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ABSTRACT17

Our data show a large scatter for the critical Shields stress for initial sediment motion. The18

main sources of dispersion are related to the methodological procedures defining the inception19

of movement (i.e., visual observations or extrapolation of sediment transport rate ) and to the20

estimation of the bed shear stress. The threshold for sediment motion varies with many factors21

related not only to grain size, but also with bed composition (e.g., presence of fine sediments in22

a coarse matrix), arrangement (e.g., bed roughness, grain orientation and characteristic lengths23
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of bed structures) and slope. New models to estimate the critical Shields number are proposed24

combining both grain size or/and bed slope. Model parameters and uncertainty are estimated25

through Bayesian inference using prior knowledge on those parameters and measured data. Apart26

from the uncertainty in observations, two types of uncertainty can be evaluated: one related to the27

parameter estimation (i.e., parametric) and one related to the choice of the model (i.e., structural).28

Eventually, a four-parameter model based on both the grain size and bed slope yields the best29

results and demonstrates a potential interaction between these two parameters. Model uncertainty30

remains, however, large, which indicates that other input parameters may be needed to improve the31

proposed model.32

INTRODUCTION33

Understanding sediment transport is a major concern in many fluvial and ecohydraulic studies34

(e.g., riverbed mobility, habitat, water quality) and predicting the critical conditions for incipient35

particle motion remains a fundamental and practical problem. Bedload increases rapidly and non-36

linearly with bed shear stress, and large uncertainties in predicting its rate near incipient motion37

have been observed in gravel-bed rivers (Camenen and Larson 2005; Recking et al. 2008; Camenen38

et al. 2011). Shields (1936) defined the dimensionless bed shear stress as:39

\ =
𝜏

(𝜌𝑠 − 𝜌)𝑔𝑑
(1)

with 𝜏 the bed shear stress, 𝜌𝑠 and 𝜌 the densities of sediment and water, respectively, 𝑔 the40

acceleration of gravity, and 𝑑 the grain size. The criterion for incipient motion of sediment particles41

is commonly expressed in terms of the critical Shields number \𝑐𝑟 . Most sediment transport42

formulas, generally derived from laboratory experiments on well-sorted sediment mixtures, relate43

bedload rate 𝑞𝑠𝑏 to the excess bed shear stress (\ − \𝑐𝑟) (Meyer-Peter and Müller 1948; Parker et al.44

1982; van Rijn 1984; Lajeunesse et al. 2010). The validity of these formulas may be questionable45

when applied to field cases, such as gravel bed rivers with poorly sorted sediment mixtures and46

complex bed features (Recking 2010). Accurate estimation of the bed shear stress and its critical47
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value for incipient motion is then challenging (Perret et al. 2020).48

Buffington and Montgomery (1997) reported a large dataset for the critical Shields number and49

the Soulsby and Whitehouse (1997) equation provides a rough fit of \𝑐𝑟 expressed in terms of the50

dimensionless grain size 𝑑∗ = 𝑑50 [𝑔(𝑠 − 1)/a2]1/3 (with 𝑠 = 𝜌𝑠/𝜌 the relative sediment density,51

a the kinematic viscosity of the fluid, and 𝑑50 the median grain size). Still, a significant scatter52

in the data exists, as for a given 𝑑∗-value, \𝑐𝑟 can vary more than one order of magnitude. Data53

scatter may result from the experimental set-up conditions (e.g., initial bed arrangement) and from54

the methodological procedures used to define the concept of incipient motion and to compute \𝑐𝑟55

(Buffington and Montgomery 1997). The scatter in the data may also reflect that \𝑐𝑟 depends not56

only on grain size (Garcia 2008) but also on bed slope (Recking 2009), hiding/exposure of grains57

(Wilcock and Crowe 2003), particle imbrication, and degree of clogging (Perret et al. 2018).58

Several studies have put forward the dependence of the critical bed shear stress on bed arrange-59

ment (Tait 1993; Haynes and Pender 2007; Yager et al. 2018; Perret et al. 2020; Hassan et al.60

2020; Hodge et al. 2020) which has been described through many indicators, such as the roughness61

height of grains, their shape (Lane and Carlson 1954; Li and Komar 1986; Petit 1989), emergence62

(Fenton and Abbott 1977), orientation and imbrication (Laronne and Carson 1976; Reid et al. 1980;63

Brayshaw et al. 1983), the degree of bed armouring, and the characteristic lengths of bed clusters/64

structures (Church et al. 1998; Venditti et al. 2017). Because the antecedent flow conditions impact65

the arrangement of the bed surface, \𝑐𝑟 is thus related to the stress history (Haynes and Pender66

2007). The critical Shields number of coarse particles can also vary by several percent (Perret et al.67

2018) according to the proportion of matrix fines (cohesive or not) (Reid et al. 1985; Curran 2007;68

Jain and Kothyari 2009; Barzilai et al. 2013; Kuhnle et al. 2013; Wren et al. 2014; Perret et al.69

2018), i.e., fine sand can increase bedload by lubrication, whereas the opposite effect is observed70

with silt and clay due to consolidation effect. Finally, hiding and exposure modify the critical71

Shields number for each size class in mixtures of non-cohesive sediment particles (Jackson and72

Beschta 1984; Ikeda and Iseya 1988; Wilcock and Crowe 2003; Curran 2007; Kuhnle et al. 2013;73

Wren et al. 2014; Perret et al. 2018). Nevertheless, the effects of hiding/exposure can be quantified74
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based only on a reference critical bed shear stress for unisized material or based on the median75

grain size - the focus of the present study.76

Several have observed that \𝑐𝑟 increases with mild slopes longitudinal bed slope 𝑆 (0.001 ≤77

𝑆 ≤ 0.05) (Shvidchenko and Pender 2000; Mueller et al. 2005; Lamb et al. 2008; Recking 2009).78

For very steep slopes (𝑆 > 0.05), Chiew and Parker (1994) demonstrated that \𝑐𝑟 decreases with 𝑆.79

The reasons for the increase in \𝑐𝑟 with 𝑆 ≤ 0.05 remains partially explored. When 𝑆 increases,80

stable bed structures appear, leading to morphologic changes and less available shear stresses81

for bedload. The slope effect could in fact be a drag effect due to bed re-arrangement. However,82

detailed experiments by Shvidchenko and Pender (2000)withwell-sortedmaterials indicate that bed83

arrangement cannot entirely explain the increase in \𝑐𝑟 . Indeed, the slope effect can be associated84

with changes in relative roughness 𝑘𝑠/ℎ, (with 𝑘𝑠 the bed roughness height and ℎ the flow depth),85

i.e., 𝑘𝑠/ℎ increases with 𝑆 (Lamb et al. 2008; Recking 2009; Camenen 2012). In a larger extent,86

the hydrograph can be related to the bed slope (steeper for high slopes) and flow acceleration may87

have an impact on friction, and thereby on bed shear stress (Camenen and Larson 2010). However,88

only steady flows will be considered in our study, in which case the slope effect can be regarded89

as a combination of at least the following two factors: bed arrangement and relative roughness.90

As the direct parameters describing bed arrangement are often not reported in previous studies, we91

explore bed arrangement only through the effect of bed slope on the critical shear stress.92

