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� For most PAVs in sunflower, the
absence allele reduces heterotic trait
values.

� This pattern was strongest for PAVs
with expression complementation in
hybrids.

� Stop codons were rarer than PAVs and
less likely to reduce heterotic trait
values.

� Expression complementation seen
under both control and drought
conditions.

� Complementation of expression of
PAVs is major contributor to
heterosis.

� This mechanism can account for yield
stability across different
environments.
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Introduction: Numerous crops have transitioned to hybrid seed production to increase yields and yield
stability through heterosis. However, the molecular mechanisms underlying heterosis and its stability
across environments are not yet fully understood.
Objectives: This study aimed to (1) elucidate the genetic and molecular mechanisms underlying heterosis
in sunflower, and (2) determine how heterosis is maintained under different environments.
Methods: Genome-wide association (GWA) analyses were employed to assess the effects of presence/ab-
sence variants (PAVs) and stop codons on 16 traits phenotyped in the sunflower association mapping
population at three locations. To link the GWA results to transcriptomic variation, we sequenced the tran-
scriptomes of two sunflower cultivars and their F1 hybrid (INEDI) under both control and drought condi-
tions and analyzed patterns of gene expression and alternative splicing.
Results: Thousands of PAVs were found to affect phenotypic variation using a relaxed significance thresh-
old, and at most such loci the ‘‘absence” allele reduced values of heterotic traits, but not those of non-
heterotic traits. This pattern was strengthened for PAVs that showed expression complementation in
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INEDI. Stop codons were much rarer than PAVs and less likely to reduce heterotic trait values. Hybrid
expression patterns were enriched for the GO category, sensitivity to stimulus, but all genotypes
responded to drought similarily – by up-regulating water stress response pathways and down-
regulating metabolic pathways. Changes in alternative splicing were strongly negatively correlated with
expression variation, implying that alternative splicing in this system largely acts to reinforce expression
responses.
Conclusion: Our results imply that complementation of expression of PAVs in hybrids is a major contrib-
utor to heterosis in sunflower, consistent with the dominance model of heterosis. This mechanism can
account for yield stability across different environments. Moreover, given the much larger numbers of
PAVs in plant vs. animal genomes, it also offers an explanation for the stronger heterotic responses seen
in the former.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction

Over the past century, a number of the world’s most important
crops have transitioned from open-pollinated varieties to hybrid
production. This transition has been driven in large part by the
immediate yield increase offered by heterosis or hybrid vigor, as
well as by the greater biological and legal protection afforded by
hybrid crops. A less widely recognized benefit has been the impact
of heterosis on environmental yield stability, especially in response
to various abiotic stresses [1,2]. Examples include increased toler-
ance to low nutrients and drought in maize [1], heat tolerance in
canola [3] and rice [4], and drought tolerance in sunflower [5]. That
heterosis sometimes has a positive effect on drought tolerance is
especially surprising, because the higher growth rates and biomass
accumulation resulting from heterosis are expected to require
greater water usage [6].
Mechanisms of heterosis

Despite its importance in plant breeding and evolution, the
genetic, physiological, and molecular bases of heterosis are not
fully understood (reviewed in [7,8]). Until recently, there were
three main genetic models: (1) the dominance model, in which
deleterious recessive alleles found in one parent are masked by
superior dominant alleles from the other parent [7,9]; (2) the
over-dominance model, in which the alleles at individual loci inter-
act to increase performance [8,10,11]; and (3) epistasis, in which
favorable interactions among alleles at different genes are the
cause of heterosis [12,13]. Quantitative trait locus (QTL) and gen-
ome wide association (GWA) studies have offered support for all
three models but imply that the dominance model is most com-
mon [14–16].

Genomic and functional studies have attempted to understand
the molecular mechanisms responsible for heterosis and relate
them to the genetic models (reviewed in [7,8]). Support has been
found for the dominance model. In maize, numerous genes with
missing expression in one or the other parental genotype are
expressed in hybrids, and hybrids express many more genes over-
all than either parent [17]. Although not directly linked to heterotic
phenotypes, such a pattern of expression complementation in
hybrids is consistent with the dominance model, and likely results
in part from copy number variation (CNV) and presence/absence
variation (PAV) in underlying genes [18]. Evidence for the over-
dominance model has also been reported, but less frequently. For
example, in tomato, allelic interactions at the SFT (SINGLE FLOWER
TRUSS) gene lead to single locus overdominance via a change in flo-
ral architecture [19].

