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Abstract
1.	 To fulfil fisheries management objectives that often include implementing the 

precautionary and ecosystem-based approaches, multispecies fisheries data 
need to be analysed. Amongst the different methods dealing with these multidi-
mensional data, self-organizing maps (SOMs) remain rarely used, although they 
are highly flexible in data input and offer visualization possibilities particularly 
suited to summarize complex datasets.

2.	 Here, we propose to combine SOMs with a clustering approach to break down 
data complexity and produce simple geographic maps showing catch hotspots, 
which can indicate sensitive zones in terms of fishery management. To promote 
this approach, we tested it first on simulated datasets and then on the open-
access ICCAT commercial catch database of the tropical tuna fisheries of the 
Atlantic Ocean. We aimed to detect drifting fish aggregating devices (dFADs) 
catch hotspots of juveniles of two tuna species, bigeye and yellowfin tunas and 
of the silky shark, a commonly bycaught vulnerable shark species, in tropical 
tuna purse seine fisheries. Simulations on datasets increasing in complexity (in 
number, geographic and duration extent of the hotspots and number of species 
in the analysis) informed us about the method's sensitivity and limits.

3.	 Our findings showed that, in the context of multi-specific fisheries, the detec-
tion of the hotspot is dependent on a certain level of catch within the hotspot 
and that adding species to the analysis tended to mask small and short-duration 
hotspots. Applied to tropical tuna fisheries' data, the method confirmed the em-
pirical knowledge on which first time-area closures were based and provided 
scientifical support.

4.	 All in all, the visual support provided by the method, its interpretability and its po-
tential transferability to other fisheries' systems constitute its main strengths and 
imply a possible implementation in management decisions; specifically, as a tool 
to reach agreement between stakeholders in the definition of regulated areas for 
protecting juveniles of tunas and vulnerable associated species to dFAD practices.
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1  |  INTRODUC TION

To maintain fish stocks' exploitation rates at sustainable levels, a good 
knowledge of their ecology, and particularly of their spatiotemporal dy-
namics, is crucial. In multi-specific large-scale fisheries, species' distri-
butions and their associative behaviours may change in space and time; 
hence disentangling seasonal or yearly dynamics and, in case of com-
munities, isolating the key life stages of the target species and vulner-
able species poses a great challenge to managers (Hilborn et al., 2021). 
To overcome the difficulties posed by the spatiotemporal dimension 
and the multi-specific characteristic of many fisheries, scientists have 
used different methods, including generalized linear mixed models 
(Kai et al., 2017), Bayesian modelling (Paradinas et al., 2015; Quiroz & 
Prates, 2018), joint dynamic species distribution models implemented 
in the vector autoregressive spatiotemporal package (Guan et al., 2020), 
Poisson-link delta models (Grüss et al., 2019) or spatially explicit age-
structured ecosystem models (Sibert et al.,  2012). Such models are 
highly complex and require technical skills and consequential decisions 
from the users. They consequently prove to be poorly suited as deci-
sion tools for fishery managers and other stakeholders.

Aspiring to develop a method for hotspot identification easier to im-
plement and to transfer to different systems and fishery managers, we 
here propose self-organizing maps (SOMs), an unsupervised artificial 
neural network (Kohonen, 1982). Their use is rising in ecological studies 
as they allow to explore patterns in large and complex datasets with-
out a priori assumptions (Kalteh et al., 2008; Kangur et al., 2007; Park 
et al., 2006; Peña et al., 2015), yet they have been applied to few fish-
eries' studies until now (Conti et al., 2012; Hyun et al., 2005; Mendoza-
Carranza et al., 2018; Russo et al., 2016; Simić et al., 2014). Amongst 
their main characteristics, SOM smooth data by filtering out noise. 
Furthermore, they sustain nonlinearity, high interaction between vari-
ables, outliers and zero values (Giraudel & Lek, 2001), amongst others 
typical attributes of commercial fishing data. Finally, they allow the user 
to visualize the multi-dimensional information on a two-dimensional 
plane, the ‘map’, easier to interpret by stakeholders and fishery ad-
ministrators (Carlucci et al., 2018; Vesanto & Alhoniemi, 2000). In the 
case of spatiotemporal analysis, Andrienko et al.  (2010) proposed to 
visualize the results either as space-in-time or time-in-space graphics. 
For species' abundance or catch hotspots within a defined geographic 
zone, these two possibilities translate into visualizing fixed spatial situ-
ations at a specific point in time or into visualizing changes over time in 
a specific place, respectively. The visual dimension is, beyond the flexi-
bility in data input, undoubtedly the main appeal of SOMs.

