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1.  Introduction
1.1.  Moving-Boat ADCP Uncertainty

Acoustic Doppler Current Profilers (ADCPs) are now among the most-used instruments for measuring discharge 
in rivers throughout the world (Boldt & Oberg,  2015; Le Coz,  2017). The technology and general guidance 
for making ADCP discharge measurements are presented in various manuals and guides, for example, those 
established by the U.S. Geological Survey (USGS) (Mueller et al., 2013) or the WMO (2010). The ADCP is 
mounted on a boat or on a small float that transects a river cross-section. The field procedure can be a stationary 
deployment (section by section) or a moving-boat deployment, wherein each river crossing provides an individual 
discharge measurement called a transect. This study deals with moving-boat ADCP discharge measurements. The 
ADCP uses the transit-time of sound waves and the Doppler shift to measure water velocity and depth. Due to 
physical limitations of the instrument, velocities are measured throughout a limited portion of the cross-section 
(Mueller et al., 2013). The measured area is decomposed vertically into cells (or bins) that are distributed hori-
zontally into n ensembles (see Figure 1). The discharge Qi,j through a cell is computed from the vector product of 
the boat velocity 𝐴𝐴 ⃖⃖⃗𝑣𝑣𝑖𝑖  and the water velocity 𝐴𝐴 ⃖⃖⃖⃖⃖⃗𝑤𝑤𝑖𝑖𝑖𝑖𝑖  relative to the ADCP system as:

𝑄𝑄𝑖𝑖𝑖𝑖𝑖 =
(

⃖⃖⃖⃖⃖⃗𝑤𝑤𝑖𝑖𝑖𝑖𝑖 × ⃖⃖⃗𝑣𝑣𝑖𝑖
)

⋅
⃖⃗𝑘𝑘 d𝑧𝑧𝑖𝑖𝑖𝑖𝑖 d𝑡𝑡𝑖𝑖� (1)

where 𝐴𝐴 ⃖⃗𝑘𝑘  is the unit vertical vector, dzi,j is the cell height, and dti is the time interval between ensembles.

In the unmeasured areas (see Figure 1), discharge has to be estimated (Mueller, 2016). The missing or invalid 
cells and ensembles are interpolated based on contiguous valid data. The discharge is extrapolated near the river-
bed (bottom discharge), near the water surface (top discharge), and near the banks (right and left discharges). 
Thus, the total discharge Qk in each transect k is a sum of partial discharges: the measured discharge (the sum of 
individual cell discharges Qi,j), the interpolated discharges used to fill missing cells and ensembles, respectively 
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(Qinvcell and Qinvens), and the extrapolated discharges in the top, bottom, left, and right edge unmeasured areas, 
respectively (Qtop, Qbot, Qleft, and Qright):

𝑄𝑄𝑘𝑘 =

𝑛𝑛
∑

𝑖𝑖=1

𝑚𝑚𝑖𝑖
∑

𝑗𝑗=1

𝑄𝑄𝑖𝑖𝑖𝑖𝑖 +𝑄𝑄invcell +𝑄𝑄invens +𝑄𝑄top +𝑄𝑄bot +𝑄𝑄left +𝑄𝑄right� (2)

where n is the total number of recorded ensembles and mi is the number of recorded cells in ensemble i.

We define the measured discharge as the first term of the sum in Equation 2: 𝐴𝐴 𝐴𝐴meas =
∑𝑛𝑛

𝑖𝑖=1

∑𝑚𝑚𝑖𝑖

𝑗𝑗=1
𝑄𝑄𝑖𝑖𝑖𝑖𝑖  . The meas-

ured discharge divided by the total discharge is the measured discharge ratio η = Qmeas/Qk. In our definition (as 
opposed to the definition of Teledyne RDI, for instance), discharges from the missing cells and ensembles are 
not included in the measured discharge: if cell (i, j) (or ensemble i) is invalid, then Qi,j = 0 and the interpolated 
discharges contribute to the Qinvcell and Qinvens terms. An ADCP discharge measurement 𝐴𝐴 𝑄𝑄  is the average of a 
number P of single-transect discharges Qk from successive crossings of the stream or river under approximately 
steady flow conditions:

𝑄𝑄 =
1

𝑃𝑃

𝑃𝑃
∑

𝑘𝑘=1

𝑄𝑄𝑘𝑘� (3)

The discharge average should include pairs of reciprocal transects to minimize any potential directional biases in 
measured discharges (Huang, 2019; Le Coz et al., 2008; Mueller et al., 2013). Best practices vary across agen-
cies. The USGS recommends performing at least one pair of reciprocal transects acquired during at least 720 s 
(Mueller et al., 2013; Oberg & Mueller, 2007), while in France, a minimum of three pairs of reciprocal transects 
acquired during at least 900 s is specified (Le Coz et al., 2008).

During an ADCP discharge measurement, several errors may occur due to the limited accuracy of the ADCP, the 
estimation of unmeasured discharges, and site- and operator-induced errors. Error sources in ADCP discharge 
measurements have been listed by Muste et al. (2004), González-Castro and Muste (2007), Kim and Yu (2010), 
or Despax et al. (2019). Actually, as soon as ADCPs were used to measure discharge in rivers, the measurement 
errors and the corresponding uncertainties were investigated by pioneers like Simpson and Oltmann (1991). Given 
the use of ADCP measurements as inputs to flow monitoring and decision-making (Hamilton & Moore, 2012; 
Pagano et al., 2014), the uncertainty has to be estimated carefully to promote robust decisions related to water 
resources and natural hazards (McMillan et al., 2017).

Prior to the uncertainty analysis (UA), a data quality review has to be performed using a quality assurance/quality 
control (QA/QC) process (Oberg et al., 2005). A powerful tool to conduct a QA/QC process is the QRev software 
developed by the USGS (Mueller, 2016, 2020), now available as QRevInt, a fork developed by Genesis Hydro-
Tech LLC (Mueller, 2021) with the guidance and contributions from an international board of hydrological agen-
cies (https://www.genesishydrotech.com/qrevint). QRevInt helps to clean ADCP measurements from avoidable 
errors and to homogenize the discharge computations irrespective of the instrument manufacturer and model. 
This study assumes that the general rules and guidance for making ADCP discharge measurements (Le Coz 
et al., 2008; Mueller et al., 2013) are followed and a QA/QC process is conducted prior to the UA.

Figure 1.  Decomposition of an Acoustic Doppler Current Profiler (ADCP) cross-sectional transect showing measured areas (colored cells), missing samples (dark 
gray), and unmeasured areas (in blue). The x-axis is the transverse direction and the z-axis is the vertical direction.
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The uncertainty of a discharge measurement, like any other measurand, can be estimated using two approaches. 
The uncertainty propagation method as defined in the Guide to the expression of Uncertainty in Measurement 
or GUM (JCGM, 2008b) can be applied to any single measurement (Section 1.2), while the repeated measures 
experiments (Section 1.3), also known as the inter-laboratory method (ISO, 1994a; ISO, 2010), provides the aver-
age uncertainty of the gauging technique in given conditions (cf. Figure 2). The uncertainty propagation method 
requires that the measurement process is fully described through a model, the data reduction equation (DRE). 
By contrast, the inter-laboratory method does not require a measurement model as it empirically estimates the 
uncertainty due to one (lumped) or several error sources from the variance of successive measurements done in 
repeatability conditions (exact same conditions of measurement) and in reproducibility conditions (changing a 
least one factor, e.g., instrument, operator, site). The uncertainty of input quantities (elemental measurements) 
must be estimated or modeled to feed the propagation method. The error model often has to be simplified, to 
lump difficult-to-estimate uncertainty components. In turn, the inter-laboratory method can provide realistic 
values for these uncertainty components and help validate the assumptions made in the propagation method. Both 
approaches are integrated into the same conceptual framework described in ISO 21748 (ISO, 2017), allowing the 
determination of the uncertainty through the GUM approach.

1.2.  Propagation Methods for Estimating the Uncertainty

The main steps of the GUM (JCGM,  2008a,  2008b), which is the accepted general framework for measure-
ment of UA, are summarized in Figure 2. The Hydrometric Uncertainty Guidance or HUG (ISO, 2007) applies 
GUM's recommendations for most streamgauging techniques. However, the computation proposed for moving-
boat ADCP is problematic as the estimation of some uncertainty terms is missing or difficult. In addition, a 
software package is lacking to implement the equations and apply them to real ADCP data files. Uncertainty 
and errors are categorized according to different terminologies that are explained in Appendix B. Type A and 
type B evaluations distinguish the method used to evaluate the standard uncertainties: direct computation of the 
standard deviation estimate using data (type A) or assumptions on the error distribution based on other sources 
of information to compute the standard deviation (type B). The nature of errors can be classified as random or 
systematic. The way the standard uncertainty is assessed (type A or type B) has no relation with the systematic or 
random nature of the errors. The uncertainty propagation method is based on a DRE, which expresses the value 
taken by the measurement Y as a function of several input variables X1, …, Xp viewed as elemental uncertainty 
sources: Y = f(X1, …, Xp). The propagation to the final results uses either a first-order Taylor approximation of 

Figure 2.  Synoptic chart of inter-laboratory comparisons and propagation methods as supplementary approaches for 
uncertainty analysis. Adapted from Blanquart (2013).
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the DRE (JCGM, 2008a) or Monte Carlo simulation (JCGM, 2008b). Mathematical detail relevant for this article 
is provided in Appendix A.

The general application of the GUM uncertainty propagation method to ADCP discharge measurements has 
been proposed by Muste et al. (2004), González-Castro and Muste (2007), Kim and Yu (2010), and the HUG 
(ISO, 2007). Some tools have been developed for estimating the uncertainty of ADCP measurements in stationary 
(Huang, 2011; Lee et al., 2014) or moving-boat deployment modes: RiverFlowUA (González-Castro et al., 2016), 
QUant (Moore et al., 2016), the uncertainty computation originally implemented in QRev (Mueller, 2016, 2020), 
which will be named QRev-UA in this article, and the original version of OURSIN (Naudet et al., 2019), which 
has been further modified as described in this article. Most of the tools were developed by hydrometric agencies. 
QRev-UA seems to be the only one that is released externally, is compatible with any type of Teledyne RDI and 
SonTek ADCP data, and is applied routinely. The South Florida Water Management District uses its software 
RiverFlowUA for estimating the measurement uncertainty of their ADCP discharge measurements, especially for 
rating hydraulic structures or resolving litigious conflicts of water use.

RiverFlowUA and QUant were developed to compute the uncertainty in Teledyne RDI ADCP discharge meas-
urements only. RiverFlowUA uses a first-order Taylor approximation of the DRE and accounts for the correlation 
between the velocities measured in contiguous cells. The method combines the uncertainties estimated from 
multiple transects and calibration uncertainties in the measured portion. The main limitation of the RiverFlowUA 
method lies in the fact that it does not account for the uncertainty of the discharges extrapolated in unmeasured 
areas, which often bring a substantial part of the total uncertainty (Moore et al., 2016).

QUant uses Monte Carlo simulations for assessing the uncertainty, combining both Type A and Type B evalua-
tions of uncertainty and accounting for both random and systematic errors. The simulations account for the uncer-
tainty of each input quantity. At each iteration, the input quantities are randomly sampled from their respective 
probability distributions and the discharge is computed using these values. The calculation of 1,000 iterations 
makes the method time-consuming (around 30 min per measurement on a conventional laptop).

The QRev-UA method (Mueller, 2016, 2021) is a simplified approach to GUM. It is based on the combination 
of uncertainty components, some estimated by expert judgment, others by simple calculations. Assuming that 

errors are independent across error sources, the relative standard uncertainty 𝐴𝐴 𝐴𝐴′2
(

𝑄𝑄

)

 of total discharge, that is, 

the standard uncertainty divided by the observed value of 𝐴𝐴 𝑄𝑄  , is obtained from the quadratic sum of the uncer-
tainty components:

𝑢𝑢
′2

(

𝑄𝑄

)

= 𝑢𝑢
′2

syst + 𝑢𝑢
′2
cov + 𝑢𝑢

′2

mb
+ 𝑢𝑢

′2
comp + 𝑢𝑢

′2

invalid
+ 𝑢𝑢

′2

edges
+ 𝑢𝑢

′2

extrap� (4)

with 𝐴𝐴 𝐴𝐴′syst = 1.5% the uncertainty due to systematic errors related to instrumentation, 𝐴𝐴 𝐴𝐴′
cov

 the uncertainty due 
to random measurement errors, 𝐴𝐴 𝐴𝐴′

mb
 the uncertainty due to moving bed, 𝐴𝐴 𝐴𝐴′

comp
 the uncertainty due to compass 

bias, 𝐴𝐴 𝐴𝐴′
invalid

 the uncertainty due to invalid data (10% of the interpolated discharge), 𝐴𝐴 𝐴𝐴′
edges

 the uncertainty of edge 
discharge (15% of the edge discharge), and 𝐴𝐴 𝐴𝐴′extrap  the uncertainty of top and bottom extrapolated discharges 
(based on the percent difference in discharge among possible extrapolation methods).