This study aims at discussing the estimation of the critical Shields number \𝑐𝑟 and associated93

uncertainty. The paper is organised as follows: Section 2 is a review of existing methodologies94

for computing bed shear stress and critical value for inception of motion. Data collection and95

three \𝑐𝑟-predictive models based on 𝑑∗, 𝑆 or both are presented in Section 3 together with the96

Bayesian framework for uncertainty quantification. In Section 4, model parameters are estimated97

through Bayesian inference using prior knowledge on those parameters and observational data. The98

final estimation of \𝑐𝑟 is then associated with a parametric uncertainty (related to the parameter99

estimation) and with a structural uncertainty (related to the choice of the model), which enables100

the evaluation of performance of the models. Results are discussed in Section 5, followed by101
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concluding remarks in Section 6.102

SOURCES OF UNCERTAINTY IN MEASUREMENT OF CRITICAL BED SHEAR STRESS103

Methods for bed shear stress computation104

Various methods are available to compute the bed shear stress 𝜏 and most of them are reported105

in Table. 1 (see Supplementary material). The depth-slope equation for uniform flow yields a reach-106

averaged value for 𝜏. The 1D Barré Saint-Venant equation (BSV) is preferred for non-uniform and107

unsteady flows. Friction laws calculate 𝜏 from the depth-averaged velocity (locally measured) or the108

cross-sectional-averaged velocity. Local bed shear stresses can also be estimated based on velocity109

profile measurements using either time-averaged values or fluctuations (Wilcock 1996; Biron et al.110

2004). Different 𝜏 values (Shields number \ values) probably can be obtained depending on the111

chosen method. Those differences may explain a part of the scatter in the data of the critical Shields112

number.113

Field studies demonstrate that the bed shear stress calculated from the depth-slope equation114

is generally larger than the one computed from the analysis of velocity profile (Petit 1989). The115

first method provides a value at the cross-sectional scale 𝜏𝑡 that lumps several components of flow116

friction such as the grain resistance 𝜏′, which is responsible for inception of motion and bedload117

transport, and the bedform resistance 𝜏′′ (i.e., 𝜏𝑡 = 𝜏′ + 𝜏′′). On the contrary, the velocity profile118

method yields the local bed shear stress, which can be assimilated to 𝜏′. In most existing studies,119

indication about bedforms are almost missing; 𝜏′′ remains difficult to estimate and can represent120

10 − 75 % of 𝜏𝑡 (Buffington and Montgomery 1997). According to Petit et al. (2005), an121

uncertainty of 50 % can be obtained for \𝑐𝑟 if the calculation is based on the total bed shear stress122

𝜏𝑡 .123

The major source of uncertainty for the depth-slope equation is mainly due to the estimation of124

the energy slope. For laboratory cases, the flume can even be too short to observe a water elevation125

gradient larger than the precision of the measuring device. In field cases, the depth-slope method126

is often improperly used, leading to large uncertainty, e.g., when the flow is not uniform or by127

replacing 𝐽 and 𝑅ℎ by 𝑆 and ℎ, respectively.128
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One of the main difficulties using local methods in small scale laboratory experiments is to129

define the flow depth ℎ related to the reference bed level 𝑧𝑏, especially for coarse sediments for130

which a spatial variability does exist even if the bed is flat. Wilcock (1996) found that measurement131

uncertainty related to the velocity profile analysis and friction law methods was 5 % and between132

5− 15 %, respectively. Biron et al. (2004) ranked the Reynolds stress analysis as the most accurate133

method for beds with no forms and specific grain arrangement. For complex beds, the turbulent134

kinetic energy method (TKE) was recommended (Kim et al. 2000). For velocity profile and friction135

law methods, one major issue is the definition of the roughness length 𝑍0 .136

Definition of incipient motion137

One of the main issues related to bedload is the definition of incipient motion. Some exhaustive138

reviews (Lavelle and Mofjeld 1987; Dey 1999; Beheshti and Ataie-Ashtiani 2008) can be classified139

in two main categories. The first one is based on sediment flux: the measured bedload rate140

𝑞𝑠 is extrapolated to zero (Shields 1936), or to a low reference value 𝑞𝑠,ref (U. S. Waterways141

Experiment Station 1935); the associated bed shear stress refers to incipient motion (i.e., critical142

bed shear stress). The Shields (1936) method was contested, as sediment motion was measured at143

conditions below the Shields diagram, which was attributed to fluctuating instantaneous velocities144

(Paintal 1971). Consequently, it may be more appropriate to consider a bed shear stress that yields145

a minimum transport rate to determine the incipient motion - 𝑞𝑠,ref = 1.6 × 10−7 m2/s (U. S.146

Waterways Experiment Station 1935). Using a dimensional flux is, however, highly sensitive to the147

type and size of sediment particles: one single gravel particle in motion (representative diameter148

𝑑 ≥ 1 cm) is sufficient to exceed the U. S. Waterways Experiment Station (1935) reference bedload149

rate criteria, whereas around 1000 particles are needed if 𝑑 = 1 mm. Following Einstein (1942)’s150

definition, the use of an arbitrary dimensionless transport rate 𝑞∗𝑠 = 𝑞𝑠/(
√︁
(𝑠 − 1)𝑔𝑑3 improves the151

results but remains grain size-dependent. Parker et al. (1982) related the incipient motion to a low152

dimensionless transport rate𝑊∗
ref = 𝑞

∗
𝑠/\3/2 = 0.002, but this criterion is adapted to sand particles.153

The second category is based on visual observations. The flow discharge (i.e., bed shear stress)154

is increased progressively until movement of particles is detected. Several have used this method155
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for laboratory experiments, but applied their own definition for the incipient motion (Kramer156

1935; Vanoni 1964). Conducting experiments on a mixture of poorly sorted sand, Kramer (1935)157

proposed the following four levels of sediment transport: (i) No transport, (ii) Weak transport -158

few of the smallest particles are in motion at isolated spots, (iii) Medium transport - particles of159

mean diameter are in motion at a small rate; and (iv) General transport - all particles are moving160

at all spots and at all times over the bed. Recking et al. (2008) merged the second and third levels.161

Kramer (1935) defined the threshold of motion to be the bed shear stress yielding general transport.162

The main difficulty of the visual method is the distinction between the above levels. Vanoni (1964)163

defined the threshold of incipient motion as the condition under which at least one grain is in164

movement every two seconds at any location. Neill and Yalin (1969) proposed a similar definition165

based on a dimensionless parameter 𝜖 = (𝑛Δ𝑡/𝐴) [𝜌𝑑5/(𝜌𝑠 − 𝜌)𝑔]1/2, where 𝑛 is the number of166

moving particles during a given time of observation Δ𝑡 on an observed bed area 𝐴. According to167

Neill and Yalin (1969), 𝜖 = 10−6 corresponds to the inception of movement (≈ 0.8 grain/m2/s).168

One issue remains: the validity of such criteria for any grain size.169

These concepts of sediment threshold leads to a large scatter in the dataset andmake comparisons170

difficult. It is obvious that there is no equivalence between the existing definitions. For example,171

both Vanoni (1964)’s definition and U. S. Waterways Experiment Station (1935)’s criterion do172

not reflect the same amount of transport rate: for 𝑑 = 3 mm, Vanoni’s definition yields 𝑞𝑠,ref ≈173