In this multi-specific context, tropical tuna purse seiners in the 
Atlantic Ocean started deploying drifting fish aggregating devices 
(dFADs) in the early 1990s as it was known that tuna schools were 
aggregating under natural logs coming from river mouths (Arriz 
et al., 1999). Although setting the purse seine net (i.e. a fishing set) 
on a dFAD is less valuable in commercial size of tunas than on a free 

school, as it is composed mainly by juveniles of yellowfin (Th. alb-
acares), bigeye (Thunnus obesus) tunas and all size classes of skipjack 
tunas (Katsuwonus pelamis), the rate of successful sets is higher (90% 
and 50%, respectively; Fonteneau et al., 2000). Further, the search-
ing time to detect dFAD schools is reduced, particularly since the in-
troduction of satellite-tracked buoys attached to dFADs in the late 
1990s and then echo-sounders in 2010 (Baidai et al., 2020; Fonteneau 
et al., 2013; Torres-Irineo, Gaertner, et al., 2014). Their growing use 
represented 74% of total purse seiners catches in 2019 (ICCAT, 2021). 
Besides, the bycatch ratio, which includes associated non-tuna spe-
cies, from other bony fishes to several vulnerable species as sharks, 
rays and turtles, is significantly higher in those sets (Torres-Irineo, 
Amandè, et al.,  2014a). In the Atlantic Ocean, this fishery is reg-
ulated by the International Commission for the Conservation of 
Atlantic Tunas (ICCAT) and has been subject to varying static time-
area closures of dFAD-fishing and other measures aiming at protect-
ing juveniles of the main tropical tuna stocks since the late 1990s 
(ICCAT,  2020). However, these closures are not based on scientific 
advice and ongoing studies are evaluating their relevance.

In this study, we investigated the efficiency of SOMs combined 
with a clustering approach in detecting tuna juveniles' and vulnera-
ble associated species' hotspots, candidate zones for time-area clo-
sures on dFAD activities (i.e. moratoria on dFAD). In a first step, we 
tested the SOM method's effectiveness with simulated mono- and 
multi-specific hotspots increasing in complexity both in number of 
species and level of abundances. In a second step, we applied it to 
real tropical tuna catch data and an index for juvenile silky shark 
(Carcharhinus falciformis) abundance derived from the literature 
(Lopez et al., 2020). More specifically, we asked (a) how large catches 
must be within a hotspot to be detected, particularly in relationship 
to other and to the same species in the surrounding areas and in the 
same temporal strata, (b) if both the number of species and the num-
ber of hotspots in the dataset play a role in the detection sensitivity, 
(c) if hotspots overlapping in time are correctly detected and finally 
(d) how to integrate a different type of data, for example, the case of 
bycatch of vulnerable species registered in general as presence/ab-
sence. It should be noted that the study was conducted in a practice-
oriented mindset, exploring and refining the potential application of 
an already existing approach to a new purpose, rather than pursuing 
pure methodological objectives.

2  |  MATERIAL S AND METHODS

2.1  |  Study context

Since the creation of the ICCAT in 1969, the contracting parties 
commit to cooperating in maintaining the populations of tunas 
and tuna-like species in the Atlantic Ocean and its adjacent seas 

K E Y W O R D S
bycatch, ecosystem-based approach, FAD, multispecies fisheries management, self-organizing 
maps, time-area closures, tropical tunas

 2041210x, 2022, 12, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14008 by Inrae - D
ipso, W

iley O
nline L

ibrary on [20/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2852  |   Methods in Ecology and Evolu
on STEPHAN et al.

at sustainable levels for exploitation (ICCAT,  2019). Since 2015, 
they additionally commit to apply both ecosystem-based and 
precautionary approaches to their management practices, that 
is, to consider the ecosystem as a whole (including species either 
dependent on the stocks or negatively impacted by the fishing 
methods) and to base their decisions on best available scientific 
advice (ICCAT, 2015). To achieve those objectives, the commission 
started introducing and adapting restrictive measures in 1998, 
consisting progressively over time in a combination of catch lim-
its, capacity limitations, limitations in number of dFADs by vessel, 
static time-area closures for dFAD-fishing, etc. (Figure  1). Only 
few studies until now have explored in a multispecies context the 
effectiveness of the implemented measures in protecting both 
juveniles' bigeye and yellowfin tunas and in reducing bycatches 
of vulnerable associated species (Escalle et al.,  2017; Swimmer 
et al., 2020; Watson et al., 2009). Fonteneau et al. (2016) quanti-
fied the impact of the dFAD moratorium in place between January 
2012 and February 2016 (Rec11, Figure 1) and found that, over-
all, this moratorium had limited results without significant reduc-
tion of European dFAD catches in 2013 and 2014. Furthermore, 
the authors did not observe major catches within the closure 
area after its reopening in March, and a ‘fishing the line effect’ 
emerged, that is, the catches around the borders of the closure 
were higher than usual. However, recent analyses on the Atlantic 
Ocean tuna tagging program's data suggest that this same morato-
rium was efficient for skipjack and yellowfin tunas, at least during 
closure months (Perez et al., 2022).