The uncertainty due to random measurement errors is computed as 𝐴𝐴 𝐴𝐴′
cov

= 𝑡𝑡𝑃𝑃−1
2.5%

𝐶𝐶𝐶𝐶 ∕

√

𝑃𝑃  , where CV is the coeffi-
cient of variation of the P transect discharges and 𝐴𝐴 𝐴𝐴𝑃𝑃−1

2.5%
 is the quantile of order 97.5% of the Student's t-distribution 

with P − 1 degrees of freedom. The latter coefficient accounts for the limited number P of observations. However, 
a practical problem arises when only two transects are measured (P = 2): then, there is only one degree of free-
dom and the coverage factor would be 12.7. For a minimal coefficient of variation of 0.01, which used to be 
the resolution limit in commercial ADCP software (now it is 0.0001 in WinRiverII), the expanded uncertainty 
would be 𝐴𝐴 𝐴𝐴 ′

CV
= 12.7 × 0.01∕

√

2 = 9% , which systematically leads to measurements rated as “poor” (uncer-
tainty >8%). Based on an empirical assessment of the quality ratings of two-transect ADCP measurements, the 
USGS (Mueller, 2012) sets the multiplier to 3.3 instead of 9 with a minimum uncertainty of 3% if the coefficient 
of variation is equal to 0.01.

If the reference is bottom-track and a valid moving-bed test is performed, 𝐴𝐴 𝐴𝐴′
mb

= 0.5% if no moving bed is detected 
and 0.75% otherwise. If the moving-bed test is not performed or is invalid, 𝐴𝐴 𝐴𝐴′

mb
= 1.5% . If the reference is not 

bottom-track, 𝐴𝐴 𝐴𝐴′
mb

= 0% . The uncertainty due to compass bias assumes a one degree standard uncertainty, cf. 
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Mueller (2018) for details. The vertical extrapolation uncertainty 𝐴𝐴 𝐴𝐴′extrap  is the average of the percent difference in 
discharge from the selected vertical velocity profile and the closest four options in a list of seven options.

Due to the complexity of the ADCP data workflow, the above mentioned tools do not account for all relevant error 
sources, in particular errors related to the operator or some of the measurement conditions (Despax et al., 2019), 
and for the possible correlations among the various uncertainty sources, resulting in simplifications. The input 
elemental uncertainties are also poorly known. For instance, the ADCP manufacturers do not disclose complete 
information about the uncertainty of instrumental errors, due to proprietary technologies and operational diffi-
culties in instrument calibrations. The uncertainties due to the measuring environment and the uncertainties due 
to the operators are even more difficult to model than instrumental errors. Therefore, the input uncertainties are 
generally derived from site-specific experiments, based on expert judgment or based on available information.

1.3.  Repeated Measures Experiments

The uncertainty estimates provided by the propagation methods cannot be validated for in situ conditions because 
certified, accurate discharge references are lacking in rivers and canals (Despax, Favre, et al., 2016). To solve 
this issue, a complementary approach to uncertainty propagation methods is the repeated measures experiments, 
also known as inter-laboratory comparisons (Le Coz et al., 2016). The main steps for conducting inter-laboratory 
experiments are presented in Figure 2. A repeated measures experiment consists of repeated measurements of the 
same variable (the discharge) by several participants, or “laboratories,” using the same measurement procedure. 
A “laboratory” is the combination of one or several operator(s) (including their field procedure and settings), their 
equipment (and associated software), and their measurement site. Each participant a provides ka discharge values 
Qa,k from repeated transects, where k denotes the index of the transect.

In compliance with the ISO-5725 standard (ISO, 1994b), the uncertainty of a streamgauging technique can be 
empirically deduced from the repeated measures experiment in given measurement conditions provided that 
the discharge is constant (Le Coz et al., 2016). Such experiments have been conducted in France during the last 
decade (Despax et al., 2017; Hauet et al., 2012; Le Coz et al., 2009; Pobanz et al., 2015, 2011). Final uncertain-
ties are deduced from the variability of all the repeated measurements. For a six-transect discharge average, 95% 
uncertainty estimates ranged from 4% to 12% typically, depending on the site and measuring conditions (Despax 
et al., 2019; Le Coz et al., 2016).

1.4.  Objectives of This Study

This study presents a propagation method named OURSIN, first developed by Dramais (2011) and then extended 
and implemented into a software program (Naudet et al., 2019) for computing the uncertainty of measurements 
acquired with some types of Teledyne RDI ADCPs. The OURSIN method has been modified to be integrated 
in the QRevInt software (coded in Python) so as to benefit from QA/QC process and QRevInt functionalities for 
both Teledyne RDI and SonTek ADCP measurements (Section 2). This revised OURSIN method follows the 
main steps proposed by the GUM (JCGM, 2008a): from the DRE of the moving-boat ADCP discharge measure-
ment (Section 1.1), identify, categorize, and combine error sources to determine the uncertainty of single-transect 
and transect-averaged discharge measurements (Section 2.1), and evaluate the standard uncertainty of each input 
quantity (Section 2.2). Several modifications have been made to the original version of OURSIN published by 
Naudet et al. (2019): the uncertainty due to the projection angle between boat velocity and relative water veloc-
ity (cf. Equation 1) is neglected; the uncertainty of the measured discharge now relies on the bottom-track and 
water-track error velocities and the correlation of velocity errors in the cells of the same ensemble is neglected; 
less relevant discharge extrapolation scenarios are discarded; the combined uncertainty of multiple transect aver-
aged discharge is modified to account for random and systematic errors; similar to QRev-UA, the moving-bed 
uncertainty is included and the transect-to-transect discharge variability is reflected through an estimate of the 
coefficient of variation of single-transect discharges; last, the reference discharge is that computed by QRevInt 
instead of WinRiverII.

For validation, the method is then applied to two sets of ADCP discharge measurements performed during 
large-scale repeated measures experiments conducted in 2010 (Le Coz et al., 2016; Pobanz et al., 2011) and in 
2016 (Despax et al., 2017, 2019). The uncertainties and uncertainty budgets computed with the OURSIN and 
the QRev-UA methods are compared with the results of the repeated measures experiments (Section 3). Finally, 
operational and research perspectives are discussed in Section 4.
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In this study, the following notations are used.

•	 �u is the absolute standard uncertainty, that is, the standard deviation of the probability distribution of errors, 
“absolute” meaning expressed in the physical unit of the measurement result (e.g., in m 3/s for discharge);

•	 �u′ is the relative standard uncertainty, “relative” meaning expressed in % of the measurement result;
•	 �U  =  ku is the absolute expanded uncertainty, with k a coverage factor. As recommended by the HUG 

(ISO, 2007) for hydrometry, we take k = 2, which corresponds to a 95% probability interval if the distribution 
of errors is Gaussian;

•	 �U′ is the relative expanded uncertainty expressed in % of the measurement result.

2.  The OURSIN Method
2.1.  Combination of Uncertainty Components

2.1.1.  Individual Transect Combined Uncertainty

The DRE of an ADCP single-transect measurement (Equation 2) is a sum of partial discharges. Treating the corre-
sponding errors as uncorrelated, and applying the first-order Taylor approximation of the GUM (JCGM, 2008a), 
the combined squared uncertainty u 2(Qk) of a single-transect discharge measurement Qk is the quadratic sum of 
absolute uncertainty components (cf. Appendix A):

𝑢𝑢
2
(𝑄𝑄𝑘𝑘) = 𝑢𝑢

2

syst + 𝑢𝑢
2
ens + 𝑢𝑢

2

mb
+ 𝑢𝑢

2
meas + 𝑢𝑢

2

invcell
+ 𝑢𝑢

2

invens
+ 𝑢𝑢

2

top + 𝑢𝑢
2

bot
+ 𝑢𝑢

2

right
+ 𝑢𝑢

2

left
+ 𝑢𝑢

2

CV� (5)

Table 1 provides the definitions of these uncertainty components and Section 2.2 presents how they are estimated. 
In addition to the uncertainty components that relate to partial discharges summed in Equation 2, other compo-
nents (usyst, uens, umb, and uCV) are included to reflect error sources that are not directly apparent in the DRE but 
should be added in the underlying error model.

The relative discharge uncertainty u′(Qk) is obtained by dividing all the absolute uncertainty terms in Equation 5 
by Qk:

𝑢𝑢
′2
(𝑄𝑄𝑘𝑘) = 𝑢𝑢

′2

syst + 𝑢𝑢
′2
ens + 𝑢𝑢

′2

mb
+ 𝑢𝑢

′2
meas + 𝑢𝑢

′2

invcell
+ 𝑢𝑢

′2

invens
+ 𝑢𝑢

′2

top + 𝑢𝑢
′2

bot
+ 𝑢𝑢

′2

right
+ 𝑢𝑢

′2

left
+ 𝑢𝑢

′2

CV� (6)

In this equation therefore, the relative uncertainty of a partial discharge associated with an error source is 
expressed as a percentage of the total discharge, not of the partial discharge.

Table 1 
List of Error Sources in Acoustic Doppler Current Profiler (ADCP) Discharge Measurements Covered by the OURSIN Method, With Their Nature (Systematic, 
Random, or Both), Type of Uncertainty (Type A or B, See Appendix B), and the Method Used for Their Quantification (See Text for Detail, Configurations Are 
Described in Table 2)

Error sources Notation (standard uncertainty) Nature Type Estimation method

Systematic errors of the instrumentation usyst Systematic B Fixed value (1.31%)

Transect-to-transect variability uCV Random A Coefficient of variation

Moving-bed umb Systematic B Fixed value (0%, 1.5%, or 3%)

Limited number of ensembles uens Systematic B Formula (Equation 11 (ISO, 2009))

Measured discharge umeas Random B Formula (Equation 10) combining the three next components

BT error velocity uev(vBT,i) Random A Standard deviation (included in the umeas component)

WT error velocity uev(wWT,i) Random A Standard deviation (included in the umeas component)

Cell depth u(dzi,j) Random B Fixed value u′(dzi,j) = 0.5% (included in the umeas component)

Interpolation of invalid cells uinvcell Systematic B Configurations # 18, 19, 20, 22, 23

Interpolation of invalid ensembles uinvens Systematic B Configurations # 13, 14

Top discharge extrapolation utop Both B Configurations # 3, 3min, 3max, 5, 5min, 5max, 7, 11, 12

Bottom discharge extrapolation ubot Both B configurations # 3, 3min, 3max, 5, 5min, 5max, 7

Right discharge extrapolation uright Both B configurations # 9, 10, 11, 12

Left discharge extrapolation uleft Both B configurations # 9, 10, 11, 12
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Table 1 summarizes the classification (type A or B, systematic or random, see Appendix B for definitions) of each 
uncertainty component and the methods used for their quantification, which will be explained and quantified in 
Section 2.2 and in Appendix C. The OURSIN method covers systematic and random errors. Each error term is 
generally a mixture of systematic and random effects which are often difficult to separate. As an approximation, 
an error term is considered purely systematic or random if the dominant effects are systematic or random, respec-
tively. The uncertainty of discharge in the measured area is estimated based on explicit uncertainty propagation 
and the discharge variance of successive transects. The discharge uncertainties in unmeasured areas are estimated 
through sensitivity analysis. By varying some of the parameters, possible discharges are computed. These scenar-
ios are used as an alternative to the Monte Carlo approach and to evaluate the standard uncertainty of discharge 
in each of the unmeasured areas.

2.1.2.  Multiple Transect Averaged Combined Uncertainty

When averaging discharge over successive transects, transect-to-transect random (or uncorrelated) errors are 
averaged out while systematic (or correlated) errors remain. The uncertainty due to random errors, typically the 
measured discharge uncertainty 𝐴𝐴 (𝑢𝑢′

meas
) , is divided by 𝐴𝐴

√

𝑃𝑃  . Indeed, applying the GUM (JCGM, 2008a) uncer-
tainty propagation method to Equation  3 as the DRE of an ADCP multiple-transect measurement yields for 
measured discharge errors (cf. Appendix A):

𝑢𝑢
′2
meas

(

𝑄𝑄

)

=
1

𝑃𝑃 2

𝑃𝑃
∑

𝑘𝑘=1

𝑄𝑄2

𝑘𝑘

𝑄𝑄
2
𝑢𝑢
′2
meas

≈
1

𝑃𝑃
𝑢𝑢′2

meas� (7)

where the over bar represents the simple average of values from successive transects. To simplify the expression 
of uncertainty, we will make the approximation which is only exact if the transect discharges are equal. For a good 
ADCP measurement, transect discharges Qk are close, and otherwise, the impact would be limited as the contri-
bution of 𝐴𝐴 𝐴𝐴′

meas
 to the combined discharge uncertainty is usually small. The only other uncertainty component 

related to transect-to-transect random error is the transect-to-transect discharge variability 𝐴𝐴 𝐴𝐴′
CV

 which is directly 

Table 2 
Summary of Parameter Configurations Applied to Estimate the Uncertainty of Unmeasured Discharges (cf. Table 1 For the Correspondence With Uncertainty 
Components)

Configuration # Uncertainty components quantified Tested models Parameters/extrapolation options

1 All: 𝐴𝐴 𝐴𝐴′top  , 𝐴𝐴 𝐴𝐴′
bot

 , 𝐴𝐴 𝐴𝐴′
right

 , 𝐴𝐴 𝐴𝐴′
left

 , 𝐴𝐴 𝐴𝐴′
invens

 , 𝐴𝐴 𝐴𝐴′
invcell

QRevInt discharge (reference) See text for detail.

