the main genotype imputation methods and their main software versions  964 

 965 

Software Name  Current Version Referenced versions 

Population-based imputation methods requiring a reference panel 

BEAGLE 

v5.1 v3.3 (24) 
 v4.1 (25) 
 v5.0 (27) 

fastPHASE v1.4 (14) 

GeneImp v1.3 (34) 

GLIMPSE v1 (35) 

IMPUTE v5 named IMPUTE5 (26) 

IMPUTE2 IMPUTE v2 (22) 

MINIMAC 
v4 named 

MINIMAC4 

V1 named MINIMAC (16) 

V2 named MINIMAC2 (33) 

V3 named MINIMAC3 (23) 

PLINK v2 named PLINK2 (31) 

Pedigree-based imputation methods requiring a reference panel 

AlphaImpute v1.9 (39) 

findhap v4 
v1  (49) 

v4 (50) 

FImpute v3 (20) 

GIGI v1.06 (38) 

MERLIN v1.1 (36) (37) 

Free reference panel-based imputation methods 

AlphaFamImpute v1 (60) 

LinkImpute v1 (58) 

LinkImputeR v1 (59) 

magicImpute v1 (56 

SCDA v1 (51) 

STITCH v1.6 (11) 

 966 

  967 
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Figure 1. Imputation process based on a set of haplotypes in a Reference Population  968 

 969 
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