2.2  |  Data

2.2.1  |  Simulations

As an initial step, we simulated fisheries' data to test the robustness 
and sensitivity of the SOM method for the detection of dFADs catch 
hotspots in R (R Core Team, 2013). We generated five random data-
sets, that is, one per species (three targeted tuna species and two 
bycaught species), using the ‘rtruncnorm’ function from the trunc-
norm package (Mersmann et al., 2018) that generates random values 
for the truncated normal distribution. For each species, we set the 
mean and standard deviation to the values from the ICCAT's tropi-
cal dFADs catch dataset to ensure that the simulations reflected 
a realistic case. In the ICCAT dataset by fishing mode, bigeye and 
yellowfin tuna made up between 10% and 20% of the total purse 
seiner dFADs catch, while skipjack made up for the rest. We were 
thus particularly interested in datasets where one species dominates 
the catch by far, and where that species is not the one considered 
overexploited, or at least not to be protected. For the generation 
of tuna hotspots, we manually increased the species' abundances 
in a selected geographic zone using the ‘mutate’ function in combi-
nation with ‘case_when’ function, both from ‘dplyr’ (Mailund, 2019). 
To identify the threshold of detectability, we did this gradually and 
separately for the juveniles of the two supposed overexploited, or 
close to overexploitation, tuna species (bigeye and yellowfin, re-
spectively). Within the hotspot, we added between half and three 
times the mean catch by spatiotemporal unit (1° square × month, see 

F I G U R E  1  ICCAT recommendations 
since their introduction in 1999. FAD 
stands for fish aggregating device.
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Table 3 and see the script ‘DataSimulation_Over12months’ on the 
stephanpau/SOM_TunaFisheries GitHub repository).

Moreover, with the aim to explore the robustness of SOM with 
regards to different data types, we simulated two associated bycatch 
species in dFAD operations whose estimated abundances were rep-
resented with indices ranging from 1 to 6, as catch of associated 
non-tuna species are not reported in the ICCAT database. We used 
‘rtruncnorm’ again, yet with no reference dataset. We set the lower 
and upper limits to 0 and 6, and the means to 0.5 and 1.5, to have 
two different cases: a low occurrence species, and a species more 
likely to have high-abundance hotspots.

2.2.2  |  Case study

With the aim to assess the performance of our approach on an 
open-access commercial catch dataset (available from: https://
www.iccat.int/Data/t2ce_PS91-19_bySch​ool.7z), we applied the 
selected method to the tropical tuna fishery targeting tunas associ-
ated with dFADs in the Eastern Atlantic Ocean, as described above. 
To evaluate whether the dFAD moratorium's spatiotemporal strata 
may alter the detection of catch hotspots we ran our analyses on the 
period 1994–1998, before any time-area closure entered into force, 
and on the period 2012–2016, during an overall respected morato-
rium except for its first implementation year (Rec[11-01], Figure 2, 
ICCAT, 2020).

With regards to the juvenile silky shark, we created an estimated 
abundance index from the quarterly heatmaps that summarize the 
European observer programme's data (Spain and France) collected 
between 2003 and 2015 (Lopez et al., 2020). We recreated the pa-
per's sampling cells using the ‘SpatialPolygons’ function from the sp 
package (Pebesma & Bivand, 2012). We then overlapped these large 
sampling zones with the ICCAT1 × 1° grid to assign a shark abundance 
index value to each of the ICCAT cells. We used the ‘overGeom-
GeomDF’ function from the rgeos package (Bivand & Rundel, 2013). 
The shark data contained NA values, which eventually leads to rows 
being dropped during the SOM training. However, we kept them 
as NAs instead of setting them to 0 or to their neighbouring cells' 
values to illustrate the method's application to incomplete data. To 
check the robustness of this assumption, we ran the analysis once 
with NAs set to 0 and obtained overall the same results.