3 𝐴𝐴 𝐴𝐴′top  , 𝐴𝐴 𝐴𝐴′
bot

Power-power model QRevInt optimized exponent

3min 𝐴𝐴 𝐴𝐴′top  , 𝐴𝐴 𝐴𝐴′
bot

Power-power model Min exponent

3max 𝐴𝐴 𝐴𝐴′top  , 𝐴𝐴 𝐴𝐴′
bot

Power-power model Max exponent

5 𝐴𝐴 𝐴𝐴′top  , 𝐴𝐴 𝐴𝐴′
bot

Constant no-slip model QRevInt optimized exponent

5min 𝐴𝐴 𝐴𝐴′top  , 𝐴𝐴 𝐴𝐴′
bot

Constant no-slip model Min exponent

5max 𝐴𝐴 𝐴𝐴′top  , 𝐴𝐴 𝐴𝐴′
bot

Constant no-slip model Max exponent

7 𝐴𝐴 𝐴𝐴′top  , 𝐴𝐴 𝐴𝐴′
bot

3-point no-slip model QRevInt optimized exponent

9 𝐴𝐴 𝐴𝐴′
right

 , 𝐴𝐴 𝐴𝐴′
left

Edge Triangular shape and min edge distance

10 𝐴𝐴 𝐴𝐴′
right

 , 𝐴𝐴 𝐴𝐴′
left

Edge Rectangular shape and max edge distance

11 𝐴𝐴 𝐴𝐴′top  , 𝐴𝐴 𝐴𝐴′
right

 , 𝐴𝐴 𝐴𝐴′
left

Draft (immersion depth) Min draft

12 𝐴𝐴 𝐴𝐴′top  , 𝐴𝐴 𝐴𝐴′
right

 , 𝐴𝐴 𝐴𝐴′
left

Draft (immersion depth) Max draft

13 𝐴𝐴 𝐴𝐴′
invens

  Missing ensembles Use the next valid ensemble

14 𝐴𝐴 𝐴𝐴′
invens

  Missing ensembles Hold the last valid ensemble

18 𝐴𝐴 𝐴𝐴′
invcell

  Missing cells 1/6 power-power model

19 𝐴𝐴 𝐴𝐴′
invcell

  Missing cells Use above valid cell

20 𝐴𝐴 𝐴𝐴′
invcell

  Missing cells Use below valid cell

22 𝐴𝐴 𝐴𝐴′
invcell

  Missing cells Use before valid cell

23 𝐴𝐴 𝐴𝐴′
invcell

  Missing cells Use after valid cell
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estimated from the multiple transects. Like 𝐴𝐴 𝐴𝐴′2
meas

 in Equation 7, 𝐴𝐴 𝐴𝐴′2
CV

 will be divided by P in the expression of 

𝐴𝐴 𝐴𝐴′2
(

𝑄𝑄

)

 .

The other uncertainty components are due to biases (systematic errors) of the instruments and the discharge 
extrapolation parameters and options that are constant or at least highly correlated from transect to transect. For 
instance, the draft bias will produce similar relative top discharge errors for all the transects. The corresponding 

squared uncertainty components in the expression of 𝐴𝐴 𝐴𝐴′2
(

𝑄𝑄

)

 will not be divided by 𝐴𝐴
√

𝑃𝑃  . The single-transect 
estimates of each squared uncertainty due to systematic errors are averaged to compute the multiple-transect 
mean. Since relative uncertainty is considered here, potential differences in transect discharges Qk are accounted 
for in the average.

This leads to the following expression for the uncertainty of a multiple-transect averaged discharge 𝐴𝐴 𝑄𝑄  :

�′2
(

�
)

= �′2syst +
1
�
�′2meas + �′2ens + �′2mb + �′2invcell + �′2invens

+ �′2top + �′2bot + �′2right + �′2left +
1
�
�′2CV

� (8)

See Table 1 and Equation 6 for the definitions of the uncertainty components.

2.2.  Discharge Uncertainty Components

2.2.1.  Uncertainty Due To Systematic Errors of the Instrumentation

The discharge uncertainty due to systematic errors of the instrumentation, 𝐴𝐴 𝐴𝐴′syst  , accounts for all the residual 
errors that remain after the ADCP calibration. It corresponds to the minimum uncertainty of an ADCP discharge 
measurement under ideal conditions. The systematic errors are being treated in aggregate across the transect 
(Equation 6).

The discharge measured by a moving-boat ADCP is basically the product of boat velocity (bottom-track) and 
relative water velocity (water-track) (cf. Equation 1 for the discharge through a cell), and extrapolated discharges 
are proportional to measured discharges. Discharge is also proportional to flow depth used to define the extent 
of the measured area and the bottom unmeasured area. Therefore, the bottom-track, water-track, and depth 
biases induce multiplicative errors on the total discharge Qk of an ADCP transect. These systematic errors can 
be assumed independent since different acoustic pulses are used for bottom-track and water-track, and different 
signal processing is used for velocity and depth determination. Then (cf. Appendix A), 𝐴𝐴 𝐴𝐴′syst  can be computed as 
the combination of the bottom-track bias uncertainty 𝐴𝐴 𝐴𝐴′syst(𝑣𝑣𝐵𝐵𝐵𝐵 ) , the water-track bias uncertainty 𝐴𝐴 𝐴𝐴′syst(𝑤𝑤𝑊𝑊𝑊𝑊 ) , and 
the depth bias uncertainty 𝐴𝐴 𝐴𝐴′syst(𝐷𝐷) :

𝑢𝑢
′

syst =

√

𝑢𝑢′2syst(𝑣𝑣𝐵𝐵𝐵𝐵 ) + 𝑢𝑢′2syst(𝑤𝑤𝑊𝑊𝑊𝑊 ) + 𝑢𝑢′2syst(𝐷𝐷)� (9)

Note that the boat velocity is referenced either by bottom-tracking or by GPS. Only bottom-track reference is 
considered here. The potential uncertainty associated with the use of GPS is discussed in Section 4.3.

Based on mean differences between tow cart velocity and ADCP bottom-track and water-track velocities observed 
by Oberg and Mueller  (2007) in a calibration tow-tank, the following values are used: u′(vBT)  =  0.51% and 
u′(wWT) = 1.1%. Based on tests conducted in canals and locks (Naudet et al., 2019), the depth bias uncertainty is 
assumed to be u′(D) = 0.5%, by default. Those tests were conducted using the four-beam, inverse-depth-weighted 
average depth which is the default method in QRevInt and which is always used across all instruments in this 
study. The value of u′(D) should be revised if better information is available or if the vertical beam depth meas-
ured by some ADCP models is used instead of the four-beam average depth, for instance. With such values, Equa-
tion 9 yields 𝐴𝐴 𝐴𝐴′syst = 1.31% . This value is similar to the default value of 1.5% proposed in the QRev-UA method 
(Mueller, 2016) and to the bias uncertainty (u′(δ) = 1.25%) quantified from the Génissiat 2010 repeated-measures 
experiments described by Le Coz et al. (2016). Across the successive experiments, the empirical estimates ranged 
from 1.1%–1.2% (Pyrimont site) to 1.4%–1.9% (Génissiat site).

2.2.2.  Uncertainty of the Measured Discharge

The uncertainty of the measured discharge is computed by applying variance propagation (cf. Appendix A) to 
Equation 1 with a number of approximations aiming at simplifying the derivation. We indeed assume that cell 
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discharges, water track velocity uncertainty, depth cell size uncertainty are the same for all cells in the same 
ensemble and that the bottom track velocity error is constant (or perfectly correlated). We neglect the measure-
ment uncertainty of the time interval dti and assume that discharge is constant over the interval, typically 1 s or 
less. We also assume that errors in adjacent ensembles and cells are uncorrelated. The water and bottom track 
pings are emitted, received, and processed independently and thus from the standpoint of the ADCP signal 
processing, there is no correlation between the successive water and bottom track measurements. As presented in 
the previous section, the uncertainty due to systematic errors (biases) of the water and bottom track are accounted 
for in the 𝐴𝐴 𝐴𝐴′syst  component. There is however a correlation of measurements between cells within an ensemble 
because the center weighted averaging of the cells includes some portion of the acoustic signal measured in the 
cells above and below (15% from each adjacent cell, according to Simpson and Oltmann (1991)). Due to the 
large number of cells in an ADCP transect, the measured discharge uncertainty would remain minor even if such 
partial correlation was considered. Actually, all these assumptions have no practical consequences because the 
uncertainty results are much more sensitive to the evaluation of the input terms of the uncertainty equation than 
its approximation. And fortunately, the discharge uncertainty 𝐴𝐴 𝐴𝐴′

meas
 due to random errors in the measured area is 

very small in the discharge uncertainty budget of nearly all ADCP measurements.

With the aforementioned assumptions, this uncertainty term can be computed as:

𝑢𝑢
′
meas

=

√

√

√

√

1

𝑄𝑄2

𝑘𝑘

𝑛𝑛
∑

𝑖𝑖=1

𝑞𝑞2
𝑖𝑖

{

𝑢𝑢′2𝑒𝑒𝑒𝑒(𝑣𝑣𝐵𝐵𝐵𝐵 𝐵𝐵𝐵) +
1

𝑚𝑚𝑖𝑖

[

𝑢𝑢′2𝑒𝑒𝑒𝑒(𝑤𝑤𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ) + 𝑢𝑢′2(𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖)
]

}

� (10)

where qi is the discharge of each ensemble, 𝐴𝐴 𝐴𝐴′𝑒𝑒𝑒𝑒(𝑣𝑣𝐵𝐵𝐵𝐵 𝐵𝐵𝐵) and 𝐴𝐴 𝐴𝐴′𝑒𝑒𝑒𝑒(𝑤𝑤𝑊𝑊𝑊𝑊 𝑊𝑊𝑊) are the relative uncertainty components of 
the boat and water-track velocity, respectively, mi is the number of cells of ensemble i and u′(dzi,j) is the relative 
uncertainty of the depth cell size. The u′(dzi,j) component is assumed to be the same as the uncertainty of the 
water depth: u′(dzi,j) = u′(D) = 0.5%, since both are measured from the transit-time of sound waves.

The 𝐴𝐴 𝐴𝐴′𝑒𝑒𝑒𝑒(𝑣𝑣𝐵𝐵𝐵𝐵 𝐵𝐵𝐵) and 𝐴𝐴 𝐴𝐴′𝑒𝑒𝑒𝑒(𝑤𝑤𝑊𝑊𝑊𝑊 𝑊𝑊𝑊) components are estimated as the coefficients of variation of the corresponding 
error velocity terms across the ensembles of a transect. The computation of the error velocity is explained in 
Appendix C. Boat velocity and water velocity errors are affected by ADCP motion (erratic deployment) and 
measuring conditions (turbulence, flow instability, waves). The error velocity terms reflect the homogeneity of 
the velocity field across the four ADCP beams and provide a meaningful estimator of the horizontal velocity 
measurement uncertainty (Gilcoto et al., 2009; Moore et al., 2016; Teledyne RDI, 1998, 2007).

In Equation 10, the relative uncertainties of single-cell measurements (𝐴𝐴 𝐴𝐴′𝑒𝑒𝑒𝑒(𝑤𝑤𝑊𝑊𝑊𝑊 𝑊𝑊𝑊) , u′(dzi,j)) are weighted by 1/mi 
and qi while the relative uncertainties of single-ensemble measurements 𝐴𝐴 (𝑢𝑢′𝑒𝑒𝑒𝑒(𝑣𝑣𝐵𝐵𝐵𝐵 𝐵𝐵𝐵)) are only weighted by qi. This 
means that the former uncertainties average out relative to the total number of valid cells in the transect whereas 
the latter uncertainties average out relative to the number of ensembles in the transect.

2.2.3.  Uncertainty Due To the Limited Number of Ensembles

The limited number n of ensembles induces possible errors in the transverse integration of discharge 
(González-Castro & Muste, 2007), similar to the finite summation error in measurements with current-meters. 
Therefore, the associated uncertainty is computed following the equation proposed by Le Coz et al. (2012) as an 
approximation of tabulated values proposed by ISO (2009):

𝑢𝑢
′
ens

= 32 × 𝑛𝑛
−0.88� (11)

If more than 100 ensembles are collected in an ADCP transect, as is typical, then standard uncertainty 𝐴𝐴 𝐴𝐴′
ens

 would 
be less than 0.5%.

2.2.4.  Uncertainty of Unmeasured Discharges

Discharges estimated in unmeasured areas depend on the equations selected to extrapolate or interpolate the 
discharge. Some equations have parameters specified by the user or fitted by the QRevInt software. Thus, the 
uncertainty of unmeasured discharges includes structural uncertainty and parametric uncertainty. It is estimated 
by varying the equations and their parameters in order to simulate the realistic range of discharge variation.

Table 2 summarizes the parameter configurations applied by OURSIN to compute alternative discharges. These 
configurations are designed to explore the broader range of discharge estimates in each of the unmeasured areas, 
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as presented in Table 1, with reasonable sets of parameters and options. The reference configuration #1 corre-
sponds to the default options of QRevInt (Mueller, 2016, 2021): optimized exponent and model for top/bottom 
discharge extrapolation, user-defined values of edge parameters and ADCP draft, and ABBA interpolation of 
missing cells (i.e., using measurements available above, or below, or before, or after the missing cell). To save 
computational time, not all the possible situations are sampled (as opposed to Monte Carlo simulation), and 
sampling is limited to a small number of configurations that were designed based on expert judgment. The maxi-
mum and minimum discharges obtained from the set of configurations specified in Table 1 for each error source 
are assumed to be the bounds of a rectangular distribution from which the standard uncertainty is estimated (see 
Equation B2). Even when the uniform distribution is not centered on the measured value, the measurement result 
is not replaced by the expected value (a+ + a−)/2 of the uniform distribution because the measured value remains 
the best estimate of the true value.