Transcriptomic studies often suggest a more complex and
idiosyncratic genetic architecture underlying heterosis (reviewed
in [20]). Numerous studies have documented non-additive gene
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expression patterns in hybrids [21], which often appear to arise
from epigenetic perturbations at key regulatory loci (reviewed in
[7]). However, determining whether such patterns are a cause or
consequence of heterosis can be challenging. Moreover, in wide
crosses, non-additive expression may result, in part, from tran-
scriptome shock rather than heterosis [22]. Nonetheless, changes
in hybrid gene expression can offer clues regarding the genes
and genetic networks contributing to heterotic phenotypes, espe-
cially in intraspecific crosses. For example, in Arabidopsis, expres-
sion changes in genes underlying circadian rhythms such as
CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) have been shown to
increase photosynthesis and starch metabolism, leading to
increased biomass [23]. Interestingly, the increase in biomass in
Arabidopsis comes at the cost of decreased resistance to both biotic
[24] and abiotic stress [16,21]. Although up-regulation of photo-
synthesis and carbon metabolism is commonly observed in hybrids
(e.g., [25,26]), outside of Arabidopsis it often is accompanied by an
increase rather than decrease in stress tolerance (reviewed in [2]).
How this is achieved remains an open question.
Mechanisms of drought tolerance

While a universal mechanism for heterosis remains outside of
our reach, arguably greater progress has been made towards
understanding the genetic, physiological and molecular bases of
responses to drought. Drought stress tolerance/resistance can be
achieved by drought escape, dehydration avoidance or dehydration
tolerance (reviewed in [27]). Drought escape is typically accom-
plished by rapid growth and early flowering [28]. Such an adaptive
drought response can be triggered by photoperiod or other envi-
ronmental cues [29]. Drought avoidance is achieved by reducing
water loss and enhancing water capture from the soil. Stomatal
regulation [30] and higher ratios of root to shoot growth [31] rep-
resent common mechanisms for increasing water-use efficiency
(WUE), thereby minimizing the impacts of drought. Lastly, dehy-
dration tolerance can be enhanced by regulating the phytohor-
mone abscisic acid (ABA) response [32] and via osmotic
adjustment [33].

Transcriptome analyses have been especially effective for eluci-
dating the genetic networks underlying drought responses in dif-
ferent crop plants. For example, Zheng et al. [34] showed that
the ABA signaling pathway was significantly upregulated in
response to drought stress in maize and suggested that differential
expression of cell wall-related genes (e.g., subunits of cellulose
synthase, pectinesterase, and expansin), as well as transporter
genes (e.g., ion and sugar transporters) may account for the differ-
ent responses of the two genotypes included in the experiment.
Lenka et al. [35] compared transcriptomes of drought-tolerant
and drought-susceptible genotypes of rice; drought tolerance
was found to be associated with up-regulation of carbon metabo-
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lism similar to that frequently seen in transcriptome analyses of
heterosis. The studies above suggest that the regulation of drought
responsive genes (e.g., zinc finger proteins shown to confer
drought stress tolerance – [35]) are critically influenced by geno-
typic variation.

Likewise, a comprehensive comparative transcriptome study in
chickpea under drought and/or salinity stress found that genes
associated with metabolic pathways were up-regulated under
drought, as well as a variety of transcription factors and enzymes
that are known from other studies to contribute to drought toler-
ance [36]. In canola, drought resistance was found to be associated
with differential expression of root developmental genes [37]. In
sunflower, several fatty acid desaturase genes, ABA-responsive
genes such as ABI2, as well as a helix-loop-helix transcription fac-
tor (HabHLH024) were found to be up-regulated under drought
stress [38–40]. Overall, these findings are largely consistent with
the different phenotypic and physiological mechanisms known to
underlie drought tolerance and drought avoidance.

Regulation of heterotic responses to drought by alternative splicing

Expression responses to drought have also been shown to be
further regulated by alternative splicing (AS), a post-
transcriptional mechanism (reviewed in [41,42]). The major types
of AS are: i) intron retention, ii) alternative donor, iii) alternative
acceptor, iv) alternative position, and v) exon skipping [41]. AS
can affect gene function in two major ways: some transcript
forms are translated to produce alternative protein isoforms
[43], and other transcripts are degraded by non-sense mediated
RNA decay (NMD) to reduce the level of gene expression [44].
AS can have downstream effects on drought stress response and
tolerance. For example, a truncated isoform of the Arabidopsis
zinc-induced facilitator-like 1 (ZIFL1) transporter is targeted to
the plasma membrane of leaf stomatal guard cells instead of
the tonoplast of root cells (full length isoform) and mediates
drought tolerance [45]. Interestingly, AS of the key circadian
rhythm gene CCA1 has been shown to mediate drought responses
in maize [46], similar to its role in heterosis (above). However, it
is currently largely unknown how AS contributes to heterotic
responses to drought.

Approach taken by present study

A major challenge to studying the dominance model of hetero-
sis is that deleterious mutations tend to be numerous, to occur at
low frequencies within populations, and to have relatively small
phenotypic effects. As a result, genome wide association (GWA)
studies have little power to detect them. Here, we take a novel
GWA approach to this problem based on the hypothesis that the
absence allele in PAVs is more likely to be deleterious than the
presence allele, as well as our understanding of the categories of
traits (i.e., growth rate, biomass, and yield-related traits) that are
expected to exhibit heterotic phenotypes and those that are not
(i.e., quality traits). We also employed ridge regression best linear
unbiased prediction (RR-BLUP) to train a genomic prediction
model and estimate the size and direction of effects of PAVs. Geno-
mic prediction uses all marker effects across the entire genome to
train a predictive model, which makes it suitable for polygenic
quantitative traits, especially those with low heritability [47].
Transcriptomic analyses are subsequently employed to link the
GWA results to patterns of gene expression and AS, explore how
heterosis is maintained under both well-watered and drought con-
ditions, and identify genes and gene networks underlying heterotic
responses.