2.3  |  Methods

2.3.1  |  Self-organizing maps

SOMs are an unsupervised artificial neural network (Kohonen, 1982) 
used in ecology to detect patterns in complex datasets (Roigé 
et al., 2017). It consists of a two-dimensional map of a given num-
ber of hexagonal or rectangular nodes ordered in a grid. The net-
work is trained on the data input matrix, constituted of input vectors 

F I G U R E  2  Purse seine tuna catch on dFADs during the moratorium period (rec[11-01], within (red) and outside (black) the time-area 
closure, source: ICCAT). The closure was less respected in the first and last years of its implementation.
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of a given dimension. Each of the map's nodes is initialized with a 
‘codebook’ vector of random values and of the same dimension as 
the input ones, a vector that will characterize the node throughout 
the analysis. The training then starts with a randomly selected input 
vector from the data input matrix. It is fed into the layer and a ‘best-
matching unit’, that is, the node with the closest vector values, is 
selected. This node's codebook vector and its neighbourhoods are 
adjusted according to the neighbourhood radius to near the input 
vector. Vector by vector, the input matrix is fed in the network until 
convergence is reached (Chon,  2011). At the end of the training, 
each node is thus characterized by a codebook vector that now rep-
resents a few or more input vectors, that is, the codebook vector is 
very close to several ones from the input matrix. This repartition of 
observations within the two-dimensional network constitutes a first 
clustering step and its visualization already provides information on 
the ecosystem and especially on species' associations (Figure 3a–c).

With the aim to explore the robustness of SOMs to detect catch 
hotspots in presence of different data types, we performed two 
analyses: (1) by using an input matrix containing only the catch of 
each of the three species of tuna and (2) using an alternate input 
matrix to which we added the abundance indices of one (case study) 
or two (tests on simulated data, Table 3) associated pelagic species 
(Figure 3b). We explored different data pre-processing options that 
are explained in the ‘Clustering’ section below as those try-outs 
were combined with tests on the clustering method. In short, the 
results showed that centring and scaling the input matrix was the 
way to reduce the effect of the most caught species (otherwise skip-
jack catch drove the distribution of input vectors in the nodes; see 
Table 1; Figure S1 in the Supplementary Material for more details). 
We excluded log-transformation, as it emphasized low-abundance 
clusters, that is, ‘cold spots’ (Hyun et al., 2005).

We implemented the network training using the unsupervised 
‘som’ function of the kohonen package (Wehrens & Buydens, 2007) in 
R (R Core Team, 2013). SOMs are trained in several steps and, for this 
function, require the users to define parameters and convert their 
data to a numeric matrix. The most influential parameters (Table 1) 
to define are the map size and its side ratios and consequently sev-
eral heuristic rules have been proposed (Céréghino & Park,  2009; 
de Bodt et al., 2002; Park et al., 2006; Vesanto & Alhoniemi, 2000). 
The optimal grid size, or number of nodes, revolves around 5√n for n 
input vectors, and the optimal sides ratio approaches the ratio of the 
two highest eigenvalues of the input matrix. The learning rate alpha 
and the number of iterations rlen can be set for reasonable computa-
tion time and until convergence is reached (Andrienko et al., 2010).

2.3.2  |  Clustering

Hierarchical clustering reduces the information to an amount 
easier to interpret and allows the geographical mapping of high-
abundance clusters (Carlucci et al., 2018). The clustering algorithm 
is applied to the SOM's codebook vectors and can be visualized 
on the network (Figure 3e). To select the most reliable clustering 

approach, we first ran tests on simulated data with defined hotspots 
of one or two tuna species. Table 2; Figure S1 in the Supplementary 
Material summarize the conclusions of these tests. Ward's crite-
rion, used for generating a dendrogram with the ‘hclust’ (R Core 
Team, 2016) function and already known to be more discriminatory 
than other criteria such as UPGMA (Mérigot et al., 2010), in com-
bination with the ‘cuTreeHybrid’ function from the dynamicTreeCut 
package (Langfelder et al.,  2008) performed best. This package 
was originally designed for genetic analyses and detects clusters 
based on the shapes of dendrogram's branches. The ‘nbclust’ func-
tion (Charrad et al.,  2014), combining different methods to esti-
mate the ideal number of clusters, was more dependent on data 
pre-processing and clustering criterion (see Figure S2). This has re-
percussions on the spatial distribution of the input data's assigned 
clusters (see script ‘DataSimulation_Preprocessing_Clustering’ on 
the stephanpau/SOM_TunaFisheries GitHub repository). We thus 
selected the approach combining the ‘hclust’ and ‘cuTreeHybrid’ 
functions.