2.2.4.1.  Top and Bottom Discharge Errors

The top and bottom discharge uncertainties are estimated through configurations (#1, #3, #3min, #3max, #5, 
#5min, #5max, #7 and #11, #12 specifically for top discharge uncertainty) presented in Table 2, which cover the 
draft error and alternative models to extrapolate the discharge. Three alternative models are available in QRevInt 
for computing vertical velocity distribution and extrapolating top/bottom discharges.

The possible extrapolation models for the top layer are power fit, constant fit, or three-point linear extrapolation. 
The bottom fit can be based on either a power or a no-slip model. For top and bottom power fit, a power model is 
applied to extrapolate the unmeasured areas. The velocity profile 𝐴𝐴 𝐴𝐴(𝑧𝑧) at elevation 𝐴𝐴 𝐴𝐴   above the bed is expressed 
as (Chen, 1989):

𝑤𝑤(𝑧𝑧) = 𝑤𝑤(ℎ)

(

𝑧𝑧

ℎ

)1∕𝑚𝑚′

� (12)

where 𝐴𝐴 𝐴𝐴(𝑧𝑧) is the flow velocity measured at elevation 𝐴𝐴 𝐴𝐴  , 𝐴𝐴 𝐴  is the total flow depth, and 1/m′ is the power law 
exponent. In rivers, the exponent usually ranges from 1/3 to 1/10 (Hauet et al., 2018).

The no-slip model fits a power curve through zero at the bottom (solid boundary) and through depth cells in 
the lower 20% of the flow depth. A constant fit for estimating the top discharge assumes that the velocity in the 
topmost valid depth cell is the mean velocity until the water surface.

The three-point model is a linear fit of the velocities in the three uppermost cells. It fits situations where wind or 
other effects significantly affects the velocity at the water surface, causing the velocity at the surface to deviate 
substantially from either a constant or power fit.

For all models, the coefficients used are the optimized exponents computed by the Extrap module in QRevInt 
(Mueller, 2016). In addition, power-power and constant no-slip exponents may range between a lower and an 
upper bound for the optimized exponent. Note that a similar approach was conducted by Gordon (1989) as an 
early attempt to quantify the uncertainty of ADCP measurement made in River Elbe and by Mueller (2016) in 
the QRevInt software. In the OURSIN method, lower and upper bounds for the optimized exponent (min-max 
exponents) are estimated as follows.

•	 �Power-power exponent (configurations #3min and #3max): If QRevInt does not select the power-power 
model for any of the transects, only the optimized power-power exponent is used. The minimum-maximum 
power-power configurations are not tested since the power-power method is not relevant for any of the tran-
sects. Otherwise, the minimum and the maximum exponents are the average of the lower and the upper bound 
95% confidence intervals provided by QRevInt, respectively. If the flow is bi-directional the power-power 
method is not considered at all.

•	 �Constant no-slip exponent (configurations #5min and #5max): If QRevInt does not select the constant 
no-slip model for any of the transects, the optimized no-slip exponent is only used. The minimum-maximum 
no-slip configurations are not tested since it has not been selected as a relevant model for any of the transects. 
Otherwise, the minimum and the maximum optimized exponents (only from transects for which constant 
no-slip model is proposed) constitutes the lower and the upper bound of 1/m′, respectively.

The maximum difference between the lower/upper bounds of the exponent interval and the average of all opti-
mized coefficients is limited at 0.2 for both power-power and constant no-slip models.
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The transducer draft, that is, the immersion depth of the ADCP probe, is also varied as it affects the top discharge 
estimation. The user specifies the maximal draft error further added or subtracted to the draft value to define the 
minimum and maximum values for configurations #11 and #12, respectively. By default, the draft error is 0.02 m 
if the transect depth does not exceed 2.5 m, 0.05 m otherwise. The minimum draft used in the configuration #11 
is at least 0.01 m.

2.2.4.2.  Edges

The edge (left or right) discharge is expressed as:

𝑄𝑄edge = 𝐶𝐶𝑒𝑒 𝑉𝑉𝑚𝑚 𝐿𝐿 𝐿𝐿𝑚𝑚� (13)

where Ce is the edge-shape coefficient (0.3535 for triangular edges and 0.91 for rectangular edges), Vm is the 
mean depth-averaged velocity over a fixed number of valid ensembles at the start or end of the measured area, L 
is the distance from the first or last valid ensemble to the edge of water, and dm is the depth at first or last valid 
ensemble.

The edge (left or right) discharge uncertainty is estimated by varying Ce, L, and the transducer draft as also done 
for the top discharge uncertainty estimation. The edge discharge will be minimized when a triangular shape is 
selected and the edge distance is decreased concurrently, while the discharge will be maximized with a rectangu-
lar shape and an increased edge distance, provided the near edge velocities are positive. The default edge distance 
error used in the OURSIN method is 20% of the edge distance. This relatively conservative default setting corre-
sponds to a vague edge estimation, as often practiced in France for instance when edge discharges are assumed to 
be relatively small: edge distances are eye-balled and the edge shape is not measured. If the edges are determined 
more carefully in the field procedure, for example, using a ruler or laser range finder to measure edge distances 
and knowing edge shapes precisely, then the maximum edge distance and edge-shape coefficient errors should 
be reduced accordingly.

2.2.4.3.  Invalid Data

The discharge of a transect with invalid data is computed from interpolated values of boat velocity, depth, and 
water velocity.

To evaluate the uncertainty due to invalid ensembles, configurations #13 and #14 replace the missing variables 
by those of the next or the previous valid ensembles, respectively.

To evaluate the uncertainty due to invalid cells, configurations #18, #19, #20, #22, and #23 interpolate missing 
discharges based on 1/6 power-power model, from the nearest valid cell above, below, before, or after, respectively.

2.2.5.  Discharge Uncertainty Due To Moving Bed

Since bottom tracking assumes that the streambed is motionless, moving bed conditions result in the boat-velocity 
measurement being biased in the upstream direction. Moving bed conditions occur due to sediment transport near 
and along the streambed, especially during high flows. The uncertainty due to moving bed 𝐴𝐴

(

𝑢𝑢′
mb

)

 in OURSIN is 
assumed to be the same as in QRev-UA (cf. Section 1.2).

2.2.6.  Discharge Uncertainty Due To Transect-To-Transect Variability

ADCP discharge measurements are usually the average of a number P of individual discharge measurements from 
successive ADCP transects. Typically, the USGS recommends performing at least two reciprocal transects with 
a minimum exposure time of 720 s (Mueller et al., 2013; Oberg & Mueller, 2007), while in France, a minimum 
of six transects acquired during at least 900 s is recommended (Le Coz et al., 2008). Of course, acquiring fewer 
transects is advisable for very large rivers to keep the measurement duration reasonable, or for transient flows. 
The repeatability of successive discharge results, through their coefficient of variation, is a valuable measure of 
the overall uncertainty of the transect-averaged discharge measurement. The coefficient of variation CV is the 
standard deviation of the P single-transect discharge divided by the mean discharge 𝐴𝐴 𝑄𝑄  .

These combined random errors that appear among successive transects certainly overlap with some errors already 
included in the discharge error model. However, the coefficient of variation reflects other errors that are ignored 
despite being potentially large, especially velocity and discharge variations due to turbulence or flow unsteadi-
ness during a measurement, or other site-related effects not captured by the uncertainty components presented 
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above. It therefore looks conservative to include an additional uncertainty component 𝐴𝐴 𝐴𝐴′
CV

 empirically estimated 
from the coefficient of variation of successive transects (Type A uncertainty):

𝑢𝑢
′

CV
=

𝐶𝐶𝐶𝐶
√

𝑃𝑃
� (14)

Since underlying errors are assumed independent among successive transects, CV is divided by the square root of 
the number P of single-transect discharges included in the mean discharge 𝐴𝐴 𝑄𝑄  .

As presented in Section 1, QRev-UA (Mueller, 2016) includes a similar term 𝐴𝐴 𝐴𝐴′
cov

 (cf. Equation 4) with a correc-
tion factor suggesting that some prior knowledge is needed to guide the estimation of the coefficient of variation 
when there are too few transects available. We propose a more formal and more general solution to this problem 
by applying Bayesian inference to the estimation of the coefficient of variation. The Bayesian approach allows 
the combination of information from the successive transects and a prior estimation of CV, which will dominate 
the inference when few, or even one or two transects only are available. Successive discharge measurements are 
assumed to follow a Gaussian distribution:

𝑄̃𝑄𝑖𝑖 ∼  (𝑄𝑄true, 𝐶𝐶𝐶𝐶 ×𝑄𝑄true)� (15)

where 𝐴𝐴  (𝑎𝑎𝑎 𝑎𝑎) is the Gaussian distribution with mean a and standard deviation b. Both the true discharge Qtrue 
and the coefficient of variation CV are unknown parameters to be estimated.

The prior distributions of Qtrue and CV are assumed to be flat (no prior knowledge) and log-normal, respectively. 
The prior pdf therefore is:

𝑝𝑝(𝑄𝑄true, 𝐶𝐶𝐶𝐶 ) = 1 × 𝑝𝑝𝐿𝐿𝐿𝐿
(

𝑚𝑚CVprior , 𝑠𝑠CVprior
)

� (16)

where 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 (𝑧𝑧 | 𝑚𝑚𝑚 𝑚𝑚) is the pdf of a Lognormal random variable whose logarithm has mean equal to m and stand-
ard deviation equal to s, evaluated at value z.

The likelihood of observed discharge values 𝐴𝐴 𝐐̃𝐐 , given discharge parameters 𝐴𝐴 (𝑄𝑄true, 𝐶𝐶𝐶𝐶 ) is given by:

𝑝𝑝
(

𝐐̃𝐐 | 𝑄𝑄true, 𝐶𝐶𝐶𝐶
)

=

𝑃𝑃
∏

𝑖𝑖=1

𝑝𝑝𝑁𝑁
(

𝑄̃𝑄𝑖𝑖 | 𝑄𝑄true, 𝐶𝐶𝐶𝐶 ×𝑄𝑄true

)

� (17)

where 𝐴𝐴 𝐴𝐴𝑁𝑁 (𝑧𝑧 | 𝑚𝑚𝑚 𝑚𝑚) is the pdf of a Gaussian distribution with mean m and standard deviation s, evaluated at value 
z.

Using Bayes theorem, the posterior distribution of the discharge parameters can be computed as follows:

𝑝𝑝
(

𝑄𝑄true, 𝐶𝐶𝐶𝐶 | 𝐐̃𝐐
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

posterior

∝ 𝑝𝑝
(

𝐐̃𝐐 | 𝑄𝑄true, 𝐶𝐶𝐶𝐶
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

likelihood

𝑝𝑝(𝑄𝑄true, 𝐶𝐶𝐶𝐶 )
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

prior

� (18)

The posterior distribution is sampled (20,000 realizations) using an adaptive block Metropolis Markov Chain 
Monte Carlo (MCMC) sampler described by Metropolis et al. (1953). The computation time is a few seconds 
at most so the MCMC sampling does not slow down QRevInt significantly. The default simulation parameters 
ensure that, in the vast majority of situations, convergence is reached after the first half of the simulations have 
been discarded. Convergence can be checked visually: the MCMC sample traces are not stationary and explore 
the full posterior distribution. The sample that maximizes the posterior density is taken as the best estimates of 
Qtrue and CV. The resulting estimate of CV is used in the computation of 𝐴𝐴 𝐴𝐴′

CV
 (Equation 14). The estimate of Qtrue 

is not used.

In the analysis presented in this paper, the priors of the coefficient of variation are taken as mCVprior = log(0.03) 

and sCVprior = 0.6. As the prior distribution is lognormal, the mean is 𝐴𝐴 exp

(

𝑚𝑚CVprior + 𝑠𝑠2
CVprior

∕2

)

= 3.6% with an 

uncertainty of about 60%. Through Equation 14, the expected CV of 3.6% leads to 𝐴𝐴 𝐴𝐴′
CV

= 3.6% and 1.5% for a 
single-transect measurements and for a six-transect-averaged discharge measurement, respectively, that is, 95% 
uncertainty intervals of half-width 7.2% and 3.0%.

These default prior values of CV have been specified to be consistent with the repeatability standard devia-
tions (sr) obtained from interlaboratory experiments in various site conditions (Despax et  al.,  2019; Le Coz 
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et al., 2016). They are also consistent with the experimental values reported by Huang (2018) (see his Equation 
25 and Table 1, his “Field RSUm” being similar to our CV). Based on sensitivity tests (cf. Supporting Informa-
tion S1), sCVprior was set low enough so the CV estimate is influenced by the priors when the number of transects 
is very low (P = 2, typically), and high enough so the CV estimate converges toward the empirical CV estimates 
as soon as the number of transects gets high enough (P = 6, typically). Of course, the prior values of CV (mCVprior 
and sCVprior) can be adapted by the user to reflect his/her expert judgment of the actual measuring conditions and 
the corresponding values of CV that may be expected.

3.  Comparison With Repeated Measures Experiments
3.1.  Overview of 2010 and 2016 Experiments

Two large repeated measures experiments were conducted in France in 2010 and 2016. The first one was conducted 
in 2010 at two sites (named GE: Génissiat dam and PY: Pyrimont bridge), approximately 50–200 m and 3.5 km, 
respectively, downstream of Génissiat hydropower plant in the Rhône River. During the 2-day experiment, six 
time periods with different steady discharge released from the hydropower plant were made available (sessions 
#1, #2, #2b, #3, #4, and #4b). Six models of ADCP, mounted on boats, were involved in 2010: 1 BroadBand 
600 kHz, 6 RioGrande 600 kHz, 6 RiverRay 600 kHz, 11 RioGrande 1,200 kHz, and 3 StreamPro 2,400 kHz 
ADCPs all made by Teledyne RDI and 2 M9 1,000–3,000 kHz ADCPs made by SonTek. The cross-section width 
ranged from 50 to 70 m at GE, and from 75 to 80 m at PY. The depth ranged from 3 to 5 m and from 5 to 9 m, 
at PY and GE, respectively. The cross-section average velocity ranged from 0.5 m/s to 1.6 m/s (the maximum 
velocity was about 2.5 m/s).