10−8 m2/s (𝑞𝑠∗,ref ≈ 2 × 10−5), whereas USWES’s criterion yields 𝑞𝑠∗,ref = 1.6 × 10−7 m2/s174

(𝑞𝑠∗,ref ≈ 2.5 × 10−4).175

Evaluation of uncertainty in measurements of critical Shields number176

It is possible to attribute an estimation of uncertainty to each data point \𝑐𝑟 according to177

two uncertainty sources: definition of threshold for sediment motion (Δdef ) and methodology for178

computing bed shear stress (Δ𝜏). The final uncertainty on \𝑐𝑟 can be written as follows:179

Δ\𝑐𝑟 =
𝑢\𝑐𝑟

\𝑐𝑟
=

√︃
Δ2

def + Δ2
𝜏 (2)
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Table 2 recaps the proposed uncertainties according to the type of data based on expertise and180

literature. Note that the focus should not be on uncertainty values but rather on how they can be181

compared to each other. Most values in Table 2 were evaluated during marginal flume tests carried182

out for Perret (2017) study where critical Shield numbers were estimated with the different methods183

and definitions. The other values were assumed based on literature review (see Sections 2 and 2).184

Uncertainty for field data is expected to be larger than for laboratory data, partly because in-situ185

measurements are more difficult to achieve, grain size distributions are poorly sorted and often186

spatially distributed, and cross-sections are irregular with possible bedforms. Also, since field187

measurements are often achieved over large periods, the studied river section may encounter bed188

changes. It should be noted that most data based on field experiments used here are from Mueller189

et al. (2005), who used Parker et al. (1982)’s criteria and depth-slope method.190

As explained in Section 2, using a reference transport rate as an incipient motion definition191

is more robust than a visual definition (Δdef1 < Δdef2, subscripts def1 and def2 correspond to192

reference transport rate definition and visual definition, respectively). Using the reference transport193

rate, the uncertainty lies mainly in the arbitrary chosen value for the reference transport rate but194

also in the reliability of measurements. For example, data collected with a Helley-Smith sampler195

and averaged throughout the river cross-section can lead to significant uncertainties (Vericat et al.196

2006; Liu et al. 2008). For laboratory experiments, bedload transport is often measured using a197

scale positioned at the downstream end of the flume (Aguirre-Pe et al. 2003; Perret 2017). The198

uncertainty Δdef1 is evaluated thus equal to 10 %. For field experiments, since bedload transport is199

usually measured partially by sampling a finite number of points throughout the river section, we200

evaluate Δdef1 = 20%. For laboratory data, we propose an uncertainty using the visual definition201

Δdef2 = 15 % based on Perret (2017)’s experiments. This was recently confirmed by Vah et al.202

(2022), who observed that the visual definition generally leads to lower critical bed shear stress203

compared to other methods. Visual definition is generally not used for field data. There exists a data204

set from Young and Mann (1985) for which inception of motion was revealed by photo analysis.205

We set the uncertainty for this case at 30%.206
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Uncertainty associated to the depth-slope method for bed shear stress computation is set for207

field experiments at 25 %, as the bed slope is generally used instead of the free surface slope and208

water depth may vary significantly throughout the river cross-section. These values are lower for209

laboratory studies, where bed conditions are constrained by the flume. The uncertainty for flume210

study Δ𝜏,𝐷𝑆 is mainly linked to the calculation of the energy slope; we suggest Δ𝜏,𝐷𝑆 =15%. This211

uncertainty may increase for specific cases with relatively coarse sediments and low water depths212

for which the spatial variability of the water depth is higher. Uncertainties for the other local213

methods vary according to the topographic complexity of the studied zone (see Section 2). Local214

techniques require many measurement points to evaluate a spatial and time-averaged bed shear215

stress. The presence of poorly sorted sediments makes also difficult the evaluation of the roughness216

length and bed level. Such local measurements are less common in the field. The proposed values217

in Table. 2 are based on Perret (2017)’s experiments.218

MATERIAL AND METHODS219

Data compilation220

We compiled an up-to-date data set for the estimation of \𝑐𝑟 . It includes the data collected221

by Buffington and Montgomery (1997) but excluding data that used the competence function or222

theoretical developments. Indeed, the latter have not really been validated and lead to substantially223

different results compared to those obtained by the other methods. It also includes additional data224

collected by Recking (2009) as well as some additional data from the following studies : Rao and225

Sitaram (1999), Gregoretti (2000), Shvidchenko et al. (2001), Pilotti and Menduni (2001), Dey and226

Raju (2002), Dancey et al. (2002), Aguirre-Pe et al. (2003), Mueller et al. (2005), Hoffmans (2010),227

Prancevic and Lamb (2015), Rous̃ar et al. (2016), Perret et al. (2020). The final data set includes228

921 points (329 points obtained with the bedload extrapolation definition, and 592 points obtained229

wih the visual method). Most of these data are from laboratory experiments (867 points). The230

54 points corresponding to field measurements were mostly obtained from Mueller et al’s (2015)231

study using coupled measurements of flow and bed load transport in 45 gravel-bed streams and232

rivers in western North America. Even if flumes represent a small patch of the temporal and spatial233

9 Perret, September 2, 2022



variability of a natural river that can also be biased due to scale effects, they remain of interest to234

study bedload transport processes since they provide data for controlled conditions with reduced235

uncertainties.236

Themeasurement uncertaintiesΔ\𝑐𝑟 were estimated for each data point based on values reported237

in Table 2. Consequently, we obtained Δ\𝑐𝑟 = 21% for laboratory data using the reference transport238

rate definition, Δ\𝑐𝑟 = 25% for laboratory data using the the visual definition, and Δ\𝑐𝑟 = 35%239

for field data (using the the reference transport rate definition). Since most of the data are from240

laboratory experiments, we eventually have an averaged value Δ\𝑐𝑟 = 25 %. Figure 1 presents the241

uncertainty 𝑢\𝑐𝑟 as a function of the dimensionless grain size 𝑑∗. The largest values are observed242

for very fine and very coarse sediments since \𝑐𝑟 can be over 0.1 for these specific grain sizes.243

Tab. 2 here.244

Fig. 1 here.245

Again, this evaluation of the measurement uncertainties in data corresponds to a first rough246

estimation. The impact of the choice for Δ\𝑐𝑟 on the results is discussed in Section 5 using a247

sensitivity analysis.248

Models for estimating \𝑐𝑟249

We propose here to test simple models for the estimation of the critical Shields number for250

inception of movement. First, we assumed the Shields curve can be evaluated as a function of the251

grain size only (through the input parameter 𝑑∗) based on the equation of Soulsby and Whitehouse252

(1997):253

\̂
(1)
𝑐𝑟 =

a
(1)
1
𝑑∗

+ a(1)2

[
1 − exp(a(1)3 𝑑∗)

]
(3)254

where \̂ (𝑘)𝑐𝑟 is the critical Shields number predicted by the model 𝑘 (here 𝑘 = 1), a(1)1 , a
(1)
2 , and a