After the clustering algorithm was applied to the codebook vec-
tors and as each observation (i.e. each vector of tropical tuna catches 
for a 1° square × month cell) is assigned to a node and each node to 
a cluster, a cluster is assigned to each observation (Figure  3f). As 
each observation is identified in space and time, we can geograph-
ically map the clusters accordingly. We propose two options for 
visualization.

The first one consists in extracting only the clusters of interest, 
in our case, the high catch clusters, to facilitate the reading of the 
geographic maps and calculating the difference between medians of 
the clusters, to cut off above the highest distance to map only the 
ones above this limit (Figure 3g). We used the ‘ave’ function from 
the stats package (R Core Team, 2016) to compute distance between 
medians of the clusters and filtered the clusters above the maximal 
distance. However, this method has limitations: it can happen that 
clusters that would have been included by a visual selection from the 
boxplots are excluded. Therefore, a careful attention to the boxplots 
is needed to avoid missing clusters.

The second option takes the form of a vulnerability categorized 
index from 1 to 10 for each cluster, easy to plot and to interpret 
(Figure  3h). This value between 1 and 10 is produced with the R 
package scales (Wickham, 2016), that is used to rescale the cluster's 
weighted mean catch or estimated abundance indices. Doing this by 
cluster rather than by observation ensured that the information from 
the SOM was not lost. When calculating the weighted mean catch, 
the users can set weight factors for each species according to their 
relevance in terms of fishery management, for example, depending 
on their change of stock status over time as observed in the Kobe 
plot (Kell, 2011; Walter et al., 2019). They thus pick the species to 
bring in the forefront. In case of two datatypes with different units, 
such as catch data and estimated abundance indices, we recommend 
calculating vulnerability indices separately. Fisheries' stakeholders 
can then compare those maps for decision-making: on one side ju-
veniles of tuna and on the other vulnerable associated species they 
seek to protect.
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3  |  RESULTS

3.1  |  Simulation results

Analyses on simulated data to identify detection thresholds of juve-
niles' catch hotspots revealed that our method allowed to easily spot 
them on the maps every time the local catch within the hotspot is 
equal to or larger than 1.5 time the average catch of the tested spe-
cies in the same month (see Table S1).

Furthermore, the method correctly identified most of the 
hotspots when increasing complexity in a 12-month simulation. 
Table  3 displays the performance of the method starting from a 
baseline case with no added hotspot. In case n°1, we added a bi-
specific (bigeye and yellowfin) hotspot that lasted 3 months, from 
January to March. The last column indicates that three hotspots out 

of three were detected, in other words that the bispecific hotspot 
was detected each month it was present. In case n°2, we kept the 
previous hotspot and added a single species' hotspot in November, 
which was also perfectly detected. From case n°3 onwards, we in-
troduced associated species. In contrast to the previous scenarios, 
in case n°4, a bigeye hotspot over 1 month was not detected. As a 
sensitivity analysis, we then varied its added catch and its presence 
month. Increasing the catches within that non-detected hotspot 
(case n°5) resulted in detection, while conversely moving it only to 
another month to avoid temporal overlapping with the ray hotspot 
(case n°6) did not. Replacing the ray hotspot by a bigeye hotspot, 
that is, substituting by bigeye catches for the same zone and same 
months (case n°7), led again to detection. These results suggest that 
a 1-month and mono-specific hotspot does not weigh enough in a 
five species system.

F I G U R E  3  Typical workflow for a 5-species system during 1 year. (a) Joining of fisheries’ catch data and bycatch data, in this case in the 
form of abundance indices between 0 and 5. (b) Conversion of species’ columns to matrix format, then centring and scaling of the matrix. 
(c) SOM training and visualization. (d) Extraction of the codebook vectors. (e) Clustering of the nodes using the ‘hclust’ and ‘cuTreeHybrid’ 
functions and projection of the clusters on the SOM. (f) Assignment of the cluster to the original observations that belong to a node. (g) 
Extraction of BET and YFT high abundance clusters using the clusters’ medians. (h) Creation of a vulnerability index by cluster for the tuna 
species and for the associated species independently of each other (the latter is not illustrated, see Figures 5 and 6).

TA B L E  1  Main SOM parameters of the ‘som’ function from the ‘kohonen’ package. ‘Data’ refers to the SOM's data input matrix, centered 
and scaled.

