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Abstract 
Recently, digestive efficiency (DE) was proposed as a trait of interest to improve feed 
efficiency (FE) in pigs, especially when they are fed with alternative feeding resources. Both 
are influenced by the host genetics, and also by the gut microbiota composition. The goal of 
this study was to quantify the impact of faecal microbial information on the prediction 
accuracies of genomic estimated breeding values (GEBVs) of FE and DE traits for pigs fed 
conventional or fiber diets. For DE traits, gains in prediction accuracy of GEBVs were 
increased by about 18% when microbial information was included in linear mixed models. In 
addition, these gains of prediction accuracy were very similar in both diets. For FE traits, no 
improvement was observed. Thus, the addition of microbial information in breeding programs 
is promising to better estimate GEBVs for DE traits.  
 
Introduction 
Feed costs in pig production currently represent between 60 to 70% of the total cost of pork 
production (Patience et al., 2015). Feeding pigs with by-products from the agri-food and 
biofuel industry is an option to reduce feed costs and feed-food competition. In this context, 
feed efficiency (FE) remains the major objective of selection, but recent research suggested 
that digestive efficiency (DE) can contribute to FE (Harris et al., 2012; Mauch et al., 2018), 
and more especially with alternative feeding stuff (Déru et al., 2021a). The DE is influenced 
by host genetics (Déru et al., 2021a), and it has significant genetic correlations with some 
faecal microbiota traits (Déru et al., 2021b). In addition, faecal microbiota can explain more 
than 44% of the phenotypic variation for DE traits (Verschuren et al., 2020; Déru et al., 
2021c), and a moderate part, around 20%, for FE traits variance (Camarinha-Silva et al., 
2017, Aliakbari et al. 2021). The goal of the present study was to evaluate if adding microbial 
information in the prediction models of breeding values can improve their prediction accuracy 
for DE and FE traits. 
 
Materials & Methods 
Animals and diets. Data comprised Large White male pigs reared at INRAE UE3P - France 
Génétique Porc phenotyping station. Couples of full-sibs were raised in post-weaning 
facilities until nine weeks of age. When moved to growing-finishing pens, one of the siblings 
was fed with a two-phase conventional (CO) European diet and the other one a two-phase 
high-fiber (HF) diet. Diets differed in net energy (NE) (9.6 MJ/kg of NE for the CO diet and 
8.2 MJ/kg of NE for the HF diet), and neutral detergent fiber (from 13.90 to 15.12 % for the 
CO diet; from 23.82 to 24.46 % for the HF diet), as described in Déru et al. (2020). 
 



Data. Individual average daily gain (ADG) and daily feed intake (DFI) were measured 
between 35 and 115 kg live weight, with GenStar single place electronic feeders (Genstar, 
Skiold Acemo, Pontivy, France). Feed conversion ratio (FCR) was calculated as DFI/ADG. 
Residual feed intake (RFI) was determined as a multiple linear regression of DFI on ADG, 
average metabolic body weight, lean meat percentage and carcass yield (Déru et al., 2020). 
Microbiota composition and DE were obtained from a unique faecal spot sampling at 16 
weeks of age. The DE was predicted as digestibility coefficients (DC) of energy, nitrogen and 
organic matter using near infrared spectrometry (Déru et al., 2021a). Microbiota composition 
was obtained from sequencing the V3-V4 regions of the 16S rRNA (Déru et al., 2021b), and 
14,366 operational taxonomic units (OTU) were identified. Sequence reads were rarefied at 
10,000 sequences per sample.  
Genotyping was carried out using 70K SNP GeneSeek GGP Porcine chip. Quality control 
(QC) was carried out: the call rate per individual, i.e. the percentage of genotype present per 
individual, with a threshold set at 95%, and the SNP call rate, i.e. the percentage of genotype 
by SNP with a threshold set at 95%. The SNPs with minor allele frequencies lower than 5%, 
with a significant deviation from Hardy-Weinberg equilibrium (P < 0.000001) were also 
deleted. After QC, 48,919 markers were available for further analyses. 
Genomic estimated breeding values (GEBVs) for FCR and RFI (FE traits), ADG, DFI, and 
DE traits were obtained for pigs that had all microbiota, genomic and digestive efficiency 
data, i.e. 1,082 pigs raised in 32 batches. 
 