The second large experiment was conducted on the Taurion River, downstream of the Chauvan Dam in southwest 
France in 2016. A single constant discharge was released by the dam during three half-day measurement sessions. 
Four models of ADCPs were involved: 18 M9 and 1 S5 (3,000 kHz) ADCPs made by SonTek, and 25 StreamPro 
and 4 RiverPro (1,200 kHz) ADCPs made by Teledyne RDI. A total of 24 cross-sections (from A to X, upstream 
to downstream) with various shapes and flow conditions were distributed over 500 m along the Taurion River. 
The 24 cross-sections were equipped with ropes and pulleys. Most cross-sections were about 35 m wide. The 
depth ranged from 0.6 to 1.2 m. The cross-section average velocity ranged from 0.5 m/s to 0.8 m/s (the maximum 
velocity was about 1.5 m/s).

Bottom-track was used as the reference to compute the boat speed for both Génissiat 2010 and Chauvan 2016 
experiments. A total of 634 four-transect and 574 six-transect discharge measurements were performed in 2010 
and in 2016, respectively. For the Génissiat 2010 experiments, a power-power model was proposed for extrapo-
lation of top and bottom discharges consistently by QRevInt. At GE, the mean exponent ranges from 0.15 during 
session #2b (440 m 3/s) to 0.21 during session #3 (120 m 3/s). At PY, the mean exponent is about 0.20 during all 
the sessions. A power-power model was imposed for all measurements of Chauvan 2016 experiments, with an 
average exponent fitted at each cross section. The exponent used ranges from 0.15 at cross-section X to 0.37 
at cross-section T. The mean exponent over all the cross-section is 0.29. Further details on site description and 
experimental design can be found in Pobanz et al. (2011), Le Coz et al. (2016) and Despax et al. (2017, 2019), 
respectively.

3.2.  Empirical Uncertainty Estimates

The empirical uncertainty results for the two repeated measurements experiments are the same as previously 
published by Le Coz et al. (2016) and Despax et al. (2019). The six time periods with steady discharge and 
the two sites (GE and PY) of the Génissiat 2010 experiments lead to 12 individual interlaboratory exper-
iments, and the 24 cross-sections (A to X) of the Chauvan 2016 experiments yield 24 separate interlabo-
ratory experiments (Table  3). The repeatability standard deviation (sr), interlaboratory standard deviation 
(sL), and expanded relative uncertainty 𝐴𝐴 𝐴𝐴 ′

(

𝑄𝑄

)

 are computed for each separate experiment. The meanings 
and the computation of these uncertainty components are explained by Le Coz et  al.  (2016). Remember 
that in OURSIN, the prior values of the coefficient of variation are defaulted based on typical repeatability 
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Table 3 
Data of the Génissiat 2010 and the Chauvan 2016 Acoustic Doppler Current Profiler (ADCP) Repeated Measures 
Experiments Copied From Le Coz et al. (2016) and Despax et al. (2019), Respectively: Number of Laboratories (Lab.), 
Transects (Tr.), Transect-Averaged Measurements (Meas.), Mean and Standard Deviation (Std.) of the Discharge, Mean 
Measured to Total Discharge Ratio (η), and Empirical Uncertainty Estimates (ADCP Bias Uncertainty 𝐴𝐴 𝐴𝐴′

(

𝛿𝛿
)

 , Repeatability 
(sr), Interlaboratory sL Standard Deviations, and 95% Expanded Discharge Uncertainty 𝐴𝐴 𝐴𝐴 ′

(

𝑄𝑄

)

 )

Number of Discharge [m 3/s] Ratio, η [%] Empirical uncertainty [%]

Site name Lab. Tr. Meas. Mean Std. Mean 𝐴𝐴 𝐴𝐴′
(

𝛿𝛿
)

  sr sL𝐴𝐴 𝐴𝐴 ′

(

𝑄𝑄

)

 

GE_1 11 388 97 221.7 11.9 70 1.25 4.1 3.5 8.5

GE_2 9 184 46 333.8 18.5 73 1.25 4.4 3.8 9.2

GE_2b 11 352 88 438.9 20.5 73 1.25 3.6 3.8 8.7

GE_3 8 236 59 114.4 9.0 67 1.25 5.4 5.3 12.2

GE_4 5 104 26 224.5 12.2 68 1.25 4.5 4.3 10.0

GE_4b 8 216 54 330.6 18.0 72 1.25 4.9 3.9 9.5

PY_1 10 188 47 220.7 5.4 68 1.25 2.1 2.2 5.5

PY_2 12 172 43 331.7 9.4 73 1.25 2.9 2.0 5.5

PY_2b 10 212 53 432.8 12.6 74 1.25 2.1 1.8 4.9

PY_3 12 184 46 117.9 2.6 67 1.25 2.6 1.8 5.1

PY_4 12 148 37 227.8 6.8 67 1.25 2.8 2.3 5.9

PY_4b 9 152 38 332.3 7.2 72 1.25 1.9 1.8 4.8

A 24 144 24 14.76 0.31 56 1.25 2.2 1.9 4.6

B 24 144 24 14.86 0.34 55 1.25 1.7 2.2 5.0

C 24 144 24 14.71 0.41 56 1.25 1.9 2.7 6.0

D 24 144 24 14.87 0.53 54 1.25 1.9 3.5 7.5

E 24 144 24 14.64 0.53 35 1.25 3.6 2.3 7.5

F 24 144 24 14.59 0.54 38 1.25 2.7 3.6 7.8

G 24 144 24 14.93 0.40 47 1.25 2.2 2.6 5.8

H 24 144 24 15.00 0.37 50 1.25 1.9 2.4 5.4

I 24 144 24 14.83 0.40 53 1.25 2.2 2.6 5.8

J 24 144 24 14.94 0.48 40 1.25 2.1 3.1 6.7

K 24 144 24 14.70 0.45 41 1.25 2.4 2.9 6.5

L 24 144 24 14.62 0.41 49 1.25 1.7 2.7 6.0

M 24 144 24 14.83 0.25 57 1.25 1.9 1.5 4.0

N 24 144 24 14.58 0.34 49 1.25 1.9 2.2 5.1

O 23 138 23 14.57 0.36 52 1.25 2.4 2.3 5.4

P 24 144 24 14.72 0.31 55 1.25 1.9 1.9 4.6

Q 24 144 24 14.73 0.31 58 1.25 2.1 1.9 4.7

R 24 144 24 14.74 0.31 58 1.25 2.0 1.9 4.6

S 24 144 24 14.65 0.38 54 1.25 2.0 2.4 5.5

T 23 138 23 14.73 0.35 53 1.25 1.8 2.3 5.2

U 24 144 24 14.62 0.28 61 1.25 1.8 1.7 4.3

V 24 144 24 14.97 0.26 54 1.25 1.6 1.6 3.9

W 24 144 24 14.58 0.26 59 1.25 1.6 1.7 4.1

X 24 144 24 14.99 0.29 56 1.25 1.6 1.8 4.3
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standard deviations obtained in repeated measures experiments. The empirical expanded uncertainty 𝐴𝐴 𝐴𝐴 ′

(

𝑄𝑄

)

 
is computed as:

𝑈𝑈
′

(

𝑄𝑄

)

= 𝑘𝑘

√

𝑠𝑠2𝑟𝑟

𝑃𝑃𝑃𝑃p

+
𝑠𝑠2
𝐿𝐿

𝑁𝑁p

+ 𝑢𝑢′2
(

𝛿𝛿
)

� (19)

where Np is the number of participants in an experiment and 𝐴𝐴 𝐴𝐴′
(

𝛿𝛿
)

 is the uncertainty related to the ADCP method 
bias, assumed to be 1.25% as proposed by Le Coz et al. (2016) for Génissiat 2010 experiments. In accordance 
with the procedures followed by the participants, 𝐴𝐴 𝐴𝐴 ′

(

𝑄𝑄

)

 is computed for four-transect (P = 4) and six-transect 
(P = 6) averaged discharge measurements for Génissiat 2010 and Chauvan 2016 experiments, respectively.

The expanded uncertainty for a four-transect measurement at PY (4.8%–5.5%) is half of the uncertainty at GE 
(8.5%–12.2%), across the range of discharges from 120 to 440 m 3/s. The difference is explained by more favora-
ble measurement conditions at PY compared to GE, which presents an unstable flow field with marked secondary 
currents and intermittent macroturbulent structures (Le Coz et al., 2016).

In the Chauvan 2016 experiments, the expanded uncertainty for a six-transect measurement ranges between 
3.9% and 7.8% at cross-sections V and F, respectively. Despax et al. (2019) report that the difference is mostly 
explained by the measured discharge ratio, which suggests that larger uncertainty is due to discharge extrapola-
tion errors. The cross-section V presents a highest measured discharge ratio (54%) compared to cross-sections E 
and F (35% and 38%, respectively). A relatively high uncertainty (7.5%) is also observed at cross-section D where 
the near-bank unmeasured area is important (between 3% and 12% of the total discharge is extrapolated at the left 
edge, among the 24 measurements).

3.3.  Comparison of Computed and Observed Uncertainties

Prior to uncertainty calculations, all the ADCP data were post-processed and reviewed using QRevInt 1.18 
(Mueller,  2021). Such post-processing using QRevInt ensures that all the ADCP data and discharges are 
processed homogeneously, irrespective of their manufacturers. The uncertainty of each discharge measurement 
was computed following the QRev-UA and OURSIN methods using QRevInt 1.18 and the default parameter 
values, except sCVprior = 0.6 instead of 0.2.

The 95% expanded discharge uncertainty estimates 𝐴𝐴 𝐴𝐴 ′

(

𝑄𝑄

)

 of QRev-UA and OURSIN are compared with the 
empirical estimation of uncertainty from the repeated measures experiments (Figure 3), and the cross-section 
by cross-section detail is presented in Figure 4. Four-transect and six-transect average discharge measurements 
are considered for Génissiat 2010 and Chauvan 2016 experiments, respectively. The 95% expanded uncertainty 
of the empirical uncertainty estimates computed by Le Coz et al. (2016) and Despax et al. (2019) is reported as 
error bars in the two figures. This uncertainty of the uncertainty reflects the limited number of instruments and 
repeated measurements included in an experiment. In QRev-UA and OURSIN, the uncertainty due to moving-
bed conditions is assumed to be negligible (umb  =  0), since some moving-bed tests were conducted and no 
discernible moving bed was observed for both experiments.

Despite the substantial variability in the computed uncertainty of individual measurements, significant trends in 
the responses of QRev-UA and OURSIN uncertainty results appear clearly (cf. Figure 4). Overall, the two meth-
ods produce realistic uncertainty levels and the increase of uncertainty with more difficult measuring conditions 
is generally captured, even though the larger uncertainty of the measurements conducted at GE site is underes-
timated. This is less true for low-uncertainty measurements (PY cross-sections and Chauvan 2016 experiment) 
for which QRev-UA seems to yield nearly constant uncertainty (about 4% at PY cross-sections and 5%–6% at 
Chauvan). Both methods seem to lack “dynamic range” for the Chauvan experiments, though QRev-UA is worse 
and the mean for OURSIN is better.

For Génissiat 2010 experiments, the fit of the ordinary least squares linear regression is good (coefficient of deter-
mination R 2 > 0.9) for QRev-UA and OURSIN (cf. Figure 3). However, QRev-UA underestimates the empirical 
uncertainty for both GE and PY cross-sections more substantially than OURSIN. The mean and the 95% quantiles 
of the uncertainty differences from all the empirical results presented in this study are −1.5% [−5.3%; +1.7%] 
and −3.1% [−7.6%; +0.6%] for OURSIN and QRev-UA, respectively.
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As for Chauvan 2016 experiments, linear regression is more difficult to interpret because of the smaller range 
of uncertainty explored (cf. Figure 3). But again, QRev-UA uncertainty appears to be underestimated whereas 
OURSIN uncertainty deviations are more balanced around the line of perfect agreement. The mean and the 95% 
quantiles of the uncertainty differences from all the empirical results presented in this study are +0.5% [−1.4%; 
+3.1%] and −1.5% [−3.9%; +0.2%] for OURSIN and QRev-UA, respectively.

For both experiments, the empirical confidence intervals most often overlap the distributions of the OURSIN 
uncertainty estimates, which is not true for QRev-UA (cf. Figure 4). The mean and the 95% quantiles of the 
uncertainty differences from all the empirical results presented in this study are −0.4% [−4.4%; +2.5%] and 
−2.2% [−6.9%; +0.3%] for OURSIN and QRev-UA, respectively. As mentioned earlier, in OURSIN some 
random errors may be accounted for twice as the same effects may contribute to both the measured discharge 
uncertainty 𝐴𝐴 𝐴𝐴′

meas
 and the coefficient of variation term 𝐴𝐴 𝐴𝐴′

CV
 . The comparison with empirical results suggests 

that the possible double-counting effect does not create significant overestimation of the final uncertainty, 
at least in the measuring conditions of the reported experiments, and unless other terms are significantly 
underestimated.