Our focus is on sunflower, Helianthus annuus L., which is a global
oilseed crop that moved from an open-pollinated production
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system to hybrid production in the 1970s. It currently ranks as
the second most important hybrid crop after maize [48]. While
considered to be a drought tolerant crop, yield in many parts of
the world is limited by drought stress [49]. Also, cultivated lines
are far less drought tolerant than compatible wild relatives [50].
We make use of the cultivated sunflower association mapping
(SAM) population for the GWA analyses [51] and a well-
characterized F1 hybrid (INEDI) and its maternal (XRQ) and pater-
nal (PSC8) parental lines for the gene expression and AS analyses.
High quality reference sequences are available for XRQ and PSC8
(https://www.heliagene.org/) and the former genotype is included
in the SAM population.

We find that heterosis in sunflower is mainly caused by expres-
sion complementation in hybrids of genes that are missing in one
or the other parental lines. This mechanism can account for the
maintenance of heterosis in different environments, likely
accounting for the greater environmental yield stability of hybrid
crops.
Materials and Methods

We report on two main experiments. First, we describe the phe-
notyping, genotyping, and GWAS analyses of the SAM population
across three environments. This allows us to examine the genetic
bases of heterosis and to show that the results are repeatable
across a broad range of environments. We then describe a smaller
scale greenhouse experiment to generate transcriptome data and
to observe phenotypic responses in XRQ and PSC8, as well as their
hybrid INEDI. We chose these three genotypes for two reasons.
Most importantly, chromosome level reference genomes have been
generated for XRQ and PSC8 (https://www.heliagene.org/), which
permitted us to characterize PAVs and to know which PAVs are
expected to be complemented in INEDI. In addition, a previous
study [38] showed that INEDI exhibits heterosis under both control
and drought conditions.
Phenotyping and genotyping of the SAM population

The SAM population includes 288 sunflower cultivars that rep-
resent circa 90% of the allelic diversity in the cultivated sunflower
gene pool [51,52]. The population includes a mix of inbred and
open-pollinated lines, as well as oilseed and confectionary vari-
eties. Here we analyze phenotypic data that were collected for
the population in the summer of 2010; experimental design and
GWA analyses of two traits (branching and days to flower) have
been described previously [51,53]. Phenotyping was conducted at
three locations: Watkinsville, GA and Ames, IA in the USA and Van-
couver, BC, in Canada using 271 lines that were available at the
time. A total of 19,512 seeds were planted across the three sites
using an alpha lattice design (12 seeds per plot � 271 lines � 2
replicate sites � 3 locales). Between two and four plants per plot
were phenotyped for 16 traits (Table 1), 14 of which are presented
here for the first time. In addition, we surveyed the literature for
papers that report on phenotypic data for hybrid and parental sun-
flower lines in order to determine which traits are likely to display
heterotic responses (e.g., [50]), as well as the relative strength of
such responses (Table 1).

The SAM population was previously sequenced (5-25x depth) as
described in Hübner et al. [56]. The sequence data were aligned
against the HA412-HOv2 reference genome for variant calling
using the pipeline described in Todesco et al. [57]. Briefly, we
trimmed the reads using Trimmomatic v0.36 (usadellab.org/cms/
?page = trimmomatic) to remove Illumina adapters and poor qual-
ity sequences, and the filtered reads were then aligned to the
HA412-HOv2 reference genome using NextGenMap v0.5.3
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Table 1
Phenotypic traits assayed and predicted phenotypic expression in hybrids. Traits
phenotyped in XRQ, PSC8, and INEDI by [38] are in italics.

Trait Phenotyping assay Stagea Heterosis?b

Leaf area First fully expanded leaf scanned
and area calculated with ImageJ

R4/R5 weak

Leaf weight Dry weight of first fully expanded
leaf

R4/R5 weak

Specific leaf
area

Ratio of leaf area/dry weight R4/R5 no

Days to flower Calculated from the planting date R5.1 no
Height Distance from soil line to point on

stem connecting to terminal flower
head

R5.1 strong

Head
diameter

Diameter of terminal flowering head
averaged across N/S orientation and
E/W orientation

R5.1 weak

Anthocyanins
in disk
florets

Intensity scored on a scale of 1
(yellow) to 9 (darkly pigmented)

R5.1 no

Anthocyanins
in stigmas

Intensity scored on a scale of 1
(yellow) to 9 (red)

R5.1 no

Biomass Dry weight of all above ground plant
material

R9 moderate

Stem weight Dry weight of stem R9 moderate
Head weight Dry weight of terminal flowering

head
R9 strong

Stem diameter Diameter at base of dry stem
averaged across N/S orientation and
E/W orientation

R9 moderate

Seed weight Weight of 100 seeds in grams R9 weak
Seed size Length � width averaged over 5

seeds
R9 weak

Oil percentage Oil concentrations measured by
pulsed nuclear magnetic resonance
(NMR) analysis

R9 no

Branching See Nambeesan et al. (2015) All no

a Developmental stages from [55].
b Traits were classified as heterotic or not based on reports from the literature

(e.g., [54]).
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(github.com/Cibiv/NextGenMap). Variant calling was performed
following the Genome Analysis Tool Kit best practices
(https://gatk.broadinstitute.org/hc/en-us) on non-repetitive
regions on 17 chromosomes of the reference genome. In order to
remove low-quality variants, we conducted Variant Quality Score
Recalibration (VQSR) using the 20 samples with the highest
sequencing depth in the SAM population as a ‘‘gold set”. The vari-
ant data set was filtered to retain only bi-allelic SNPs in the 90%
tranche with minor allele frequency > 0.05 and genotyping
rate > 50% for GWA analyses.