(1)
3255

are the parameters to evaluate (a(1)1 = 0.24, a(1)2 = 0.055, and a(1)3 = −0.02 according to Soulsby256

10 Perret, September 2, 2022



and Whitehouse (1997)). The Soulsby and Whitehouse (1997) equation was chosen since it is a257

continuous, single equation suitable for all grain size while including three fitting parameters only.258

As compared to other formulas describing the empirical Shields curve as a function of the grain size259

(Iwagaki 1956; van Rijn 1984), the Soulsby and Whitehouse (1997) equation yields very similar260

results. Some difference appears for the extrapolation for very fine sediments for which there is a261

lack of data for non-cohesive sediments. We assume a critical bed shear stress independent of the262

grain size as proposed by Soulsby and Whitehouse (1997).263

Following the same idea, the critical Shields parameter can be evaluated as a function of the264

bed slope only, based on Recking (2009) equation:265

\̂
(2)
𝑐𝑟 = a

(2)
1 𝑆 + a(2)2 (4)266

where a(2)1 and a(2)2 are the parameters to evaluate (a(2)1 = 0.3 and a(2)2 = 0.04 according to Recking267

(2009)).268

We propose to use a combination of Eqs. 3 and 4 to evaluate the critical Shields parameter as a269

function of both grain size and slope:270

\̂
(3)
𝑐𝑟 =

(
a
(3)
1 𝑆 + a(3)2

)
×

(
a
(3)
3
𝑑∗

+ a(3)4

[
1 − exp(a(3)5 𝑑∗)

] )
(5)271

where a(3)1 , a
(3)
2 , a

(3)
3 , a

(3)
4 , and a

(3)
5 are the parameters to evaluate. Eq. 5 is an adjustment of Eq. 3272

with an additional slope parameter. Eq. 5 is close to the following equation proposed by Camenen273

(2012):274

\̂𝑐𝑟 =

(
0.5 + 6𝑆0.75

) sin(𝜙𝑠 − arctan 𝑆)
sin(𝜙𝑠)(

0.24
𝑑∗

+ 0.055 [1 − exp(−0.02𝑑∗)]
) (6)275

where 𝜙𝑠 is the angle of repose of sediment. It should be noted that Eq. 5 does not include the276

possible instability due to steep slopes as Eq. 6 does. However, our data set is limited to bed slopes277

below 30% , above which the term sin(𝜙𝑠 − arctan 𝑆)/sin(𝜙𝑠) starts to be significant.278
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Bayesian estimation of predictive models279

Overview and inference setup280

Several sources of uncertainty affect the use of models in Eqs. (3-5). First, their parameters281

a
(𝑘)
𝑖
are unknown and will remain uncertain even after model calibration (parametric uncertainty).282

Second, model calibration makes use of observed \𝑐𝑟 that are uncertain as described in section 3283

(observation uncertainty). Finally, the models are not perfect and are not expected to exactly284

replicate \𝑐𝑟 (structural uncertainty).285

Bayesian estimation provides a general and rigorous mechanism to estimate the unknown286

parameters of a model. It combines the information brought by uncertain calibration data with any287

pre-existing ’prior’ information on the parameters. The method used in this paper is presented in288

details by Le Coz et al. (2014), Mansanarez et al. (2016), and Perret et al. (2021). It was initially289

implemented for hydrometric rating curves but it can be applied to any kind of models.290

Let𝑶 =
(
𝑑∗,𝑖, 𝑆𝑖, \𝑐𝑟,𝑖,Δ\𝑐𝑟 ,𝑖

)
𝑖=1,...,𝑛 denotes the 𝑛 observations in the dataset described in section291

3. Each observation vector comprises values for grain size, slope, critical bed shear stress and its292

uncertainty (as described in section 2).293

In addition, let 𝑀 denotes any of the models proposed in equations (Eqs. 3-5) to estimate a294

critical Shields number \̂𝑐𝑟 from grain size 𝑑∗ and/or slope 𝑆, with parameters 𝝂:295

\̂𝑐𝑟 = 𝑀 (𝑑∗, 𝑆; 𝝂) (7)296

Bayesian estimation of parameters 𝝂 requires two ingredients: an error model, linking an297

observed value \𝑐𝑟,𝑖 with the value \̂𝑐𝑟 predicted by the model, and a prior distribution quantifying298

what is known about the parameters prior to having observed the data. This is illustrated by299

Figure 2.300

Fig. 2 here.301
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Error model302

The following error model is used to link observed and predicted values of \𝑐𝑟 :303

\𝑐𝑟,𝑖 = 𝑀
(
𝑑∗,𝑖, 𝑆𝑖; 𝝂

)︸           ︷︷           ︸
\̂𝑐𝑟 ,𝑖

+𝛿𝑖 + Y𝑖 (8)304

This equation describes two distinct error sources. The error 𝛿𝑖 is a measurement error and305

is assumed to be a realization from a Gaussian distribution with zero mean and known standard306

deviation Δ\𝑐𝑟 ,𝑖 as described in section 2. The error Y𝑖 is a structural error due to the imperfection307

of the model 𝑀 . It is also assumed to be a realization from a Gaussian distribution with zero mean.308

However, its standard deviation 𝜎 is unknown, and therefore needs to be estimated along with309

parameters 𝝂. The reason behind this distinct treatment of observation and structural errors is that the310

former exists independently of any model, and its properties can therefore be estimated beforehand.311

By contrast, the structural error is relative to the model of interest, and it is therefore difficult to312

know its properties before model estimation. Note that the normality of both measurement and313

structural errors is an assumption that can be evaluated through parameter estimation by examining314

residuals (i.e., observed minus predicted values). This assumption was found to be adequate for315

the data and models analysed in this work (not shown).316

Prior distributions317

For each unknown parameter, prior knowledge is encoded in a Gaussian distribution N(𝑚, 𝑠).318

The mean value 𝑚 represents a ’prior guess’ and the standard deviation 𝑠 represents the uncertainty319

around this prior guess. This standard deviation could potentially be very large when little is320

known about the parameter. In this paper, we choose to use as prior guess the values proposed by321

Soulsby and Whitehouse (1997) and Recking (2009) for Eqs. 3 and 4. For Eq. 5, prior guess values322

were evaluated assuming Eq. 5 corresponds to an adjustment of Eq. 3 using the additional slope323

parameter; so the prior guess values for parameters related to grain size were chosen equal to those324

of Eq. 3. Depending on the sensitivity on each of these parameters, a standard deviation was given325

between 30 and 50%. All prior guess values and related standard deviation are presented in Tab. 3326
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Tab. 3 here.327

Outcome of Bayesian estimation328

The raw outcome of Bayesian estimation is the posterior distribution of unknown parameters329

(𝝂, 𝜎). The probability density function (pdf) of this posterior distribution can be computed as330

shown in Appendix II. However, the posterior pdf is multi-dimensional and is therefore not easy to331

manipulate. Instead, it is more convenient to simulate many values from the posterior distribution,332

representing the posterior uncertainty in parameters. This simulation can be achieved by means of333

a Markov Chain Monte Carlo (MCMC) sampling algorithm. The particular sampler used in this334

paper is described in details in Renard et al. (2006).335

Once many values
(
𝝂 𝑗 , 𝜎𝑗

)
𝑗=1,...,𝑁𝑠𝑖𝑚

have been simulated by MCMC, the uncertainty in critical336

bed shear stress can be quantified by propagating these simulated values through the model: this337

corresponds to the Monte Carlo propagation method described in uncertainty analysis standards338