3.4.  Analysis of the Variance Decomposition

From Equations 6 and 8, the contribution of each uncertainty component u to the uncertainty budget can be 
assessed as the ratio between the variance u 2 and the combined variance u 2(Qk) or 𝐴𝐴 𝐴𝐴2

(

𝑄𝑄

)

 . The expanded 

Figure 3.  Comparison of the median of the 95% expanded discharge uncertainty 𝐴𝐴 𝐴𝐴 ′

(

𝑄𝑄

)

 estimated using QRev-UA and 
OURSIN methods and the empirical uncertainty estimates from the repeated measures experiments of Génissiat 2010 and 
Chauvan 2016. Horizontal and vertical error bars show the 95% uncertainty of empirical uncertainty estimates and the 
95% quantiles of uncertainties computed for individual ADCP measurements, respectively. The equation and coefficient of 
determination of the ordinary least squares linear regression are displayed.
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uncertainty U (at a 95% probability level) is the combined relative uncertainty u′ multiplied by the coverage 
factor k = 2.

Figure 5 and Table 4 show the mean decomposition of the total variance into each uncertainty source for QRev-UA 
and OURSIN methods (mean results of all the participants at each cross-section) as follows:

•	 �Systematic errors related to instrumentation: 𝐴𝐴 𝐴𝐴′2syst∕𝑢𝑢
′2

(

𝑄𝑄

)

 with 𝐴𝐴 𝐴𝐴′2syst = 1.5% and 1.3% in QRev-UA and 
OURSIN, respectively.

•	 �Measured discharge: 𝐴𝐴 (1∕𝑃𝑃 ) 𝑢𝑢′2
meas

∕𝑢𝑢′2
(

𝑄𝑄

)

 (only for OURSIN).

•	 �Limited number of ensembles: 𝐴𝐴 𝑢𝑢′2
ens
∕𝑢𝑢′2

(

𝑄𝑄

)

 (only for OURSIN).

•	 �Moving bed: 𝐴𝐴 𝑢𝑢′2
mb
∕𝑢𝑢′2

(

𝑄𝑄

)

 (neglected in this study).

•	 �Invalid data: 𝐴𝐴

(

𝑢𝑢′2
invcell

+ 𝑢𝑢′2
invens

)

∕𝑢𝑢′2
(

𝑄𝑄

)

 (QRev-UA does not separate invalid cells from invalid ensembles).

•	 �Top/bottom discharge extrapolation: 𝐴𝐴

(

𝑢𝑢′2top + 𝑢𝑢′2
bot

)

∕𝑢𝑢′2
(

𝑄𝑄

)

 (QRev-UA does not separate top and bottom 
extrapolated discharges).

•	 �Edge discharge extrapolation: 𝐴𝐴

(

𝑢𝑢′2
right

+ 𝑢𝑢′2
left

)

∕𝑢𝑢′2
(

𝑄𝑄

)

 (QRev-UA does not separate right and left extrapolated 
discharges).

•	 �Transect-to-transect variability: 𝐴𝐴 (1∕𝑃𝑃 ) 𝑢𝑢′2
CV
∕𝑢𝑢′2

(

𝑄𝑄

)

 (coefficient of variation).

As already seen, for the two experiments and at the different cross-sections, OURSIN uncertainty results are 
in closer agreement than QRev-UA uncertainty results with the empirical uncertainty estimates derived from 
the intercomparison experiment results. By construction, the variance decomposition proposed by OURSIN is 
more detailed than that proposed by QRev-UA but some components can be compared across the two methods. 
Substantial differences appear in the variance decomposition results of the two methods.

Figure 4.  Boxplot of the 95% expanded discharge uncertainty 𝐴𝐴 𝐴𝐴 ′

(

𝑄𝑄

)

 estimated using QRev-UA and OURSIN methods and 
the empirical uncertainty estimates (red dots) with their 95% interval of confidence (orange solid line) at each cross-section: 
(a) Génissiat 2010 experiment and (b) Chauvan 2016 experiment. The boxes show the median, first, and third quartiles of 
the uncertainty computed over the discharge measurements, while the whiskers show 1.5 times the inter-quartile distance. 
Outliers are represented by dots. Note that the Chauvan cross-sections are sorted based on the magnitude of empirical 
uncertainty, from the least (V) to the most uncertain cross-section (F).
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At GE cross-sections for instance, QRev-UA uncertainty is dominated by the transect-to-transect discharge varia-
bility (through the coefficient of variation). The OURSIN uncertainty results are dominated by the same compo-
nent and by the bottom discharge uncertainty. At Chauvan, the contributions of the transect-to-transect discharge 
variability are similar in magnitude. While this term is formally similar between the two methods, the methods 
of estimating the coefficient of variation are different (see Supporting Information S1 for a sensitivity analysis). 
As expected, the differences are larger for measurements with fewer transects (four at GE/PY compared to six at 
Chauvan): the Bayesian estimator of OURSIN is influenced by the prior values, potentially underestimated for 
such difficult measuring conditions, whereas the Student's coverage factor of QRev-UA may overestimate the 
coefficient of variation for such a small number of transects. In OURSIN results, the bottom discharge uncer-
tainty fairly reproduces the uncertainty differences across the GE cross-sections. OURSIN provides a realistic 
explanation for larger discharge uncertainty at GE cross-sections since bottom discharge accounts for about 18% 
of total discharge and the unstable flow field (Le Coz et al., 2016) may increase the variability of vertical velocity 
profiles.

At PY, the total uncertainty estimated by QRev-UA is small and dominated by the uncertainty due to system-
atic errors, which is fixed to a similar value in OURSIN and QRev-UA. Again, the supplementary variance 
comes from the coefficient of variation in QRev-UA, and from the coefficient of variation and various discharge 
extrapolation terms in OURSIN. The OURSIN variance decomposition is consistent with the relative weights of 
extrapolated discharges in the total discharge. Discharge extrapolation uncertainty terms are generally smaller in 
QRev-UA because the parameter configurations explored by OURSIN include more modeling options, and more 
error sources, such as the draft error or edge parameter errors for instance.

For Chauvan experiments, the better uncertainty results from OURSIN as compared to QRev-UA are due to 
larger bottom and especially top discharge extrapolation terms, in relation with large extrapolated discharges and 

Figure 5.  Decomposition of the mean variance computed by QRev-UA (a and b) and OURSIN (c and d) into variance due 
to each error source for Génissiat 2010 (left) and Chauvan 2016 (right) repeated measures experiments. The mean variance 
results at each cross-section are presented. In the background, light gray bars show the empirical variance as shown in 
Figure 3.
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Table 4 
Variance Decomposition of Uncertainty Results From OURSIN and QRev-UA for the Génissiat 2010 and the Chauvan 2016 Acoustic Doppler Current Profiler 
(ADCP) Repeated Measures Experiments (Data of Figure 5, See Text for Definition of Uncertainty Terms)

OURSIN QRev-UA
Empirical 

total 
variance 
(m 6/s 2)

Variance decomposition (%)

Total 
(m 6/s 2)

Variance decomposition (%)

Total 
(m 6/s 2)

Site 
name Syst. Meas.

Nb. 
ens. Inv. Top Bottom Left Right CV Syst. Inv. Extrap. Edges CV

GE_1 19.8 0.6 5.7 0.3 4.6 26.5 3.1 1.3 38.2 43.4 46.8 1.4 <0.1 1.2 50.6 24.0 89

GE_2 18.9 0.5 6.0 <0.1 3.1 20.7 1.5 1.7 47.6 101.9 41.2 0.1 0.2 0.6 58.1 61.3 236

GE_2b 21.6 0.5 6.3 0.1 3.2 28.3 2.1 0.9 37.0 154.2 48.1 0.1 <0.1 0.5 51.3 90.7 365

GE_3 13.3 0.4 0.5 0.2 6.0 26.5 10.1 5.0 38.0 17.4 37.2 2.6 <0.1 2.8 57.3 8.2 49

GE_4 19.0 0.5 1.3 0.4 5.5 28.6 4.7 3.2 36.8 47.0 39.3 14.0 0.2 1.1 45.4 29.9 126

GE_4b 20.9 0.5 1.3 0.3 3.7 30.9 1.9 1.8 38.6 92.5 43.1 8.2 <0.1 0.7 48.0 58.9 247

PY_1 33.1 0.5 2.4 0.1 23.9 11.7 1.0 0.4 26.9 25.2 64.9 0.4 <0.1 0.5 34.2 16.9 37

PY_2 36.8 0.5 2.6 0.2 21.6 7.4 1.0 0.2 29.6 51.4 64.2 1.4 0.1 0.3 34.0 38.7 83

PY_2b 39.2 0.5 2.7 0.5 18.9 3.3 3.6 0.2 31.0 82.3 63.7 2.3 <0.1 0.4 33.6 66.7 112

PY_3 28.5 0.5 1.6 0.1 28.8 17.3 1.9 0.3 21.0 8.4 64.8 3.4 <0.1 0.6 31.2 4.9 9

PY_4 32.6 0.6 1.8 0.3 24.1 13.4 2.2 0.3 24.7 27.4 62.3 4.5 0.1 0.3 32.8 18.9 45

PY_4b 36.3 0.8 2.4 0.5 21.4 9.7 3.7 0.4 24.9 52.2 61.3 10.3 <0.1 0.4 28.0 40.4 63

A 26.1 0.5 2.8 0.2 43.1 10.3 0.1 0.1 16.9 0.14 65.1 2.6 <0.1 <0.1 32.2 0.07 0.12

B 27.6 1.2 2.8 0.2 47.7 7.1 0.1 <0.1 13.3 0.13 71.4 0.8 <0.1 0.1 27.8 0.07 0.14

C 26.3 0.8 2.4 0.2 39.7 9.9 9.6 <0.1 11.1 0.14 71.0 2.3 <0.1 1.9 24.8 0.07 0.20

D 14.9 0.4 1.6 0.1 19.3 5.6 50.8 0.5 6.8 0.24 57.5 0.5 <0.1 20.3 21.7 0.08 0.32

E 12.9 0.3 1.5 6.6 57.2 6.3 1.1 0.1 14.0 0.27 34.9 39.9 <0.1 0.2 25.0 0.13 0.31

F 15.7 0.1 1.6 1.4 62.2 8.0 <0.1 0.1 10.8 0.22 48.8 26.9 <0.1 0.1 24.2 0.09 0.35

G 20.1 0.4 2.1 0.3 55.4 9.9 0.1 0.1 11.7 0.18 64.7 4.6 <0.1 0.1 30.5 0.07 0.19

H 22.8 0.7 2.1 0.1 52.5 9.7 0.2 <0.1 11.9 0.16 70.1 1.4 <0.1 0.1 28.4 0.07 0.17

I 26.3 0.9 3.0 0.3 44.4 7.9 1.4 0.1 15.7 0.14 67.1 1.0 <0.1 0.5 31.5 0.07 0.09

J 17.7 0.3 1.9 0.4 62.2 8.6 0.2 0.1 8.6 0.20 71.0 1.5 <0.1 0.3 27.2 0.07 0.25

K 17.8 0.5 1.6 0.2 55.3 13.7 2.2 0.2 8.4 0.20 70.6 0.9 <0.1 0.7 27.8 0.06 0.24

L 22.8 0.7 2.4 0.1 49.5 12.8 1.2 <0.1 10.5 0.15 73.1 0.4 <0.1 0.2 26.3 0.06 0.20

M 29.1 1.0 3.2 0.1 44.5 7.9 0.1 0.1 14.0 0.12 71.6 0.6 <0.1 <0.1 27.7 0.07 0.09

N 22.4 0.7 2.6 0.2 51.7 10.7 2.0 0.1 9.8 0.16 70.6 1.8 <0.1 0.9 26.8 0.07 0.15

O 22.8 0.7 2.3 0.7 39.1 20.1 1.5 0.1 12.7 0.15 66.7 3.5 <0.1 0.4 29.5 0.07 0.17

P 26.7 0.7 2.3 0.5 38.1 18.3 0.1 <0.1 13.5 0.13 69.8 1.0 <0.1 <0.1 29.1 0.07 0.12

Q 28.1 0.9 3.5 0.2 36.7 16.7 <0.1 0.1 13.8 0.13 71.4 1.1 <0.1 0.1 27.3 0.07 0.12

R 28.0 0.8 3.3 0.2 44.0 9.8 0.2 0.4 13.4 0.13 71.0 0.7 <0.1 0.2 28.1 0.07 0.12

S 26.9 0.8 2.3 0.4 42.9 12.5 0.3 1.6 12.3 0.13 72.3 0.6 <0.1 0.3 26.9 0.06 0.17

T 23.8 0.5 2.1 0.2 46.7 16.9 0.2 0.1 9.4 0.15 74.9 0.6 <0.1 0.1 24.4 0.06 0.15

U 31.0 1.0 3.6 0.1 41.9 6.0 0.1 0.3 16.1 0.12 69.9 0.3 <0.1 0.1 29.7 0.07 0.10

V 26.5 0.6 3.1 0.2 42.9 15.9 0.8 0.2 9.8 0.14 74.3 1.7 <0.1 0.8 23.2 0.07 0.09

W 30.2 0.7 3.1 0.2 39.8 12.0 0.7 1.0 12.1 0.12 73.5 0.4 <0.1 0.6 25.5 0.06 0.09

X 26.9 0.6 2.5 0.5 29.8 25.9 2.1 0.1 11.7 0.14 71.2 2.3 <0.1 0.4 26.1 0.07 0.10

Note. Abbreviations mean: systematic errors (Syst.), measured discharge (Meas.), limited number of ensembles (Nb. Ens.), invalid cells and ensembles (Inv. cells, Inv. 
ens., Inv. when combined), top/bottom discharge extrapolation (Top, Bottom, Extrap. when combined), left/right edge discharge extrapolation (Left, Right, Edges when 
combined), and transect-to-transect variability (CV for coefficient of variation). Moving bed uncertainty does not appear as it is taken as zero for these experiments. 
Variance terms expressed in % are divided by the total variance. Total variances from OURSIN, QRev-UA, and the experiments (empirical variance) are displayed.
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relatively uncertain vertical velocity profiles and exponents. At cross-section D, a substantial amount of discharge 
(6%) had to be extrapolated based on uncertain parameters, since almost none of the participants measured the 
edge distances and shapes precisely. The default settings result in a large edge discharge uncertainty, which is also 
visible in QRev-UA results but likely underestimated. At cross-sections E and F with shallower flows disturbed 
by a weir and a fallen tree, QRev-UA detects significant uncertainty due to invalid data, unlike OURSIN due to 
different uncertainty estimation procedures. In QRev-UA, the standard uncertainty is simply taken as 15% of 
invalid discharge while OURSIN compares the discharges computed with various interpolation options. As the 
invalid cells are distributed throughout the cross-section, differences in total discharge are small, hence a small 
uncertainty component.