Parameter Set to

Grid size Conventional rule: 

Sides ratio (x/y) Conventional rule:
svd.data = svd(data)
x/y = svd.data$d[1]/svd.data$d[2]

Topography (topo) ‘hexagonal’ (vs. ‘rectangular’)

Nb. of iteration (rlen) In a first round, plot ‘changes’ and check when convergence is reached. Choose value 
optimizing computation time and convergence. In our case, it appeared than 15,000 
iterations was an efficient choice

Learning rate (alpha) Default: decline linearly from 0.05 to 0.01 over rlen updates

Neighbourhood radius (radius) Default: start value covers 2/3 of all unit-to-unit distances

(ceiling(
√

nrow(data)) × 5

Simulated data hclust + cuTreeHybrid nbclust

Hotspots Preprocessing Ward UPGMA Ward UPGMA

BET None — — — —

Center-scale X — X —

log1p center-scale — — — —

log1p — — — —

BET/YFT None — — — —

Center-scale X X X —

log1p center-scale X — — —

log1p X — — —

TA B L E  2  Mono- and multi-species 
hotspot detection results of SOM's 
analyses on simulated data (one temporal 
unit) under different data pre-processing 
and clustering approaches. ‘X’ marks the 
correct identification of the hotspot. See 
script ‘DataSimulation_Preprocessing_
Clustering’ on the stephanpau/SOM_
TunaFisheries GitHub repository for more 
details.
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3.2  |  Case study: Tropical tuna fisheries of the 
Atlantic Ocean

3.2.1  |  General trends

The SOMs were trained by individual year and by month over the 
5-years periods (1994–1998 and 2012–2016), and for the sum of 
catch over all years (i.e. by summing up purse seiners tuna catch 
on dFADs by spatiotemporal cell and associating those with the 
juvenile silky shark abundance index). From the analysis of the out-
comes, it can be observed that no information was lost when sum-
marizing the dataset as a typical year. As this is the most efficient 
analysis for later interpretation and management decision-making, 
we present the results for the summed catch of the two time peri-
ods selected, before and after the implementation of the moratoria 
on dFADs.

The same and already known trends in tuna species' associations 
emerged from both periods of years and are reflected in the clus-
ters, defined by the black borders and numbered (Figure 4). Clusters 
rallied the same type of observations in both periods, for example, 
clusters n°3 and n°4, for 1994–1998 and 2012–2016 periods respec-
tively. Skipjack (SKJ) and bigeye (BET) tunas were more closely asso-
ciated, as can be seen with their overlapping high-abundance zones: 
the upper left corner for the 1994–1998 period and in the bottom 
left corner for the 2012–2016 period. In both time periods as well, 
the silky shark juveniles appeared to reside in similar zones as yel-
lowfin tuna, and less so with the two other species (Figure 4a upper 
part for 1994–1998 and Figure 4b cluster 5 for 2012–2016).

3.2.2  |  Tuna juveniles' and vulnerable associated 
species' hotspots

During the first period (1994–1998) one main zone between 
November and March was isolated: a 10° wide horizontal hot-
spot along the Equator, approximately between 25° W and 5° W 
(Figure 5). This area corresponds to the core zone of the different 
dFAD seasonal closures implemented between 1999 and 2019 and 
defined following expert knowledge (dark red zone in Figure 1). It 
can be seen however, that juvenile silky sharks are not particularly 
associated with these hotspots (panels c and d of Figure 5).

For the 2012–2016 period, a period subject to an ICCAT dFAD 
time-area closure in January and February, several tuna hotspots 
are detected. In their turn the juvenile silky sharks' hotspots ex-
tracted from Lopez et al.'s  (2020) distribution maps are correctly 
identified. These results give hints towards better fitted, smaller 
and shorter time-area closures. For instance, (i) between July and 
September, two small hotspots for both tunas and sharks emerged 
along the Mauritanian and the Gabonese coasts, (ii) in November 
and December, the same 10° wide horizontal hotspot appeared 
along the Equator, approximately between 25°W and 5°W and (iii) in 
February and March, during and right after the closure, a very small 
zone in the South of the Angolan coast emerges (Figure 6).TA
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The discrepancy between the two periods of years in the dura-
tion of the central hotspot (November–December versus November–
March) suggested that the decrease in dFADs catch due to the 
moratorium masked its location between 2012 and 2016. Besides, 
as can be seen in the difference in the geographical extent of the 
catch data, the fishery has greatly expanded and spread towards 
the south. This explain why the small hotspot in front of Angola 
could not have been detected in the 1990s, as well as the silky shark 
hotspots below the 10°S latitude.