(JCGM 2008). In particular, applying the model equation (Eq. 7) 𝑁𝑠𝑖𝑚 times yields 𝑁𝑠𝑖𝑚 values339

of \̂𝑐𝑟 that represent parametric uncertainty, i.e., the uncertainty due to the imperfect estimation340

of parameters 𝝂. The total uncertainty is obtained by adding to each of these 𝑁𝑠𝑖𝑚 values a341

structural error Y randomly sampled from a Gaussian distribution with zero mean and standard342

deviation 𝜎𝑗 . Note that measurement errors are not propagated at this stage, since the objective343

is to estimate the true \𝑐𝑟 , rather than an observed, error-affected one. However, measurement344

errors still play an indirect role by affecting the posterior distribution and hence the uncertainty in345

estimated parameters.346

RESULTS: ANALYSIS OF CRITICAL SHIELDS NUMBER UNCERTAINTIES347

Evaluation of total uncertainty on critical Shields number using grain size only348

Figure 3 plots the estimated \̂ (1)𝑐𝑟 and related uncertainties using Eq. 3. Uncertainty bars of349

each data point are not plotted for the sake of readability. The best fit for Eq. 3 is obtained with350

a
(1)
1 = 0.196, a(1)2 = 0.0405, and a(1)3 = −0.0352. Although lightly differING from the Soulsby351
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and Whitehouse (1997) equation, the final equation yields relatively similar results compared to352

the scatter in the experimental data points.353

Fig. 3 here.354

As shown in Fig. 3, the total uncertainty originates mainly from the structural error and can355

be enclosed between −60% and +60%. The chosen model is certainly not the most appropriate356

one, i.e., \𝑐𝑟 is not only function of the parameter 𝑑∗. A more appropriate model would yield a357

dominance of parametric errors, meaning that the uncertainty comes mainly from data.358

Evaluation of total uncertainty on critical shields number using bed slope only359

Figure 4 presents the results obtained for the \̂ (2)𝑐𝑟 = 𝑓 (𝑆) relationship and related uncertainties.360

Here, the best fit for Eq. 4 is obtained with a(2)1 = 0.327 and a(2)2 = 0.0352, which is quite close361

to the results from Recking (2009) (a(2)1 = 0.3 and a(2)2 = 0.04). Again, the total uncertainty362

comes mainly from the structural error and can be enclosed between −55% and +50%. For steep363

slopes (𝑆 > 0.1), the total uncertainty is lower and can be enclosed between −25% and +30%; the364

parametric error is no more negligible, meaning the model is more accurate here.365

Fig. 4 here.366

Evaluation of total uncertainty on critical shields number using both grain size and bed slope367

Figure 5 depicts the results obtained for \̂ (3)𝑐𝑟 = 𝑓 (𝑑, 𝑆) relationship and related uncertainties.368

The best fit for Eq. 5 is obtained with a(3)1 = 1.055, a(3)2 = 0.274, a(3)3 = 0.510, a(3)4 = 0.134, and369

a
(3)
5 = −0.068. These values are quite different to our prior guess, but this is not surprising, since370

we assumed the slope to be an adjustment coefficient of the critical bed shear stress evaluated as371

a function of 𝑑∗. Interestingly, the curve for the range 3 < 𝑑∗ < 40 (i.e., sand-sized particles) is372

smoothed; the impact of grain size on the critical Shields parameter appears to be simpler than373

estimated from the Shields curve, i.e., inversely proportional to 𝑑∗for 𝑑∗ < 3, and independent of374

𝑑∗ for 𝑑∗ > 40. Indeed, most of data with sand particles were collected in low slope channels375
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whereas those with gravel particles correspond to larger slopes. A fit without accounting for the376

slope effects is thus biased by the data collection.377

Fig. 5 here.378

In Fig. 5 are presented results for four specific slopes: 𝑆 = 0.001, 𝑆 = 0.02, 𝑆 = 0.1, and379

𝑆 = 0.2. The plotted experimental data correspond to slope values of the same order (±25%); they380

are plotted with their uncertainties. Compared to Fig. 3, the total uncertainty is slightly reduced381

and can be enclosed between −50% and +50%. The total uncertainty is still dominated by the382

structural error. However, the parametric error becomes less negligible for highest slopes. It should383

be noted, however, that the proposed model underestimates \𝑐𝑟 values for steep bed slopes, which384

could be due to the relatively low number of data describing high slopes.385

Performance of models386

Table 4 presents the statistical results of the predictive capabilities of the different equations (see387

graphs in Appendix III). 𝐸𝑟,20 and 𝐸𝑟,50 correspond to a percentage of data predicted accurately388

with allowed error of a factor 1.2 and 1.5, respectively; mean𝑙𝑜𝑔 and std𝑙𝑜𝑔 correspond to the mean389

and standard deviation of the logarithm of the ratio between the predicted and measured value.390

It can be observed that the Bayesian inference leads to better predictive performances for Eqs. 3391

and 4 since calibrated to the present larger data set as compared to the original calibration. A392

formulation with five parameters (Eq. 5) does not significantly improve the results apart for the393

standard deviation. When comparing measured to predicted \𝑐𝑟-values (see Figs. 8 and 9), one can394

observe that all formulas (apart from the Camenen (2012) formula, which presents a larger scatter)395

yield relatively constant values, while observations vary a lot. This suggests that grain size and396

slope are not the only parameters to consider for predicting the inception of transport.397

Tab. 4 here.398

It is interesting to note that statistics presented in Tab. 4 slightly differ if we consider laboratory399

data or field data only (see also Tab. 5). The dispersion is higher for field data than for laboratory400
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data, as expected but the mean𝑙𝑜𝑔 are also higher suggesting that \𝑐𝑟-values are found smaller in401

the field. Field data correspond generally to poorly sorted sediments. The median grain size may402

be not adapted or sufficient to characterize the inception of motion of the mixture. Recking (2009)403

suggested using 𝑑84 instead of 𝑑50 for poorly sorted sediments. However, the fine sediment fraction404

may be the key parameter for reducing the critical bed shear stress (Wilcock 1988). In a similar way,405

the visual observation definition yields in general smaller \𝑐𝑟-values than the reference transport406

rate definition (Vah et al. 2022). This confirms the discussion in Section 2 and our suggestion to407

use a larger uncertainty for these data.408

DISCUSSION409

Assessment of retained data uncertainty410

In Section 2, we attempted to evaluate uncertainty related to the technical sources for the critical411