Statistical analyses. The microbial relationship matrix M was computed after filtering out the 
OTUs present in less than five samples and with an average abundance lower than 0.001% 
(2,399 OTUs kept), as M = TT’/k, where T is the n x k matrix containing the centred and 
standardized log abundancies of each OTU, n the number of pigs and k the number of OTUs 
(Ross et al., 2013). The genomic relationship matrix G was constructed using the first 
VanRaden method (2008). Predictions were obtained with a Bayesian model fitted with the 
BGLR package in R (Pérez et al., 2014). Two models were constructed, y=Xβ +Zu+ Wm + e 
(model M+G) and y=Xβ +Zu+ e (model G), with y the vector of phenotypes for a given trait, 
X the incidence matrix relating observations to fixed effects, β the vector of fixed effects, Z 
the incidence matrix for the genetic effects, u ~ N(0, Gσ²u) the vector of additive genetic 
effects, W the incidence matrix for the microbiota effects, m ~ N(0, Mσ²m) the vector of 
microbiota effects, and e ~ N(0, Iσ²e) the random residuals. 
 
Gains of prediction accuracies. The advantage of including the microbial information to 
predict GEBVs was quantified via changes in prediction accuracies of GEBVs from model G 
to model M+G. A forward cross-validation approach was used, considering the first 25 
batches of the population (876 pigs) as a reference population and the last seven batches (205 
“candidate” pigs) as a validation population. The reference GEBV, GEBVC,M+G, were 
obtained with model M+G on the complete population (i.e. phenotypes available for the 
reference and validation sets). Then, to assess the gains in prediction accuracy with models M 
and M+G compared to this reference, the criteria ρΜ and ρΜ+G were computed as the Pearson 
correlation coefficients computed between GEBVC,M+G and GEBVs obtained with model G 
(GEBVP,G) or M+G (GEBVP,M+G) with a partial dataset, i.e. where phenotypes were available 
for the reference population and not available for the validation population (Legarra and 
Reverter, 2018). First, gains of prediction accuracies were obtained for the full validation set. 
Next, to test for differences in prediction accuracies between diets, ρΜ and ρΜ+G were 
computed separately for the CO (96 pigs) and the HF diet (109 pigs). 
 



Results  
The gains of prediction accuracy combining the microbiota and genomic effects were 
evaluated using the predictions of the M+G model for the complete dataset as reference 
GEBVs. Indeed, assuming that microbiota composition affects the trait variance components, 
it should be the model providing the most accurate GEBVs (David and Ricard, 2019). It 
should be noted that with the complete dataset, correlations between GEBVs obtained with 
model G and those with model M+G were high, ranging from 0.97 to 0.99 for ADG, DFI and 
FE traits, and from 0.80 to 0.85 for DC. 
 
Table 1. Correlation coefficients ρ [95% confidence intervals] between estimated 
breeding values of the validation population obtained with the complete (GEBVC,M+G), 
and with the partial datasets predicted without (GEBVP,G) and with (GEBVP,M+G) 
microbial information, considering both diets in the validation population, and 
separating the validation population according to the diet.  
 