4.  Discussion
4.1.  Empirical Validation of the Uncertainty Computation

As proposed by Le Coz et al. (2016) and applied by Despax, Favre, et al. (2016) to current-meter discharge meas-
urements, repeated-measures (inter-laboratory) experiments are useful to understand and improve uncertainty 
propagation methods in hydrometry. Empirical uncertainty estimates from two large-scale moving-boat ADCP 
experiments compare relatively well with the uncertainty results from OURSIN: the mean and the 95% quantiles 
of the uncertainty differences from expanded empirical uncertainties ranging from 4% to 16% are −0.4% [−4.4%; 
+2.5%]. The OURSIN uncertainty estimates have only a small average bias across the measurements analyzed 
here. Large-scale experiments are useful for such validation purpose as the large numbers of participants and 
repeated measurements reduce the uncertainty of the uncertainty estimates.

Obviously, the empirical uncertainty estimates are specific to the study site and to the instruments and operators 
involved. The Génissiat 2010 and Chauvan 2016 experiments cover a range of cross-sectional characteristics 
(geometry, depth, width, and flow velocities), from shallow (0.6 m) to deep (9 m) and from relatively narrow 
(30 m) to wide (80 m) cross-sections. Different brands and models of ADCP from Teledyne RDI and SonTek 
manufacturers were involved and deployed either from powered vessels (Génissiat 2010) or tethered from the 
bank (Chauvan 2016). Operators were nearly all skilled professionals but field procedures, and software param-
eters and options could slightly differ across the operators. During the same experiment (Génissiat 2010) and at 
the same studied site, repeated measures have been conducted in steady flow conditions for various flow rates 
(from 120 to 440 m 3/s).

The uncertainty of a discharge measurement depends on the measurement conditions. Accordingly, the dominant 
contribution to the OURSIN uncertainty depends on the studied site. The dominant contributions are the coef-
ficient of variation and the bottom discharge extrapolation at GE (Génissiat 2010), the systematic errors at PY 
(Génissiat 2010), and the top discharge extrapolation in the Chauvan 2016 experiments, except for cross-section 
D for which the edge discharge extrapolation dominates the uncertainty.

All the error sources related to ADCP discharge measurements found in Muste et al. (2004), González-Castro 
and Muste (2007), Kim and Yu (2010) or Despax et al. (2019) were not active simultaneously in the two exper-
iments (cf. Table 5). Would OURSIN work as well in other measurement conditions? Additional comparisons 
with empirical uncertainty estimates obtained in other conditions are necessary for further validation. If differ-
ent sources of errors that were small if not negligible in the Génissiat 2010 and Chauvan 2016 experiments are 
covered, their modeling in OURSIN could be evaluated. Challenging conditions for ADCP measurements include 
aquatic vegetation, low velocities, or high turbulence conditions. For instance, slow velocity may increase the 
impact of the measured discharge uncertainty; a limited number of ensembles would increase the contribution 
of the uens component, which could be quantified by alternative equations such as those developed by Despax, 
Perret, et al. (2016). Also, other experiments in different conditions will be useful to confirm that the possible 
double-counting of errors included in both the transect-to-transect variability and other discharge uncertainty 
components is not problematic.

4.2.  Default Settings and Assumptions

The default values or options used in OURSIN to compute the uncertainty (Section 2) must be questioned and 
tested. They can be changed by the user if additional information or expert knowledge is available. Currently, the 
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default options in OURSIN are usually conservative, in order to cover the worst situations with minimal added 
information from the operator. For instance, the default settings for estimating edge discharge uncertainty corre-
spond to the minimal (but common) edge estimation procedure with edge distances eye-balled and edge shape 
unchecked. This setting makes sense for the Chauvan 2016 experiment as the vast majority of the participants did 
not measure the edge distances and shapes precisely. As a result, the edge discharges were either negligible in the 
total discharge or significantly contributed to the total variance (at cross-section D). The resulting edge discharge 
uncertainty may look overestimated for measurements with more precise edge distance measurements and more 
precise knowledge of the edge shapes. Then, other settings should be proposed to reflect different quality levels 
of field procedures and information from the operators.

Some user-defined parameters have a small impact on the expanded uncertainty since they affect the input stand-
ard uncertainties in the measured area, which accounts for a limited contribution to the combined uncertainty. 
Those input standard uncertainties are averaged out by the number of cells, the number of ensembles, and the 

Table 5 
List of Error Sources That Are Active or Not During the Inter-Laboratory Experiments and Covered or Not by the Propagation Methods (QRev-UA and OURSIN 
Methods)

Uncertainty source Variable

Inter-laboratory experiments Propagation method

CommentsGE site PY site Chauvan QRev-UA OURSIN

Site characteristics

  Cross-section effect (geometry)𝐴𝐴 𝑄𝑄   Active Active Active Partially Partially

  Moving-bed 𝐴𝐴 𝑄𝑄   Not active Not active Not active Frozen Frozen

  Temporal flow variation 𝐴𝐴 𝑄𝑄   Not active Not active Not active uCV uCV

  Flow field variation 𝐴𝐴 𝑄𝑄   Active Not active Not active uCV uCV

Instrument

  Settings (water mode, cell size, 
etc.)

𝐴𝐴 𝑄𝑄   Active Active Active Not covered Not covered  a

  Temperature, salinity 𝐴𝐴 𝑄𝑄   Active Active Active Not covered Not covered  a

  Near transducer disturbance 𝐴𝐴 𝑄𝑄  , Qtop
Active Active Not active Partially Partially

  ADCP model, frequency, float𝐴𝐴 𝑄𝑄   Active Active Active Not covered umeas Active with respect to ADCP 
range limitations

Methods (algorithms)

  Top/bottom extrapolation Qtop, Qbot Active Active Active Active Active Chauvan: PP model used at 
each cross-section

  Edge extrapolation Qleft, Qright Active Active Active Active Active

  Interpolation (invalid data) Qinvcell, Qinvens Active Active Active Active Active

  Navigational reference (GPS or 
BT)

𝐴𝐴 𝑄𝑄   Not active Not active Not active Not covered Not covered

  Depth reference (vertical beam, 
4-beam average)

𝐴𝐴 𝑄𝑄   Not active Not active Not active Not covered Not covered

Operator

  Sensor draft Qtop Active Active Active Not covered u(Qtop)  a

  Edge distance Qleft, Qright Active Active Active u(Qedge) u(Qleft), u(Qright)

  Edge sampling Qleft, Qright Active Active Not active u(Qedge) u(Qleft), u(Qright) Chauvan: 10 pings in stationary 
position requested

  Boat operation 𝐴𝐴 𝑄𝑄   Active Active Active Not covered umeas

  Sampling time 𝐴𝐴 𝑄𝑄   Active Active Active uCV uCV, uens

  Operator skills 𝐴𝐴 𝑄𝑄   Active Active Active Not covered Not covered

 aPropagation methods assume that the general guidance for making Acoustic Doppler Current Profiler (ADCP) discharge measurements are followed and all possible 
biases should be corrected prior the uncertainty analysis (UA).

 19447973, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
031878 by Inrae - D

ipso, W
iley O

nline L
ibrary on [20/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

DESPAX ET AL.

10.1029/2021WR031878

22 of 28

number of transects. On the other hand, the combined uncertainty is sensitive to other parameters, for exam-
ple: the draft error which affects the uncertainty of edge and top discharges, the models and options selected 
by the operator to extrapolate discharges in unmeasured areas of the cross-section as also reported by Moore 
et al. (2016), the uncertainty due to the ADCP method bias (assumed to be 1.31% by default), and the Bayesian 
priors used to estimate the coefficient of variation CV.

The bottom-track bias uncertainty 𝐴𝐴 𝐴𝐴′syst(𝑣𝑣𝐵𝐵𝐵𝐵 ) and the water-track bias uncertainty 𝐴𝐴 𝐴𝐴′syst(𝑤𝑤𝑊𝑊𝑊𝑊 ) could be 
re-evaluated using additional results from tow-tank calibration tests. Indeed, many ADCP calibration tests have 
been conducted since those reported by Oberg and Mueller (2007). In particular, it would be worth exploring 
whether the bottom-track and water-track systematic errors increase when velocity decreases, that is, whether the 
bias uncertainty should be constant or variable with velocity.

The default prior uncertainty of CV (see Section 2.2.6) has been defined small enough to stick to a credible value 
when the number of transects is too small, and large enough to tend toward the empirical value of CV when 
more transects are available. The default prior median of CV (3%) reflects the typical repeatability observed in 
repeated-measures experiments conducted in average conditions. The default prior values proposed in this work 
can be modified by the user when better information is available or more realistic assumptions can be defended. 
This better information may come from the results of repeated-measures experiments conducted in more similar 
conditions. Another perspective for defining generic prior values of CV may be to model them as a function of the 
time of exposure and/or the turbulent scales of the flow, as suggested by Oberg and Mueller (2007) and García 
et al. (2012). However, further investigation is needed to establish predictive equations and validate them for a 
broad range of river conditions.

4.3.  Uncovered Error Sources

A number of perspectives for developing and improving the uncertainty computation have been identified. 
Table 5 shows the moving-boat ADCP errors that are covered or not by the QRev-UA and the OURSIN propa-
gation methods.

First, the uncertainty related to using satellite navigation instead of bottom-tracking as a boat velocity reference 
is not covered in this paper, as all the validation data were measured with bottom-track reference. Rennie and 
Rainville  (2006) and Wagner and Mueller  (2011) provide rough estimates of the associated uncertainty. An 
uncertainty component related to compass errors and the use of GPS has been prepared for implementation in 
OURSIN. The potential bias in the measurement due to dynamic compass errors when using satellite navigation 
as the boat-velocity reference is computed using the method proposed by Mueller  (2018) (Equation 41). The 
default value for the compass standard uncertainty is 1°, since most compasses used in ADCP are ±2°. The effect 
of an error in magnetic variation is still not taken into account however.

The uncertainty due to moving-bed was not considered either in this paper (frozen for both OURSIN and 
QRev-UA methods) since no discernible moving bed was observed during the experiments. A few moving-bed 
tests conducted at some cross-sections confirmed the absence of moving-bed effects. As it stands, the OURSIN 
method proposes to use the same expert values as proposed in QRev-UA. Further investigations must be conducted 
to get a more reliable assessment of the associated uncertainty (Mueller & Wagner, 2007). Other factors including 
the impact of sound speed (salinity, temperature) are assumed to be corrected prior to UA analysis and are not 
computed in OURSIN.

On the other hand, some error sources might be double-counted in OURSIN. As already mentioned, including 
the transect-to-transect discharge variability through the 𝐴𝐴 𝐴𝐴′

CV
 term is useful to reflect error sources that are not 

covered by other terms. Even if the error sources contributing to the measured discharge uncertainty term 𝐴𝐴 𝐴𝐴′
meas

 
may also contribute to 𝐴𝐴 𝐴𝐴′

CV
 , the validation results so far available suggest that it is more conservative to keep both 

terms in the uncertainty computation. If future verification tests find that uncertainty is overestimated in some 
conditions due to error double-counting, dropping 𝐴𝐴 𝐴𝐴′

meas
 systematically or conditionally might be considered.

4.4.  Improving the Uncertainty Propagation Method?

In OURSIN equations, measurement errors are considered either perfectly correlated (systematic) or perfectly 
uncorrelated (random). For instance, in the expression of the measured discharge uncertainty (Equation  10), 
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water-track and depth cell size errors are assumed perfectly uncorrelated, and factor 1/mi would be removed if they 
were assumed perfectly correlated. Also, correlation of errors across successive transects is accounted for through 
the separation of systematic versus random errors in the computation of the uncertainty of a multiple-transect 
averaged discharge (Equation 3). Clearly, the truth is in-between as some elemental measurements in an ADCP 
transect are partially correlated, for example, velocities measured in adjacent cells of an ensemble from the same 
acoustic pings, beam-averaged depths of adjacent ensembles across the same bed area, extrapolated discharges, 
and the measured discharges used for the extrapolation. Covariance factors are easy to write in the uncertainty 
propagation equations but quantifying intermediate degrees of correlations precisely seems out of reach with-
out additional studies and experiments. Meanwhile we only can select between perfectly correlated or perfectly 
uncorrelated errors as done in the proposed OURSIN method.