Detection of gene PAVs in the SAM population used read depth
values from Illumina reads aligned to the HA412-HOv2 reference
genome. For each 100 bp non-overlapping window across the gen-
ome, we measured the read depth in each sample, ignoring map-
ping quality. We then classified each window as either being
present (depth > 0), or absent (depth = 0). We recognize that given
modest read depth in some samples, some regions are not
sequenced due to chance, as well that some regions are classified
as absent due to sequence divergence preventing accurate align-
ment, but accept this as noise in our genotyping. Our initial PAV
table included all 100 bp windows, including invariable windows
present or absent in all samples. We therefore treated the PAVs
as haploid genotypes, and filtered the table to retain only windows
with minor allele frequency � 5%.

GWA analyses

We initially conducted a standard GWA analysis using EMMAX
(https://genome.sph.umich.edu/wiki/EMMAX), in which we
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searched for associations between PAVs, and phenotypic data for
the 16 traits in Table 1. To identify relatedness between samples,
we used a SNP table for the SAM population filtered to include only
biallelic sites sequenced in � 50% of samples with a minor allele
frequency � 5%, and further pruned for linkage disequilibrium
(LD < 0.2 in 500 kb windows) using bcftools (https://samtools.
github.io/bcftools/bcftools.html) and SNPrelate (https://github.-
com/samtools). This SNP dataset was used to create a PCA of sam-
ples using SNPrelate, as well as a kinship matrix using EMMAX. The
first two principal components were used as covariates in EMMAX,
as well as the kinship matrix to control for relatedness between
samples. Additionally, we included average gene read depth for
each sample as a covariate to control for the difference in read
depth between samples. Trait values were manually inspected
and extreme outliers, likely from data recording errors, were
removed. Trait values were averaged per line, so each line was only
represented once in the GWA. To run PAVs within EMMAX, we
treated each sample as a diploid homozygote for either the present
or absent allele. We recognize that this approach lacks power to
detect PAVs with only mildly deleterious effects on phenotype,
and PAVs with strong deleterious effects are likely to have been
purged from the cultivated gene pool. Therefore, we examined
the direction of effects of all quantitative trait loci (QTLs) detected
at a less conservative significance threshold (p < 0.05). While some
QTLs detected using such an approach are likely to be false posi-
tives, we can ask whether the proportion of PAVs with positive
or negative effects differs from the random expectation of 0.5.
We predicted that ‘‘absence” alleles at PAVs are more likely to
reduce values of heterosis-related traits than ‘‘presence” alleles.
Likewise, we expect such a pattern to be observed most strongly
for those traits that exhibit moderate to strong heterosis. We also
applied the same approach to the subset of genes that showed
expression complementation in INEDI (see below), with the goal
of further linking transcriptomic patterns to heterotic phenotypes.

Under the dominance model, other kinds of deleterious muta-
tions are predicted to contribute to heterosis as well, but effect
sizes are likely to be small. Therefore, we surveyed the genome
for stop mutations in protein-coding genes, since we expected such
mutations to be most similar to PAVs in effect sizes. Based on a
recently-refined annotation of the reference genome (https://sun-
flowergenome.org/), we removed RNA genes, putative pseudoge-
nes (including those without suitable ORF sequences and all
genes without introns) and genes with an ORF<75 amino acids,
leaving a total of 36,856 genes. Using the filtered set of protein-
coding genes, we annotated the SNPs with the program snpEff
(https://pcingola.github.io/SnpEff/) and extracted ‘‘stop_gained”
and ‘‘stop_lost” mutations. Only stop codon mutations with
MAF > 20% were chosen for further analyses because sites with
skewed allele frequencies are likely to generate unreliable GWAS
results. We then searched for associations between stop condons
and the 16 phenotypic traits listed in Table 1. As with the PAVs,
we examined the direction of effects of all stop codon quantitative
trait loci (QTLs) detected at p < 0.05 and asked whether the propor-
tion of stop codons with positive or negative effects differs from
0.5. Our hypothesis was the stop codons would disproportionately
reduce heterotic trait values, but lack a directional effect on other
non-heterotic traits.

Genomic prediction

The following genomic prediction model was trained with
mixed.solve function in R package rrBLUP version 4.6.1 (https://
CRAN.R-project.org/package = rrBLUP) for the 16 traits in Table 1
and PAV markers:

y ¼ 1bþ Zg þ e

http://github.com/Cibiv/NextGenMap
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where y is a vector of the phenotypic trait (in this case Z-scores
of the phenotypic trait); Z is a 286*7541945 incidence matrix con-
taining the allelic states of the markers (Z = {-1, 1}); �1 and 1 rep-
resent the absent and present allele, respectively; b is a vector of
fixed effects; g is the vector of marker effects; and e is a vector
of residuals.