 ρ (GEBVP,G,GEBVC,M+G )  ρ (GEBVP,M+G,GEBVC,M+G ) 
Traits Both diets CO diet HF diet  Both diets CO diet HF diet 

FCR 0.60 
[0.51;0.68] 

0.62 
[0.47;0.73] 

0.58 
[0.45;0.70] 

 0.59 
[0.49;0.67] 

0.59 
[0.44;0.71] 

0.58 
[0.44;0.69] 

RFI 0.62 
[0.53;0.70] 

0.72 
[0.60;0.80] 

0.56 
[0.42;0.68] 

 0.61 
[0.52;0.69] 

0.70 
[0.58;0.79] 

0.55 
[0.40;0.67] 

DFI 0.60 
[0.51;0.68] 

0.72 
[0.61;0.80] 

0.57 
[0.43;0.68] 

 0.62 
[0.51;0.69] 

0.71 
[0.60;0.80] 

0.56 
[0.41;0.68] 

ADG 0.70 
[0.62;0.76] 

0.70 
[0.58;0.79] 

0.70 
[0.58;0.78] 

 0.70 
[0.62;0.76] 

0.69 
[0.57;0.78] 

0.71 
[0.60;0.79] 

DC of 
energy 

0.55 
[0.45;0.64] 

0.56 
[0.40;0.68] 

0.55 
[0.40;0.67] 

 0.67 
[0.58;0.74] 

0.65 
[0.52;0.76] 

0.69 
[0.57;0.77] 

DC of 
OM 

0.53 
[0.42;0.62] 

0.55 
[0.39;0.67] 

0.52 
[0.37;0.64] 

 0.64 
[0.55;0.71] 

0.65 
[0.51;0.75] 

0.66 
[0.54;0.75] 

DC of 
nitrogen 

0.51 
[0.40;0.61] 

0.48 
[0.31;0.62] 

0.64 
[0.39;0.66] 

 0.62 
[0.53;0.70] 

0.61 
[0.47;0.72] 

0.64 
[0.51;0.74] 

FCR = feed conversion ratio; DFI = daily feed intake; ADG = average daily gain; RFI = residual feed intake; DC 
= digestibility coefficient; OM = organic matter; CO = conventional; HF = high fiber 
 
For FE traits, DFI and ADG, ρ were not improved with the model M+G in comparison to the 
model G (Table 1). In addition, no difference was observed between ρ computed separately 
for pigs fed the CO and the HF diets, except for DFI and RFI that had slightly higher gains of 
prediction accuracy in the CO than in the HF diet (for instance 0.72 vs 0.57 for DFI with CO 
and HF, respectively) with both models. For DE traits, ratios of prediction accuracies tended 
to be higher in model M+G (~0.65) than in model G (~0.53). There was no difference in 
prediction accuracy ratios based on the diet for DC, except for DC of nitrogen with model G 
that had lower ρ in CO than in HF diet. However, because 95% confidence intervals were 
large due to limited number of pigs in these sub-groups, these differences between diets were 
not significant.  
 
 
 
 



Discussion  
Based on these first results, the joint analysis of microbiota and genomic information does not 
appear to increase prediction accuracies of GEBVs for FE and growth traits. However, the 
addition of microbial information to genomic models seemed to improve prediction 
accuracies for DE traits. A previous study highlighted that a higher proportion of phenotypic 
variance was explained by gut microbiota for DE traits (≈ 50-60%) than for FE traits (≈ 20%) 
in this dataset (Déru et al., 2021c). This could explain why adding microbial information in 
the linear mixed models has more impact for the former traits. However, we also previously 
found higher proportions of variance due to microbial information in the HF diet than in the 
CO diet for DE traits, which did not seem to affect the ratios of prediction accuracies obtained 
when microbial and genomic information were both included in the model. In addition, higher 
prediction accuracies were observed in the HF diet compared to the CO diet for DC of 
nitrogen. Previously, heterogeneity of residual variances was observed between diets for this 
trait (Déru et al., 2021a), which could not be accounted for in the BGLR models, and could 
explain the higher prediction accuracies in the HF diet. Finally, the GEBV dispersions, 
appreciated via the regression of GEBVs with the complete dataset on GEBVs of the partial 
dataset with model G or model M+G (not presented), were also very similar in the two diets.  
We can thus conclude that there is an advantage of adding microbial information in linear 
mixed models to improve the accuracy of breeding values only for DE traits. Furthermore, the 
accuracy of GEBV predictions was not impaired with the alternative high fiber diet. 
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