OURSIN is based on simplifications of the DRE (JCGM, 2008a) and uncertainty components, compared to the 
full-fledged framework proposed by Kim and Yu (2010) for instance. The advantage of reducing the error model 
to the most important error sources is that the end-user can more easily handle the uncertainty inputs and under-
stand the uncertainty outputs. It clarifies the assumptions and makes the method more applicable by hydrological 
services. Also, in OURSIN the uncertainty propagation equation derives from the first-order Taylor expansion 
approach of the GUM, and a few configurations are computed to estimate the extrapolated discharge uncer-
tainty components, instead of Monte Carlo simulations (JCGM, 2008b) as used in QUant for instance (Moore 
et al., 2016). This results in simpler and much faster computations, but the errors due to such approximations 
should be evaluated by applying OURSIN and a Monte Carlo-based counterpart (QUant, for instance) to a set of 
representative ADCP measurements and comparing the results. It is not impossible that Monte Carlo simulation 
procedures fast enough for use with ADCP measurements in the field can be implemented in QRevInt in the 
future. Then, as the OURSIN configurations used to compute alternative unmeasured discharges are based on 
assumed distributions of parameters and inputs, a Monte Carlo-based version of the OURSIN method should be 
relatively easy to establish.

5.  Conclusions
This study presents the adaptation of the OURSIN method for UA of moving-boat ADCP discharge measure-
ments in rivers as implemented in QRevInt, the international fork of the ADCP measurement processing soft-
ware, QRev. This method combines uncertainties due to systematic and random errors to estimate the uncertainty 
of single or multiple-transect ADCP discharge measurements. The discharge uncertainty in measured areas is 
estimated by propagating the uncertainty of elemental measurements (boat velocity, cell size, water velocity). 
The uncertainty of discharges extrapolated in unmeasured areas (top, bottom, right/left edges, invalid ensembles, 
and cells) is estimated through expert-designed configurations varying meaningful parameters and options, as an 
alternative to the Monte Carlo approach.

The uncertainties provided by the OURSIN method and the built-in QRev-UA have been compared with the 
empirical uncertainty from two large-scale repeated measures experiments. In the given conditions of Génissiat 
2010 and Chauvan 2016 experiments, with expanded empirical uncertainties in the range of 4%–16%, the compar-
ison tends to validate the propagation method OURSIN as a consistent method for modeling the uncertainty of 
ADCP discharge measurements. The QRev-UA method originally implemented in QRev and QRevInt performs 
well in most scenarios despite its fairly simple UA. However the results indicate that, in the given conditions of 
the experiments, the OURSIN method is more accurate than QRev-UA, with a smaller mean bias (−0.4% vs. 
−2.2%) and a smaller range of uncertainty differences from the empirical uncertainty estimates ([−4.4%; +2.5%] 
vs. [−6.9%; +0.3%] as 95% quantiles). Additionally, OURSIN provides a more detailed decomposition of error 
sources. Such an uncertainty budget is most useful to practitioners for improving their measurement procedures.

The main ADCP error sources are included in the OURSIN method. However, as some error sources are not 
covered or were negligible in the experiments used for its validation, further comparison with empirical uncer-
tainty estimates obtained in different environments, especially in challenging conditions, would be valuable. 
Also, additional options and uncertainty components could be included in OURSIN through future develop-
ment. The numerical and statistical approximations of the uncertainty propagation scheme could be evaluated by 
comparison with a Monte Carlo based method such as QUant.

The OURSIN method is designed as an original trade-off between statistical accuracy and practical efficiency. 
The results presented in this paper and other applications not shown suggest that it provides reliable uncertainty 
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estimates for various site and flow conditions. Together with the OURSIN method, the QRevInt software 
provides an operational decision-making tool that combines quality assurance/quality control and UA. Through 
the quantification of discharge uncertainty and its sources, the value of having and enforcing standard operating 
procedures, as well as the use of a software like QRevInt for reviewing the quality of ADCP data, can be explored 
quantitatively. In turn, a better understanding of how ADCP discharge uncertainty can be minimized will help 
promote and improve best operating practices.

Appendix A:  Combined Uncertainty Computation
The establishment of the OURSIN uncertainty propagation model presented in this article relies on the compu-
tation of the combined uncertainty introduced in the Guide to the expression of Uncertainty in Measurement 
or GUM (JCGM, 2008a). Here is a reminder of the general equation and its simple expression for two specific 
situations encountered in the derivation of OURSIN.

The measurement process is modeled through the data reduction equation (DRE):

𝑌𝑌 = 𝑓𝑓 (𝑋𝑋1, 𝑋𝑋2, . . .𝑋𝑋𝑛𝑛)� (A1)

where random variables Y and X1, X2, …, Xn are the output (the measurand) and the inputs, respectively, of the 
measurement model f.

In the OURSIN model derivation, the input quantities of the DRE are always assumed to have independent errors. 
In such a case, the combined uncertainty uc(y), where y is the output estimate (i.e., the measurement result), can 
be computed through a first-order Taylor expansion of the DRE:

𝑢𝑢
2
𝑐𝑐 (𝑦𝑦) =

𝑛𝑛
∑

𝑖𝑖=1

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

)2

𝑢𝑢
2
(𝑥𝑥𝑖𝑖)� (A2)

where x1, x2, …, xn are the input estimates (i.e., the elementary measurements).

When the DRE is a sum 𝐴𝐴
(

𝑌𝑌 =
∑𝑛𝑛

𝑖𝑖=1
𝑋𝑋𝑖𝑖

)

 , then the sensitivity coefficients ∂f/∂xi are equal to 1, and the squared 
uncertainty of the output is equal to the quadratic sum of the uncertainties of the inputs:

𝑢𝑢
2
𝑐𝑐 (𝑦𝑦) =

𝑛𝑛
∑

𝑖𝑖=1

𝑢𝑢
2
(𝑥𝑥𝑖𝑖)� (A3)

When the DRE is a product 𝐴𝐴
(

𝑌𝑌 =
∏𝑛𝑛

𝑖𝑖=1
𝑋𝑋𝑖𝑖

)

 , then the sensitivity coefficients are:

𝜕𝜕𝜕𝜕
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=
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𝑥𝑥𝑖𝑖

=
𝑦𝑦

𝑥𝑥𝑖𝑖

� (A4)

As a result, the squared relative (i.e., percentage) uncertainty of the output is equal to the quadratic sum of the 
relative uncertainties of the inputs:

𝑢𝑢
′ 2
𝑐𝑐 (𝑦𝑦) =

𝑢𝑢2𝑐𝑐 (𝑦𝑦)

𝑦𝑦2
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𝑛𝑛
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𝑢𝑢2(𝑥𝑥𝑖𝑖)

𝑥𝑥2

𝑖𝑖
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𝑛𝑛
∑

𝑖𝑖=1

𝑢𝑢
′2
(𝑥𝑥𝑖𝑖)� (A5)

Appendix B:  Uncertainty Classification and Error Terminology
B1.  Type A Versus Type B Uncertainty Evaluation

Type A and type B evaluations distinguish the method used to evaluate the standard uncertainty, denoted u 
(JCGM, 2008a). Type A uncertainty is calculated by a statistical analysis of measured quantity values (series of 
repeated observations) obtained under defined measurement conditions. The estimated standard uncertainty u is 
simply taken as the standard deviation σ of N observations xi of the measurand (quantity intended to be measured) 
X:

𝜎𝜎 =

√

√

√

√
1

𝑁𝑁 − 1

𝑁𝑁
∑

𝑖𝑖=1

(

𝑥𝑥𝑖𝑖 − 𝑥𝑥
)2� (B1)
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where 𝐴𝐴 𝑥𝑥  is the average of the N observations of X.

Type B uncertainty denotes the evaluation of standard uncertainty determined by any other mean than a 
Type A evaluation of measurement uncertainty. It includes estimation based on expert (including subjective) 
knowledge, results from calibration reports, proficiency testing reports, theoretical models, or sensitivity 
analysis.

B2.  Probability Distributions for Measurement Uncertainty

Probability distributions (pdf) are a function f(x) that shows the relationship between the outcome of an event 
x and its frequency of occurrence. Several probability distributions can be used for uncertainty analysis (UA). 
The most common, and the ones used in the OURSIN method, are the normal distribution and the rectangular 
distribution.

The normal (or Gaussian) distribution is a function that represents the distribution of the random variables as 
a symmetrical bell-shaped graph where the peak is centered about the mean and is symmetrically distributed 
in accordance with the standard deviation σ (see Figure B1). Central Limit Theorem states that the distribution 
of the sum of a large number of random variables, such as errors, will tend toward a normal distribution if 
none of the sources of error is dominant over the others. As a consequence, the normal distribution is the most 
commonly used probability distribution for evaluating Type A uncertainty. When computing the standard devia-
tion (Equation B1) to evaluate the standard uncertainty u, it is implied that the quantified error follows a normal 
distribution.

The rectangular (or uniform) distribution is a function that represents a continuous uniform distribution and 
constant probability (see Figure  B1). In a rectangular distribution, all outcomes are equally likely to occur 
between a lower and an upper bounds (a− and a+). In the lack of knowledge regarding the shape of the distri-
bution, the rectangular distribution is often a default option in UA as an alternative to normal distribution. For 
instance, the uncertainty induced by a parameter selected by an operator is often modeled based on a rectangular 
distribution of error. There is an underlying assumption that all scenarios have the same probability to occur in 
the possible range of parameters.

To get a standard deviation equivalent, the standard uncertainty is evaluated as follows:

𝑢𝑢(𝑥𝑥) =
𝑎𝑎+ − 𝑎𝑎−

2

√

3
� (B2)

In the practical application of the GUM (JCGM, 2008a), the bias correction corresponding to the expected value 
(a+ + a−)/2 of the uniform distribution is sometimes neglected and the user-defined parameters are applied to 
compute the measurement result. However, this may be problematic when the uniform distribution is substan-
tially not centered on the measurement result.

Figure B1.  Distribution functions: (a) normal distribution and (b) rectangular distribution with mean 𝐴𝐴 𝑥𝑥  and standard 
uncertainty u(x). The shaded areas of 𝐴𝐴 𝑥𝑥 ± 𝑢𝑢(𝑥𝑥)  are the 68% and 58% confidence intervals around the means of the normal and 
rectangular distributions, respectively. Adapted from Meyer (2007).
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B3.  Random Error Versus Systematic Error

The uncertainty of a measurement may come from systematic or random errors. Random errors cannot be elimi-
nated from an experiment, but most systematic errors can be reduced. Systematic errors induce a possible bias in 
the measurement. They can be detected by applying a QA/QC process. If the magnitude of systematic errors  is 
known accurately enough, it must be corrected using adjustment factors or coefficients, before conducting the 
UA. However, unknown systematic errors can be treated as random variables, mostly because the correction 
factor is unknown and/or uncertain (JCGM, 2008a). On the other hand, random errors are unpredictable errors 
mostly due to environment sources of fluctuation. Random errors often follow a normal distribution. Note that 
random errors are reduced by data averaging, but systematic errors are not.

Appendix C:  Error Velocity
Most of the ADCPs have four beams, disposed in a Janus configuration. Four-beam systems have a redundant 
beam that can be used to compute a quality check either on water-track velocity or on boat velocity (bottom-track 
referenced). For instance, the difference velocity dv can be calculated by averaging vertical velocities from oppos-
ing transducers pairs (pairs 1–2 and 3–4) as follows:

𝑑𝑑𝑑𝑑 =
(𝐵𝐵1 + 𝐵𝐵2) − (𝐵𝐵3 + 𝐵𝐵4)

2cos 𝜃𝜃
� (C1)

with B1, B2, B3, and B4 the radial velocities measured in beam 1, 2, 3, and 4, respectively. θ is the tilt angle of the 
beams referenced to vertical.

The so-called difference velocity is a good proxy to evaluate the validity of the homogeneous velocity field 
assumption (Gilcoto et al., 2009). If the flow field is homogeneous, the difference between these vertical veloci-
ties will average to zero. Teledyne RDI and QRev scale the difference velocity so that the error velocity is compa-
rable to the horizontal velocity. The equation used to compute the scaled error velocity is:

𝑒𝑒𝑣𝑣 =
(𝐵𝐵1 + 𝐵𝐵2) − (𝐵𝐵3 + 𝐵𝐵4)

2

√

2sin 𝜃𝜃
� (C2)

The error velocity can be computed based either on water-track velocities associated to each cell or on boat veloc-
ity (bottom-track referenced) associated to each ensemble following Equation C2.

QRev statistically filters the ensembles where the error velocity associated with the boat velocity is significantly 
different from the others. In the same way, water-track velocities are filtered when the error velocity associated 
to a cell is different from the others.

The dispersion of the remaining error velocities reflects the combination of errors due to ADCP noise and meas-
uring conditions (bed slope, uneven bed configuration, turbulence, flow instability, waves). Under ideal condi-
tions, the variance of the error velocity will indicate the part of the variance attributable to instrument noise 
(Teledyne RDI, 1998). On the other hand, errors induced by the measuring conditions may increase the error 
velocity.

Data Availability Statement
The raw ADCP data (binary files) from Génissiat 2010 and Chauvan 2016 experiments used in this paper are 
available in the following Zenodo repository: https://doi.org/10.5281/zenodo.7142646 (Despax et  al.,  2022). 
QRevInt Windows executables can be downloaded freely at https://www.genesishydrotech.com/qrevint.
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