Shields number data set. However, values in Table 2 remain partially subjective and arguable. A412

sensitivity analysis is performed to identify the impact of the choice of the uncertainty values on413

the results. We therefore explore the results obtained for a reduced (by a factor 1.3 and a factor 2)414

or an increased (by a factor 1.3 and a factor 2) data uncertainty. These changes would lead to an415

average data uncertainty Δ\𝑐𝑟 of 12 %, 19 %, 32 % or 50 %, respectively. Let’s remind that the416

averaged uncertainty initially was estimated at 25 %.417

Fig. 6 shows the variation on the total and parametric uncertainties (𝐸𝑡𝑜𝑡 and 𝐸𝑝𝑎𝑟 , respectively)418

evaluated as an averaged of the ratio between the envelopes 97.5 % and 2.5 % for each 𝑑-values.419

Consequently, an absence of uncertainty would yield the value of 1. The total uncertainty clearly420

decreases with an increase in the data uncertainties since the latter explains a larger part of the421

residual scatter. On the other hand, a minima for the parametric uncertainty is observed for data422

uncertainties between 19 and 25 %. With a lower data uncertainty, the models are too restricted423

and unable to properly fit the data. With a larger data uncertainty, the estimated parameters of the424

models are too uncertain. This uncertainty value between 19 and 25% corresponds to an optimum425

to evaluate the parameters of the model. This is consistent with our first evaluation of the data426

average uncertainty (i.e., Δ\𝑐𝑟 = 25 %).427
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Fig. 6 here.428

For each equation (Eqs. 3, Eq. 4, and Eq. 5), we also tested the impact of the data average429

uncertainty Δ\𝑐𝑟 on the model coefficient estimation (see Fig. 10). Results are highly sensitive430

to the specified data uncertainty. In particular, for Eq. 5, our choices of priors significantly affect431

results for large data uncertainties. Indeed, we assumed the slope term (a(3)1 𝑆 + a(3)2 ) as a correction432

of Eq. 3 (with a(3)2 = 1 as an initial prior) whereas the Bayesian approach indicates something433

intermediate : the posterior distribution of a(3)2 is three times narrower than its prior whereas the434

posterior distributions of a(3)3 and a(3)4 are three times wider than their prior. This would suggest435

that slope and grain size effects are competing each other.436

A simple model for critical shields number using both grain size and slope437

As the combination of slope and grain size effects reduce the smallest values observed for438

sand-sized particles, we propose to evaluate the critical Shields parameter as a function of both439

grain size and slope using the following four parameter equation:440

\̂
(4)
𝑐𝑟 =

(
a
(4)
1 𝑆 + a(4)2

)
×

(
a
(4)
3
𝑑∗

+ a(4)4

)
(9)441

where a(4)1 , a
(4)
2 , a

(4)
3 , and a

(4)
4 are parameters to evaluate. Since Eq. 5 is very similar to Eq. 9, we442

use the same priors, i.e., a(4)1 = 0.3, a(4)2 = 1, a(4)3 = 0.24, a(4)4 = 0.055. The best fit for Eq. 9 is443

obtained with a(4)1 = 1.158, a(4)2 = 0.180, a(4)3 = 0.410, a(4)4 = 0.195.444

In Fig. 7 are presented results for four specific slopes: 𝑆 = 0.001, 𝑆 = 0.02, 𝑆 = 0.1, and 𝑆 = 0.2445

in a similar way as in Fig. 5 for Eq. 5. Uncertainties are not improved compared to Fig. 5; they446

are enclosed between −55% and +55%. Nevertheless, when comparing to data, it clearly indicates447

there is no need of using such a complex empirical function of the grain size combined with the bed448

slope (Eq. 5). In addition, the simplified equation (Eq. 9) yields the best predictive performance449

compared to the other models with more than 70 % of the data predicted accurately with an allowed450

error of a factor 1.5 as shown in Table 4.451
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Fig. 7 here.452

CONCLUSION453

A series of equations was proposed to estimate the critical Shield number with an evaluation of454

its uncertainty. The models were derived from classical equations for the inception of movement455

relating the critical Shields number to grain size, or to longitudinal bed slope, or both. A Bayesian456

approach was used to estimate the model parameters using prior knowledge and observational data457

collected in literature. The Bayesian framework takes into account the measurement errors of the458

critical Shields numbers for the computation and gives two resulting uncertainty : a parametric459

(i.e., related to parameter estimation) and a structural (i.e., related to model itself) uncertainty.460

The main sources of measurement errors were reported and discussed, especially those related461

to the definition of the inception of motion and to the method used to compute bed shear stress.462

Measurement uncertainty was evaluated to 25 % in average for our data set. A sensitivity analysis463

was performed to discuss and verify this assumption by examining the impact of a reduced or464

increased measurement error on the results. Eventually, the proposed model (Eq. 9) improved465

results for estimating the critical bed shear stress for well-sorted sediments compared to existing466

models. However, for poorly-sorted sediments, one should use this model with the median grain467

size and apply additional laws for hiding and exposure effect.468

A parametric uncertainty of approximately 10 %was found for \𝑐𝑟 computed with models based469

on grain size or based on bed slope only. Total uncertainty was always larger than 50 %, which470

indicates significant structural uncertainty. A combination of both equations provided slightly better471

results. It also showed that smaller \𝑐𝑟 values observed by Shields (1936) for sand particles may be472

a bias linked to the combination of grain size and slope effects. Eventually, a model based on four473

parameters and assuming a continuous decrease in \𝑐𝑟 with an increasing grain size yields the best474

results. Significant uncertainty remains; the parametric uncertainty being always smaller than the475

structural uncertainty. This indicates that the grain size and the bed slope are insufficient to describe476

the inception of movement. A more accurate estimation of the inception of motion should integrate477
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other factors, such as parameters describing bed composition (presence of fine sediments in a478

coarse matrix) and bed arrangement (including bed roughness, grain orientation and characteristic479

lengths of bed structures) as suggested by Perret et al. (2020). However, such parameters were not480

measured in existing experiments, which limits the development of new predictive models.481
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APPENDIX I. EQUATIONS FOR THE COMPUTATION OF BED SHEAR STRESS683

In Tab. 1 are the main methods for computing bed shear stress presented.684
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APPENDIX II. EQUATIONS FOR BAYESIAN ESTIMATION685

The posterior pdf of unknown parameters (𝝂, 𝜎) given the observed dataset 𝑶 can be computed686

as follows:687

𝑝 (𝝂, 𝜎 |𝑶)︸       ︷︷       ︸
posterior pdf

∝ 𝑝 (𝑶 |𝝂, 𝜎)︸       ︷︷       ︸
likelihood

𝑝 (𝝂, 𝜎)︸   ︷︷   ︸
prior pdf

(19)688

where the symbol ∝ means ’is proportional to’. The likelihood results from the error model in689

equation (8) and can be computed as follows:690

𝑝 (𝑶 |𝝂, 𝜎) =
𝑛∏
𝑖=1

𝑓N

(
\𝑐𝑟,𝑖;𝑀

(
𝑑∗,𝑖, 𝑆𝑖; 𝝂

)
,

√︃
𝜎2 + Δ2

\𝑐𝑟 ,𝑖

)
(20)691

where 𝑓N (𝑧;𝑚, 𝑠) denotes the pdf of the normal distribution with mean 𝑚 and standard deviation692