To evaluate the effects of deleterious mutations, the value of
each phenotypic trait (Z-scores) was predicted by the genomic pre-
diction model, in which the direction of PAV loci was allow to vary
from 0 to 100 percent random present alleles at 1% intervals for a
total of 100 predictions.

To further clarify the effects of deleterious PAVs on phenotype, a
linear model (Y � X) was fit, where X is the percentage of present
alleles and Y is the corresponding predicted phenotype for each
trait. The beta coefficient of X can therefore represent the contribu-
tion and direction of deleterious effects of PAVs to heterosis.

A replicated k-fold cross-validation approach with k = 2, 5, and
10 was used to assess the accuracy of the genomic prediction mod-
els. Each individual was randomly assigned into k bins. Individuals
in k-1 bins (training population) were used to train a prediction
model to predict the phenotype in the remaining bin (validation
population), and this process was repeated so that individuals in
each bin were predicted once. The Pearson correlation between
predicted and observed phenotype values in the validation popula-
tion in each run was calculated. The procedure of defining bins and
predicting the value of individuals in each bin was repeated 20
times resulting in k*20 different cross-validation runs for each k
scenario. The mean and standard deviation of the Pearson correla-
tion across all runs was used to measure the prediction model’s
accuracy.

R-squared was also calculated in a linear model (observed
phenotypes � predicted phenotypes) in each cross-validation run
for all k scenarios. The overall average value shows the proportion
of the variation in phenotypic data that PAVs can explain in the
prediction model.

Plant material preparation for transcriptomic analyses

Two drought stress experiments were conducted on the Heli-
aphen phenotyping platform (https://www6.inrae.fr/phenotoul_
eng/WHO-we-are/PhenoToul/HeliaPhen) in 2012 and 2013,
respectively, using the sunflower inbred lines XRQ (maternal),
PSC8 (paternal) and their F1 hybrid (INEDI). For both experiments,
seeds of the three different genotypes were sterilized with bleach
and were germinated on Petri dishes with Apron XL and Celeste
solutions (Syngenta, Basel, Switzerland) for three days. Each
seedling was transplanted into an individual 20-liter pot. The pots
were filled with 10% sand, 40% P.A.M.2 potting soil (Proveen
distributed by Soprimex, Chateaurenard, Bouches-du-Rhône,
France) and 50% clay, and covered with a 3-mm-thick polystyrene
sheet to prevent evaporation. Plants were fertilized with 500 ml of
Peter’s Professionnal 17–07-27 (0.6 g/l) and Hortilon (0.46 g/l)
solution. Twenty-five days after sowing, irrigation on
drought-treated plants was stopped. Soil water content was mon-
itored according to the fraction of transpirable soil water (FTSW),
which was calculated as described in Marchand et al. [58]. Seed-
lings were harvested at different time points based on soil FTSW
values.

For the 2012 experiment (12S01 – the year of 2012, serre, the
1st trial [59]), leaf tissue was sampled from seven week-old seed-
lings across a drought stress gradient from least to most stressed:
FTSW values of 0.7, 0.55, 0.40, 0.25, 0.12, 0.1). One sample for each
genotype was collected at each of the six FTSW levels (3 geno-
types� 6 FTSW levels = 18 samples total). For the 2013 experiment
(13HP02 – the year of 2013, Heliaphen, the 2nd trial [59]), leaves
from three seven week-old seedlings of each genotype were sam-
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pled from an extreme drought stress treatment (FTSW = 0.1) and
a well-watered control (FTSW = 1.0) treatment (3 genotypes � 3
replicates � 2 treatments = 18 samples total). In both experiments,
leaves were removed without their petiole and immediately frozen
in liquid nitrogen. Samples were ground using a ZM200 grinder
(Retsch, Haan, Germany) with a 0.5-mm sieve. Total RNA was
extracted using QIAzol Lysis Reagent following the manufacturer’s
instructions (Qiagen, Dusseldorf, Germany). The quantity of RNA
was estimated using a ND-1000 spectrophotometer (Nanodrop,
Wilmington, DE, USA). RNA quality was checked by electrophoresis
on an agarose gel and Bioanalyzer 2100 (Agilent Technologies,
Santa Clara, CA, USA).
Illumina RNA-Seq library preparation

We generated 100 bp paired-end RNA sequencing libraries of
each sample (36 libraries total from the two experiments). The
libraries were prepared using the TruSeq sample preparation kit
(Illumina San Diego, CA, USA) following the manufacturer’s
instructions. RNA sequencing was performed on the Illumina HiSeq
2000 by DNAVision (Charleroi, Belgium). FASTQ files from the Illu-
mina sequencing have been deposited in the National Center for
Biotechnology Information Sequence Read Archive under BioPro-
ject number of PRJNA345532.
Analyses of gene expression and alternative splicing

