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Viruses: tireless,
undisciplined explorers of life

Daniel MARC
INRA - Infectiologie et Santé Publique

== SORNCERINPACT



Viruses: reservoir of gene diversity

Chosen example: influenza viruses



Events that shaped our current knowledge
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Human influenza viruses, 1918 - 2019
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Avian influenza viruses:
HIN1 providers of genes for novel
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Reassortments between influenza viruses
permanently produce novel viruses

cell infected
by two viruses

Cell membrane

A frequent event - and a major driver of
the evolution of influenza viruses



In wild waterfowl, circulation of viruses
within and between host species,
permanent exchanges of segments




Similar, or even larger diversity
in other virus families

Pathogenic viruses
Picornaviridae: polio, coxsackie, rhinoviruses
Pneumoviruses, Coronaviruses,

Non-Pathogenic viruses
Numerous viruses discovered in virome explorations

Wherever we look, a huge diversity of viruses
- In domesticated organisms (mammals, plants)

- In hitherto unexplored biological systems
- Aquatic environments
- Bats
- amoebas -2 giant viruses



Knowable diversity

Viruses that were previously unknown,
and expand the known viral families _ imircae

Unknowable diversity
Novel families, with lots of novel unknown genes

Mimivirus Pandoravirus salinus 65 to 85% of ORFans

Pandoravirus Pithovirus
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“...We also know there are known unknowns; that is to say we know there are
some things we do not know. But there are also unknown unknowns -- the
ones we don't know we don't know." Donald Rumsfeld, US Defense Secretary



More and more viral genomes sequenced
Unexpectedly large genomes
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Large RNA viruses acquired a proofreading
activity (ExoN), allowing still larger

genomes
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Viruses probably date back to the origins of life
They have had plenty of time to evolve / diversify

TIME (Billions of Years) TIME (Millions of Years)
0.0 = 0=
First Hominids

Cretaceous Extinction
First Primates

First Flowering Plants and Insects

First Single-Cell Plants First Mammals
Crxygen Begins to

Accumulate in the Atmosphere Permian Extinction

30T 300 + w
- 4 ————— First Reptiles
First Photosynthesis
First Life Forms Fossilized S it
——— Originof Life oot Bike pill pheonsd
40+ @ 4004+ ——— First Land Plants and Animals
——— (Origin of Earth i
504+ S00= — Firgt Figh

T
;W
————— Cambrian Explosion of Life Begins

First Invertebrates

600~

L}




1.00/0.99 Bunyavirales | Orthomyxoviridae | Tilapinevirus
Mononegavirales / "Chiviruses” / Branch 5
Aspiviridae | “Qinviruses” / “Yueviruses”
Reoviridae
0.9910.7% Cystoviridae Branch 4

Totiviridae | Chrysoviridae | Megabirnaviridae | Quadriviridae | Giardiavirus

“‘Alphavirus supergroup”
“Alpha-like viruses”

0.48/0.69 | “Yanviruses” / “Zhaoviruses”
Weéiviruses Branch 3
1.00/ Nodaviridae | Sinaivirus
0.99 Tombusviridae | Luteovirus | Carmotetraviridae / “Statoviruses”
0.99/0.86 Flavivirus supergroup
Picornavirales | Caliciviridae | Solinviviridae
Solemoviridae | Polerovirus | Enamovirus | Alvernaviridae | Barnaviridae
Nidovirales
Branch 2
[ ! “Inv. nido-like viruses” (Picornavirus
0.94/ supergroup)
1.0011.00| 0.76 | Partitiviridae | Picobirnaviridae | Amalgaviridae | Hypoviridae
'L Astroviridae
Potyviridae
“Mitoviruses”
— “Ourmiaviruses”
Branch 1
1.00/0.99 “Narnaviruses”
Leviviridae
Group Il introns —— Negative-sense RNA viruses
Non-LTR retrotransposons —_— Dou_b_le-stranded RNA viruses
E —— Positive-sense RNA viruses

FIG 1 Phylogeny of RNA virus RNA-dependent RNA polymerases (RdRps) and reverse transcriptases (RTs): the main branches (branches 1 to 5).
Wolf, mBio 2018
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Opportunities to enrich the genetic information

Overlapping reading frames

WU Virus
5229 bp

Splicing / alternative splicing 4
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Recombination / reassortment

Everything that you can imagine,
life has probably already put it to use



Viruses contribute to host genetics

Directly: viral remnants in our genomes

Classes of interspersed repeat in the human genome

Length Copy Fraction of
number genome
LINES AUtonomous u— ORFT ORFZ(pO) ., 6-8 kb 850,000 21%
AB
SINEs Mon-autonomous HHE—AAA 100-300 bp 1,500,000 13%
Retrovirus-like Autonomous I 929 pol fenv) P G-11kD
elements } 450,000 8%
Mon-autonomous -_[ggga_- 1.5-3 Kb
DMNA Autonomous > ransposase -4 2-3 kb~
};ir;?lzﬂ SOn 300,000 3%
Non-autonomous I I | 80-3.000 bp~

International Human Genome Sequencing Consortium, 2001
These repeats account for >45% of the genome



Viruses contribute to host genetics

Viral remnants providing functional proteins

mRNAs are
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Ancestral capture of syncytin-Car1, a fusogenic
endogenous retroviral envelope gene involved in
placentation and conserved in Carnivora

Guillaume Cornelis*®, Odile Heidmann®®, Sibylle Bernard-Stoecklin®®', Karine Reynaud®, Géraldine Véron®,
Baptiste Mulot®, Anne Dupressoir®®23, and Thierry Heidmann®22%3



Viruses contribute to host genetics

Indirectly: arms race between viruses and host

- Innate Immunity
- acquired immunity
- acquired immunity in vertebrates
- acquired immunity in bacteria (CRISPR-Cas systems)

— Article
Abacteriophage nucleus-like compartment
shields DNA from CRISPR nucleases
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coevolution of myxoma virus (MY XV)
— and European rabbits in Australia




What is the purpose of viruses?

A large fraction of non-pathogenic viruses
Have they (have they had) any function in life?

As we have seen, they played a major role in
evolution

If in a biological system | were to diffuse a message, |
would opt for a virus, not a chemical component

Giant viruses : « the virion is not the virus ... but only the
vehicle by which the virus (i.e. the virion factory) is
propagated from cell to cell » Abergel, 2015
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