4  |  DISCUSSION

4.1  |  Potential for fisheries management

The method proposed in this study was developed from a practice-
oriented perspective. We tested it on randomly generated datasets 
whose characteristics (location, overall mean catch values and standard 

deviations) were based on the ICCAT's tropical purse seiner dFADs 
catch by 1° × month cells statistics. Those simulations and the follow-
ing case study on tropical tuna fisheries of the Atlantic Ocean demon-
strated the approach's effectiveness in identifying candidate zones for 
dFAD time-area closures. These zones, illustrated in patent geographic 
maps, have the potential to underpin management at the fishery scale, 
that is, to be brought around the table and to serve as a discussion basis. 
It should also be noted that the method would detect classical ‘fishing 
the line’ and effort reallocation effects (Torres-Irineo et al., 2011), which 
should both be considered before taking management decisions.

Besides, the method's R scripts can be run with minimal skills and 
require only minor changes from the users, who would adjust the 
factors to compute the vulnerability indices so as to better reflect 
the changes over time of the exploitation status of tuna species and 
the apparent abundance of associated species. Moreover, transfer-
ring the analysis workflow to a different dataset or ecosystem neces-
sitates few simple adjustments, which in our opinion constitutes the 
main appeal of this approach in comparison to the ones mentioned 

F I G U R E  4  Heat maps for the four 
species by period, that is, 1994–1998 (a) 
and 2012–2016 (b). The numbers refer 
to the clusters delimited by the black 
borders. Warm colours correspond to 
high catch values or abundance index, 
while cold colours indicate low catch. 
See scripts ‘FinalSOM_94_98’ and 
‘FinalSOM_12_16’ on the stephanpau/
SOM_TunaFisheries GitHub repository for 
more details.
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F I G U R E  5  Illustration of parts of the results from the period 1994–1998, months 2 and 3. The central tuna hotspots that appears is 
present from November to March. This zone was empirically selected for a large time-area closure during three periods between 1998 and 
2019 (see Figure 1).
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in the introduction section (Grüss et al., 2019; Guan et al., 2020; Kai 
et al.,  2017; Paradinas et al.,  2015; Quiroz & Prates,  2018; Sibert 
et al., 2012). A further strength is undoubtedly the flexibility in data 
input, even if it implies cautious interpretation from the users.

4.2  |  Limitations

The main limitation faced in the case study and most likely to be 
faced by anyone working on fisheries management was data quality 
and availability. We performed the analysis on an open-access data-
base as it was, bearing in mind that we wanted to reflect a real-life 
situation with limited data access. We, thus, had to take account of 
the following points:

1.	 The ICCAT task 2 catch/effort data per fishing mode consists 
in logbook data corrected in terms of tuna species and size 
compositions based on samplings at landing. However, until 
now the correction process is done at large grid unit for the 
European purse seiners and with inequal quality with regards 
to data logbook collection and sampling effort for several other 
purse seiner fleets.

2.	 Reliable juvenile proportions of bigeye and yellowfin tunas esti-
mated by sampling for every 1°cell with dFAD catch would have 
been needed to identify accurately juvenile catch hotspots. Still, 
as bigeye and yellowfin catch on dFADs are typically made up 
of about 80% of juveniles, we can reasonably assume that hot-
spots identified on this dataset are predominantly constituted of 
juveniles.

3.	 Bycatch data are collected by national or European observer pro-
grams (Escalle et al., 2016; Torres-Irineo, Amandè, et al., 2014b) 
and not freely accessible. Besides, to estimate bycatch in tuna 
purse-seine fisheries, data comes sometimes from low-coverage 
observer programs and is raised to the whole fisheries resulting 
in high uncertainty (Amandè et al.,  2012). Nevertheless, in this 
study, we could show that spatially, temporally and quantitatively 
coarse abundance indices could efficiently be combined with 
precise catch data. This approach still requires minimal bycatch 
information, which is not available in the literature or online for 
most vulnerable species. We thus considered using species' distri-
bution models (Lezama-Ochoa et al., 2020; Pikesley et al., 2013; 
Santos & Coelho, 2019) to build such an index, or even to directly 
use the modelled probability of presence (typically between 0 
and 1) or the forecasted presence/absence as a variable in the 
input matrix. The analysis would have then detected probability 
of presence hotspots for the included species. These models also 
require input data to be built and are thus subject to similar limita-
tions as we are. Still, the combination of catch data and probability 
of presence remains to be tested.

4.	 Finally, we cannot account for non-declared tuna catch, for in-
stance within dFAD time-area closures or by non-contracting par-
ties of the ICCAT (IUU fisheries). This lacking information could 
impact hotspot detection.