The 100 bp paired-end raw reads from the 36 RNA-Seq libraries
were assessed for quality using FastQC (bioinformatics.babraham.
ac.uk/projects/fastqc), filtered and trimmed using Trimmomatic
v0.36 (usadellab.org/cms/?page = trimmomatic), and checked
using FastQC again to confirm read quality. Processed reads were
then mapped against the XRQ sunflower reference genome [60]

using STAR v2.4.2 (github.com/alexdobin/STAR) with non-default
parameters (--alignIntronMax 10,000). Analyses of expression
levels and alternative splicing (AS) employed a custom pipeline
(Fig. 1A) following the approach of Lee and Adams [61]. Read count
metrics and AS events were determined by quantifying reads
mapped against constitutive and alternatively spliced forms using

reference genome gene models [60]. HTSFilter v1.12.0 (https://bio-

conductor.org/packages/release/bioc/html/HTSFilter.html) was
used to remove the weakly expressed genes across all the condi-
tions. Differentially expressed genes (DEGs) were identified using
a cutoff set at a false discovery rate (FDR) < 0.01 via edgeR
v3.18.1(https://bioconductor.org/packages/release/bioc/html/
edgeR.html).

For the AS analysis, in addition to the HTSFiltering (above), we
excluded genes with fewer than three reads mapped against alter-
native isoforms. Alternative splicing events were categorized
according to the major classes of alternative splicing events: intron
retention (IR), alternative donor (ALTD), alternative acceptor
(ALTA), alternative position (ALTP), exon skipping (SKIP), cryptic
intron (CRIN), and cryptic exon (CREX). Based on the presence or
absence of splice junctions, reads mapping to alternative vs. consti-
tutive isoforms were counted, and their relative abundance or per-
cent splicing index (PSI) was calculated for each sample. Logistic

regression using a custom R script (https://github.com/dejonggr/

differential_as) was employed to identify differentially spliced
genes (DAS) (FDR < 0.01, log2FC > 0.25 or log2FC < -0.25). UpSetR

v1.4.0 (https://cran.r-project.org/web/packages/UpSetR/index.

html) was used to visualize the extent of overlap in differentially
expressed and differentially spliced genes across the two experi-
ments (Fig. 1B). Because the AS data is in a binomial distribution,
a higher log2 fold change underestimates DAS detection.

https://www6.inrae.fr/phenotoul_eng/WHO-we-are/PhenoToul/HeliaPhen
https://www6.inrae.fr/phenotoul_eng/WHO-we-are/PhenoToul/HeliaPhen
http://bioinformatics.babraham.ac.uk/projects/fastqc
http://bioinformatics.babraham.ac.uk/projects/fastqc
http://usadellab.org/cms/?page
http://github.com/alexdobin/STAR
https://bioconductor.org/packages/release/bioc/html/HTSFilter.html
https://bioconductor.org/packages/release/bioc/html/HTSFilter.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://github.com/dejonggr/differential_as
https://github.com/dejonggr/differential_as
https://cran.r-project.org/web/packages/UpSetR/index.html
https://cran.r-project.org/web/packages/UpSetR/index.html


Fig. 1. An overview of the short-read sequence analyses for sunflower (Helianthus annuus) transcriptomic responses to drought in two experiments. (A) Transcriptome
analysis pipeline for short-read sequencing (RNA-Seq). DEG: differentially expressed genes. DAS: differentially spliced genes. (B) An UpSet plot of DEG in 13HP02 (extreme
drought vs. well-watered control), DAS (13HP02) and DEG in 12S01 (stress gradient), with false discovery rate (FDR) cutoff 0.01, logFC > 1 or < -1.

Fig. 2. Illustration of non-additivity model. Non-additivity was further categorized
based on significant differences (FDR < 0.05) from each parent. The Y-axis
represents arbitrary phenotypic levels.
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Detection of genes exhibiting expression complementation due to PAV

We have newly sequenced reference genomes of both the XRQ
(version 2) and PSC8 genotypes (https://www.heliagene.org/). In
order to identify genes exhibiting expression complementation
due to PAV, we re-mapped the RNA-Seq data of all three genotypes
(13HP02) against both reference genomes. We classified genes as
expressed if Transcripts Per Million (TPM) > 2 and not expressed if
TPM < 0.1. We used the thresholds based on the even distribution
of reads on Integrative Genomics Viewer (https://software.broadin-
stitute.org/software/igv/). Genes expressed in one parent and
hybrid, but not the other parent, were blasted (BLASTN, E-value < 1
e� 100, sequence identity > 95%, skipping shorter than 200 bp,min-
imumbit-score of 200) against the reference genome of the latter to
ensure they were truly missing. We considered this filtered set of
genes as exhibiting expression complementation in hybrids.