𝑠, evaluated at value 𝑧.693

The prior pdf is computed as:694

𝑝 (𝝂, 𝜎) = 𝑓U (𝜎; 𝑎, 𝑏)
𝑝∏
𝑘=1

𝑓N (a𝑘 ;𝑚𝑘 , 𝑠𝑘 ) (21)695

where 𝑓U denotes the pdf of a uniform distribution between 𝑎 and 𝑏 and the 𝑓N terms in the product696

denote the pdf of the normal distribution used as prior for each parameter, as described in section697

3.698
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APPENDIX III. PREDICTING CAPABILITIES OF \𝐶𝑅 EQUATIONS699

The following Figs. 8 and 9 presents the results for the predicting capabilities of the different700

equations presented in the document701

Tab. 5 presents the statistical results as Tab. 5 but with an emphasis on the methodology used702

to evaluate 𝜏𝑐𝑟 , i.e., using a reference transport rate or a visual definition, and the type of data, i.e.,703

laboratory or field.704
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APPENDIX IV. IMPACT DATA UNCERTAINTY ON RESULTS705

Fig. 10 presents the impact of the data average uncertainty Δ\𝑐𝑟 on the parameter estimation for706

each model.707

For Eq. 3 (Fig. 10a), the estimated model coefficients a(1)1 , a
(1)
2 , and a

(1)
3 decrease when data708

uncertainty increases, i.e., with a smaller sensitivity of Eq. 3 to grain size. For Eq. 4 (Fig. 10b),709

while the coefficient a(2)1 is independent of data uncertainty, a(2)2 decreases with larger uncertainty,710

indicating somehow a smaller impact of the less numerous data for high slopes. For Eq. 5 (Fig. 10c),711

one can observe a minimum and a maximum at our reference evaluation of the data uncertainty for712

a
(3)
2 and a(3)4 , respectively.713
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List of Figure captions714

715

Figure 1 : Uncertainty 𝑢\𝑐𝑟 as a function of the dimensionless grain size 𝑑∗ (def1: reference716

transport rate, def2: visual definition).717

Figure 2: Diagram of the Bayesian model to evaluate the critical Shields number: inputs,718

parameters, observations, and outputs.719

Figure 3 : Critical Shields parameter \𝑐𝑟 for inception motion estimated using Eq. 3 versus720

dimensionless grain size 𝑑∗; Uncertainty envelopes for parametric (𝐸𝑝𝑎𝑟) and total uncertainty721

(𝐸𝑡𝑜𝑡) were defined as 95 % credibility intervals (𝐸𝑡𝑜𝑡=𝐸𝑝𝑎𝑟 + 𝐸𝑠𝑡𝑟𝑢𝑐, with 𝐸𝑠𝑡𝑟𝑢𝑐 the structural722

uncertainty).723

Figure 4 : Critical Shields parameter \𝑐𝑟 for inception motion estimated using Eq. 4 versus724

longitudinal bed slope 𝑆; Uncertainty envelopes for parametric (𝐸𝑝𝑎𝑟) and total uncertainty (𝐸𝑡𝑜𝑡)725

were defined as 95 % credibility intervals.726

Figure 5 : Critical Shields parameter \𝑐𝑟 for inception motion estimated using Eq. 5 versus727

dimensionless grain size 𝑑∗ for different values of slope: 𝑆 = 0.001 (a), 𝑆 = 0.02 (b), 𝑆 = 0.1 (c),728

and 𝑆 = 0.2 (d); Uncertainty envelopes for the parametric (𝐸𝑝𝑎𝑟) and total uncertainty (𝐸𝑡𝑜𝑡) were729

defined as 95 % credibility intervals.730

Figure 6 : Evaluation of the total and parametric uncertainties in the models as function of731

the averaged uncertainties Δ\𝑐𝑟 in experimental data (For \̂ (3)𝑐𝑟 , (a): 𝑆 = 0.001, (b): 𝑆 = 0.02, (c):732

𝑆 = 0.10, (d): 𝑆 = 0.20).733

Figure 7 : Critical Shields parameter \𝑐𝑟 for inception motion estimated using Eq. 9 versus734

dimensionless grain size 𝑑∗ for different values of slope: 𝑆 = 0.001 (a), 𝑆 = 0.02 (b), 𝑆 = 0.1735

(c), and 𝑆 = 0.2 (d); Uncertainty envelopes for parametric (𝐸𝑝𝑎𝑟) and total uncertainty (𝐸𝑡𝑜𝑡) were736

defined as 95 % credibility intervals.737

Figure 8 : Predicted \𝑐𝑟,𝑒𝑞 versus measured \𝑐𝑟,𝑒𝑥𝑝 values of \𝑐𝑟 using Eq. 3 with Soulsby and738

Whitehouse (1997) coefficients (a) or with the coefficient estimated with the Bayesian approach (b)739

and Eq. 4 with Recking (2009) coefficients (c) or with the coefficient estimated with the Bayesian740
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approach (d).741

Figure 9 : Predicted \𝑐𝑟,𝑒𝑞 versus measured \𝑐𝑟,𝑒𝑥𝑝 values of \𝑐𝑟 using Eq. 6 (a), Eq. 5 (b), and742

Eq. 9 (c).743

Figure 10 : Boxplots of parameter estimations for Eqs. 3 (a), 4 (b), and 5 (c) depending on744

average uncertainties Δ\𝑐𝑟 in experimental data.745
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TABLE 2. Estimation of each component of the uncertainty depending on the type of data.

Component Laboratory data Field data
Δdef Δdef1 = 10 % Δdef1 = 20 %

Δdef1 = 20 % Δdef2 = 30 %
Δ𝜏 Δ𝜏,𝐷𝑆 = 15 % Δ𝜏,𝐷𝑆 = 30 %

Δ𝜏,𝐹𝐿 = 12 % -
Δ𝜏,𝑉𝑃 = 10 % -
Δ𝜏,𝑇𝑃 = 8 % -
Δ𝜏,𝐵𝑆𝑉 = 10 % -

def1: reference transport rate, def2: visual definition, 𝐷𝑆: depth-slope, 𝐹𝐿: friction law, 𝑉𝑃: velocity profile
analysis, 𝑇𝑃: turbulent profile analysis, 𝐵𝑆𝑉 : 1D Saint Venant equation
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TABLE 3. Prior specifications of the empirical parameters for the models (𝑘 = 1 to 4) discussed
in this paper.

Equations (𝑚, 𝑠)-values for each parameter
a
(𝑘)
1 a

(𝑘)
2 a

(𝑘)
3 a

(𝑘)
4 a

(𝑘)
5

\̂
(1)
𝑐𝑟 (Eq. 3) (0.24, 0.1) (0.055, 0.02) (−0.02, 0.01)
\̂
(2)
𝑐𝑟 (Eq. 4) (0.3, 0.1) (0.04, 0.02)
\̂
(3)
𝑐𝑟 (Eq. 5) (0.3, 0.1) (1,0.5) (0.24, 0.05) (0.055, 0.02) (−0.02, 0.01)
\̂
(4)
𝑐𝑟 (Eq. 9) (0.3, 0.1) (1,0.5) (0.24, 0.05) (0.055, 0.02)
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TABLE 4. Statistics on the proposed equations to estimate the critical Shields number.