4.3  |  Perspectives

To further validate the method and explore its potential in ecosys-
tem description, next steps should include experimenting further 
types of fisheries' data, comparisons with different spatiotemporal 
models for external validation as well as inclusion of oceanographic 
variables. Following these, experimenting with supervised SOMs for 
near-future predictions of catch hotspots and incorporating them 
into the shift towards dynamic ocean management in large-scale in-
ternational fisheries could be pursued.

To go beyond the current results, catch-per-unit-effort (CPUE) 
data could be an alternative to commercial tuna catch data, a shift 
that would imply seeking ecological hotspots rather than catch 
hotspots. Indeed, CPUE data, accounting for fishing effort, is as-
sumed to reflect the abundance and consequently the ecology of 
each species. Unlike the catch, which is directly linked to the past 
fishing mortality, the apparent abundance expressed by the CPUE 
informs us about strata that are non-systematically explored but 
where regulating dFAD-fishing operations would benefit juveniles 
of tuna species. The calculation of CPUE needs however the defi-
nition of a common unit of effort, which remains problematic for 
dFADs sets as part of them are detected randomly (non-owned 
dFADs) and part of them are continuously tracked at-sea by the 
vessel owner.

Along with that, adding environmental, for example, sea surface 
temperature, chlorophyll-a concentration, etc., and fishing-related 
variables like dFAD density, to the input matrix could give valuable 
insights into recurring conditions associated with catch hotspots. 
This objective has already been pursued by Lopez et al.  (2017) 
who explored environmental preferences of dFAD-associated spe-
cies, yet using general additive mixed models and data from echo-
sounder buoys. The authors found several significant relationships, 
amongst others between tuna hotspots and phytoplankton bloom. 
Similarly, Wang et al. (2018) sought to detect skipjack tuna environ-
mental habitat preferences in the west-central Pacific Ocean with 
the help of classical feedforward neural networks. A novel SOM 
analysis would provide clues for environmental conditions of candi-
date conservation areas and could draw upon previous findings for 
validation (see Table  1 in Lopez et al.,  2017). More importantly it 
would constitute a preliminary analysis before making the step to 
supervised models for near anticipation of effective conservation 
measures.

Forecasting near-future hotspots with oceanographic mod-
els, possible with SOMs using functions for supervised networks 
(Melssen et al.,  2006), would allow the short-term planning of re-
strictive measures. With climate change, tuna habitat distribution 
limits are already spreading poleward at an overall estimated rate of 
about 6 kilometres per decade, varying by hemisphere and species 
(Erauskin-Extramiana et al.,  2019). Amongst tropical tunas, bigeye 
tunas will decline in tropical zones and follow the general trend, while 
yellowfin and skipjack tunas are expected to thrive along tropical 
coastlines and in tropical areas. Along with that, technological im-
provements and changes in fishing strategies need to be accounted 
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for (Eide, 2017; Torres-Irineo, Gaertner, et al., 2014), which is implic-
itly done when training SOMs on recent catch or CPUE data.

Apart from environmental variables, spatial coordinates can be 
introduced to the analysis using the ‘Geo-SOM’ algorithm devel-
oped by Bacao et al. (2004), yet not as a common variable but as 
a constraint. Concretely, the user can define a parameter k called 
‘geographical tolerance’, that will define how close geographically 
a best-matching unit can be. In other words, during the SOM train-
ing, the best-matching unit will only be chosen from a subset of 
units that are located within a geographical radius defined by k. 
In a context of spatial fisheries management, this approach could 
prove very useful to design smaller time-area closures within very 
large fishing zones.

It follows from both all these considerations that spatiotem-
poral closures' management require dynamic approaches to best 
serve both ecological and economic targets. (Maxwell et al., 2015) 
advocate for the generalized used of dynamic ocean management, 
whose core principle is to integrate near real-time data to quickly 
adapt to new situations. The authors illustrate its effectiveness with 
two coastal fisheries, the American sea scallop fishery (O'Keefe & 
DeCelles,  2013) and the Australian southern bluefin tuna fishery 
(Hobday et al., 2010), where it led to a decrease in closure periods 
and areas while still resulting in encouraging improvements in stock 
conservation and bycatch issues. In the case of a large-scale and in-
ternational fishery such as the purse-seiners' of the tropical Atlantic 
Ocean, measures' implementation needs more time and consensus 
than in the two examples mentioned above (Kaplan et al.,  2014). 
Still, adapting measures on the basis of yearly analyses offers great 
potential for all stakeholders and for sustainability in international 
fisheries.
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