Classification of inheritance patterns in the F1 hybrids from the parents

XRQ, PSC8, and INEDI were previously phenotyped by Rengel
et al. [38]. Here we re-analyzed the subset of traits that overlapped
with those phenotyped for the SAM population (Table 1) to confirm
previous observations of heterosis. To identify genes and AS events
that may regulate the non-additivity of vegetative performance
under control and drought stress, we used the model of hierarchi-
cal additive/nonadditive effects on heterosis described by [24] and
shown in Fig. 2. First, mid-parent levels of expression and PSI val-
ues of alternative splicing were calculated. Then INEDI values were
compared to the mid parent values using edgeR for expression and
logistic regression analysis for AS. Genes or AS events with FDR p-
value < 0.05 were regarded as non-additive and FDR p-values of
0.05 or higher were considered as additive. The genes or AS events
that showed non-additivity were further categorized (Fig. 2) as
either like the high or low parent (dominance) or as significantly
above the high-parent (over-dominance) or significantly below
the low parent (under-dominance). We focused on over-
dominance and under-dominance of expression and alternative
splicing patterns when considering their possible contribution to
heterosis, except for genes that were missing in one or the other
parent (see below). For AS, we use DAS up-regulation (DASU) to
describe over-dominance like AS frequencies in hybrids and DAS
down-regulation (DASD) for under-dominance like AS frequencies
in hybrids.
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Predicting potential functions of differentially expressed and/or spliced
genes

To identify potential functions of genes that were differentially
expressed or differentially spliced, we conducted gene ontology

(GO) enrichment analysis via ShinyGO v0.61 (http://bioinformat-

ics.sdstate.edu/go61/) (false discovery rate < 0.1). The results are
summarized and shown as networks that cluster closely related
enriched GO terms. To identify biological pathways or networks
of the differentially expressed and spliced genes, the genes were
mapped to the pathways in the Kyoto Encyclopedia of Genes and
Genomes (KEGG; https://www.genome.jp/kegg/), which is imple-
mented in ShinyGO. The top 10 enriched GO terms and KEGG path-
ways were selected for further analyses and discussion.
Results

GWA analyses in SAM population

A total of 7,541,945 PAVs (variable 100 bp windows) was
detected at a � 5% minor allele frequency cut off. For many

https://www.heliagene.org/
https://software.broadinstitute.org/software/igv/
https://software.broadinstitute.org/software/igv/
http://bioinformatics.sdstate.edu/go61/
http://bioinformatics.sdstate.edu/go61/
https://www.genome.jp/kegg/
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traits, GWA analyses failed to identify significant associations
with PAVs when using a q-value correction with an FDR of
10% (Supplementary Fig. S1-3). However, we can detect numer-
ous QTLs (�170 k to 470 k per trait) at a less stringent thresh-
old (p < 0.05). While we recognize that many of these are likely
to be false positives, analysis of the direction of QTL effects at
these candidate QTLs indicate that PAVs likely contribute
importantly to heterotic phenotypic effects (Fig. 3A). As pre-
dicted, the ‘‘presence” allele was significantly more likely to
increase values of heterosis-related traits than the ‘‘absence”
allele, and this bias was most extreme in traits with the most
evidence of heterosis. For example, plant height and head
weight (or yield) are consistently found to be the most strongly
Fig. 3. The proportion of presence/absence variants (p < 0.05) with a positive or negative
PSC8 and show expression complementation in INEDI. 95% confidence intervals from 20
horizontal bars indicate mean value for all gardens. Background color indicates no (whi
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heterotic traits in sunflower [54], and they have the largest pro-
portion of ‘‘presence” alleles increasing trait values. In contrast,
heterosis is generally not reported for traits such as branching,
levels of anthocyanin pigmentation, specific leaf area, and oil
percentage, and allelic proportions were in the opposite direc-
tion. The latter might be a consequence of introgressions from
wild species, since we have previously shown that gene losses
cluster in introgressed regions [62]. Also, branching maps to
such introgressions [63], consistent with this explanation. When
we confined our analyses to the subset of PAVs that differ
between XRQ and PSC8 and show expression complementation
in INEDI, the proportion of PAVs with effects in the predicted
direction was even larger (Fig. 3B).
effect on phenotypic traits. (A) All PAVs. (B) Only PAVs that differ between XRQ and
00 1 Mb block bootstrap permutations (A) or 2000 individual bootstraps (B). Black
te), weak (light blue), moderate (blue-grey), or strong (grey) evidence of heterosis.
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The impact of stop codons on heterosis is less clear (Fig. 4). In
total, we identified 361 stop codon mutations in the SAM popula-
tion. Between 2% and 8% of these have detectable effect sizes at
p < 0.05 in each GWA analyses. In general, heterosis-related traits
have a higher proportion of stop codons with negative effects than
traits predicted to show weak or no heterosis. However, the excess
of negative stop codons is significant in only a portion of the trials,
and some traits that exhibit weak or no heterosis (e.g., head diam-
eter and disk anthocyanin content, respectively) also have an
excess of stop codons with negative effects. The lack of a clear sig-
nal probably stems in part from the relatively small number of stop
codons segregating in the SAM population, as well as from the low
sequence coverage for some genotypes, which makes it difficult to
distinguish between homozygous and heterozygous genotypes.
Note that this should not be not an issue for PAVs, because the
‘‘presence” allele is expected to be dominant, whereas for stop
codons, the wild type allele is generally expected to be dominant.