Equations parameters 𝐸𝑟,20 𝐸𝑟,50 mean𝑙𝑜𝑔 std𝑙𝑜𝑔
Eq. 3 (SW) a

(1)
1 = 0.24, a(1)2 = 0.055,
a
(1)
3 = −0.02

29.0 59.5 0.043 0.237

Eq. 3 (Paper) a
(1)
1 = 0.196, a

(1)
2 =

0.0405, a(1)3 = −0.0352
33.1 64.5 -0.035 0.232

Eq. 4 (Rec) a
(2)
1 = 0.3, a(2)2 = 0.04 37.1 67.4 -0.010 0.239

Eq. 4 (Paper) a
(2)
1 = 0.327, a

(2)
2 =

0.0352
38.5 69.1 -0.053 0.239

Eq. 6 (Cam) 27.9 57.8 -0.099 0.225
Eq. 5 (Paper) a

(3)
1 = 1.055, a(3)2 = 0.274,
a
(3)
3 = 0.510, a(3)4 = 0.134,
a
(3)
5 = −0.068

37.7 68.7 -0.040 0.206

Eq. 9 (Paper,
Section 5)

a
(4)
1 = 1.158, a(4)2 = 0.180,
a
(4)
3 = 0.410, a(4)4 = 0.195

42.1 71.0 -0.021 0.193

SW: Soulsby and Whitehouse (1997), Rec: Recking (2009), Cam: Camenen (2012), Paper: from
this paper.
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TABLE 5. Statistics on the proposed equations to estimate the critical Shields number for selected
parts of the data set.

Equations 𝐸𝑟,20 𝐸𝑟,50 mean𝑙𝑜𝑔 std𝑙𝑜𝑔
reference transport rate

Eq. 3 (SW) 38.6 68.7 0.014 0.215
Eq. 3 (Paper) 32.2 66.0 -0.069 0.211
Eq. 4 (Rec) 47.1 75.7 -0.003 0.177
Eq. 4 (Paper) 42.2 76.6 -0.045 0.176
Eq. 6 (Cam) 26.1 56.5 -0.121 0.204
Eq. 5 (Paper) 38.3 71.1 -0.069 0.186
Eq. 9 (Paper) 45.3 74.2 -0.053 0.178

visual observations
Eq. 3 (SW) 23.6 54.5 0.059 0.247
Eq. 3 (Paper) 33.6 63.7 -0.016 0.241
Eq. 4 (Rec) 31.5 62.7 -0.014 0.268
Eq. 4 (Paper) 36.4 64.9 -0.057 0.267
Eq. 6 (Cam) 28.8 58.5 -0.087 0.235
Eq. 5 (Paper) 37.4 67.3 -0.024 0.215
Eq. 9 (Paper) 40.3 69.3 -0.003 0.199

laboratory data
Eq. 3 (SW) 29.1 60.5 0.035 0.233
Eq. 3 (Paper) 33.8 65.1 -0.041 0.228
Eq. 4 (Rec) 38.2 68.3 -0.017 0.236
Eq. 4 (Paper) 39.5 69.7 -0.059 0.236
Eq. 6 (Cam) 27.8 57.9 -0.104 0.224
Eq. 5 (Paper) 38.4 69.5 -0.044 0.201
Eq. 9 (Paper) 43.1 72.4 -0.025 0.186

field data
Eq. 3 (SW) 25.9 44.4 0.165 0.273
Eq. 3 (Paper) 22.2 55.6 0.062 0.277
Eq. 4 (Rec) 18.5 51.9 0.091 0.266
Eq. 4 (Paper) 22.2 59.3 0.046 0.263
Eq. 6 (Cam) 29.6 55.6 -0.026 0.226
Eq. 5 (Paper) 27.8 55.6 0.032 0.270
Eq. 9 (Paper) 25.9 50.0 0.044 0.280

SW: Soulsby and Whitehouse (1997), Rec: Recking (2009), Cam: Camenen (2012), Paper: from
this paper.
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Fig. 1. Uncertainty 𝑢\𝑐𝑟 as a function of the dimensionless grain size 𝑑∗ (def1: reference transport
rate, def2: visual definition).
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Fig. 2. Diagram of the Bayesian model to evaluate the critical Shields number: inputs, parameters,
observations, and outputs.
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Fig. 3. Critical Shields parameter \𝑐𝑟 for inception motion estimated using Eq. 3 versus dimension-
less grain size 𝑑∗; Uncertainty envelopes for parametric (𝐸𝑝𝑎𝑟) and total uncertainty (𝐸𝑡𝑜𝑡) were
defined as 95 % credibility intervals (𝐸𝑡𝑜𝑡=𝐸𝑝𝑎𝑟 + 𝐸𝑠𝑡𝑟𝑢𝑐, with 𝐸𝑠𝑡𝑟𝑢𝑐 the structural uncertainty).
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Fig. 4. Critical Shields parameter \𝑐𝑟 for inceptionmotion estimated using Eq. 4 versus longitudinal
bed slope 𝑆; Uncertainty envelopes for parametric (𝐸𝑝𝑎𝑟) and total uncertainty (𝐸𝑡𝑜𝑡) were defined
as 95 % credibility intervals.
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Fig. 5. Critical Shields parameter \𝑐𝑟 for inception motion estimated using Eq. 5 versus dimension-
less grain size 𝑑∗ for different values of slope: 𝑆 = 0.001 (a), 𝑆 = 0.02 (b), 𝑆 = 0.1 (c), and 𝑆 = 0.2
(d); Uncertainty envelopes for the parametric (𝐸𝑝𝑎𝑟) and total uncertainty (𝐸𝑡𝑜𝑡) were defined as
95 % credibility intervals.

45 Perret, September 2, 2022



0 10 20 30 40 50 60
10

0

10
1

10
2

0 10 20 30 40 50 60

1

1.1

1.2

1.3

1.4

Fig. 6. Evaluation of the total and parametric uncertainties in the models as function of the averaged
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Fig. 7. Critical Shields parameter \𝑐𝑟 for inception motion estimated using Eq. 9 versus dimen-
sionless grain size 𝑑∗ for different values of slope: 𝑆 = 0.001 (a), 𝑆 = 0.02 (b), 𝑆 = 0.1 (c), and
𝑆 = 0.2 (d); Uncertainty envelopes for parametric (𝐸𝑝𝑎𝑟) and total uncertainty (𝐸𝑡𝑜𝑡) were defined
as 95 % credibility intervals.
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Fig. 8. Predicted \𝑐𝑟,𝑒𝑞 versus measured \𝑐𝑟,𝑒𝑥𝑝 values of \𝑐𝑟 using Eq. 3 with Soulsby and
Whitehouse (1997) coefficients (a) or with the coefficient estimated with the Bayesian approach (b)
and Eq. 4 with Recking (2009) coefficients (c) or with the coefficient estimated with the Bayesian
approach (d).
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Fig. 9. Predicted \𝑐𝑟,𝑒𝑞 versus measured \𝑐𝑟,𝑒𝑥𝑝 values of \𝑐𝑟 using Eq. 6 (a), Eq. 5 (b), and Eq. 9
(c).
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Fig. 10. Boxplots of parameter estimations for Eqs. 3 (a), 4 (b), and 5 (c) depending on average
uncertainties Δ\𝑐𝑟 in experimental data.
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