Genomic prediction

A genomic prediction model was used to simulate the effects of
presence/absence variation on trait values. To permit comparisons
across traits, prediction models were fitted to Z-score normalized
trait values. We found that presence alleles were much more likely
than absence alleles to increase values of heterosis-related traits.
Therefore, the standard beta coefficient of the linear model (pre-
dicted phenotypes � the percentage of present allele) was used
to predict levels of heterosis (Fig. 5, Supplementary Figure S4).
For this, a positive beta value indicates that presence alleles tend
to increase trait values. In general, strongly heterotic traits such
as plant height and head weight, and well as the moderately het-
erotic trait group, show the largest beta coefficients, while the beta
coefficients are much smaller for weakly heterotic and non-
heterotic traits. One notable exception is head diameter, which
was classified from the literature scan as a weakly heterotic trait,
but shows a fairly large beta coefficient, suggesting that it probably
should have been classified as a moderate to strong heterotic trait.
Fig. 4. The proportion of stop codon mutations (p < 0.05) with a positive or negative ef
moderate (blue-grey), or strong (grey) evidence of heterosis.
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Variation in beta coefficients across different traits is highly consis-
tent across sites, similar to that seen for PAV ratios above (Fig. 3).

Cross-validation was performed for various k-fold scenarios,
resulting in different sizes of training sets with each value of k.
However, prediction accuracy was relatively stable for different k
scenarios at each location (Table 2), ranging from 0.878
(branching-BC) to 0.097 (biomass-Georgia).

Model accuracy can be affected by trait heritability, size of
training population, and marker density [64]. Since there were no
differences in marker density or training population size, variation
in prediction model accuracy most likely results from differences
in trait heritability and in the proportion of trait variation
explained by PAVs (Table 3).

RNA-Seq data

We generated � 1.8 billion 100 bp paired-end reads from 36
RNA-Seq libraries from three genotypes (PSC8, XRQ, and their F1
hybrid INEDI). As detailed above, these libraries were developed
from seedling leaf tissue in both control and drought treatments
and across two independent experiments (12S01 and 13HP02).
After filtering out low-quality reads and genes with low constant
expression levels, 417 million clean Illumina mRNA reads were
obtained for 35,278 genes (an average of 11.6 million reads per
sample).

Heterosis for morpho-physiological traits in INEDI

Re-analyses of the morpho-physiological trait data from Rengel
et al. [38] confirmed previous observations [65]; INEDI exhibits
heterosis in vegetative performance (plant height, stem diameter,
third-leaf area, and total leaf area) under control and drought
stress, but not for specific leaf area, when compared with the par-
ental lines, PSC8 and XRQ (Suppplementary Figure S5). Notably,
INEDI significantly out-performed the parental lines in almost
every category under control conditions and was significantly tal-
ler than both parental lines under drought stress (Wilcoxon rank-
fect on phenotypic traits. Background color indicates no (white), weak (light blue),



Fig. 5. Results from linear regression model where X = the percentage of the present allele and Y = predicted phenotype. (A) The standard beta coefficient of all traits in three
common garden experiments. (B) A fitted linear regression line for height, stem diameter, seed size, and oil representing strongly heterotic, moderately heterotic, weakly
heterotic, and non-heterotic trait groups, respectively. Background color indicates no (white), weak (light blue), moderate (blue-grey), or strong (grey) evidence of heterosis.
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sum test, p < 0.05). For the other categories under drought stress,
INEDI was above the mid-parent mean, but not significantly larger
than the high parent.

Expression complementation of PAVs

The GWA analyses described above indicate that absence alle-
les typically reduce the performance of sunflower cultivars. Com-
plementation of such PAVs therefore offers a simple explanation
for heterosis. To confirm predicted expression complementation,
we mapped the transcriptome data against both parental refer-
ence genomes and identified genes exhibiting presence absence
variation in gene expression. Mapping on the XRQ genome, we
found 170 XRQ genes that were expressed in XRQ and INEDI
but not in PSC8 in the control treatment, and 57 XRQ genes that
were expressed in XRQ and INEDI but not in PSC8 under drought
stress. Mapping on the PSC8 genome, we found 180 PSC8 genes
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that were expressed in PSC8 and INEDI but not in XRQ under
control conditions, as well as 200 PSC8 genes that were
expressed in PSC8 and INEDI but not in XRQ in the drought
treatment. We did BLAST searches of those genes against the
parental genome lacking expression to see if the genes were
truly missing from the genome (Supplementary Table S1).
Forty-three genes identified from the control treatment and 12
from the drought treatment for XRQ (10 genes overlapped
between treatments), and 43 genes identified from the control
and 56 genes from the drought treatment for PSC8 (31 genes
overlapped) were confirmed to be true presence/absence poly-
morphisms. Expression complementation of these genes in INEDI
is consistent with the dominance model of heterosis. The overlap
in genes exhibiting expression complementation between the
control and drought conditions further suggests that the domi-
nance model could account for the partial maintenance of
heterosis under drought conditions.



Table 2
Genomic prediction model accuracy based on a replicated k-fold cross-validation approach.

k = 2 k = 5 k = 10 Average

phenotype GAa IAb BCc GAa IAb BCc GAa IAb BCc GAa IAb BCc All

biomass 0.097 0.301 0.318 0.115 0.352 0.343 0.115 0.37 0.361 0.109 0.341 0.341 0.264
branching 0.823 0.841 0.858 0.837 0.858 0.872 0.846 0.864 0.878 0.835 0.854 0.869 0.853
disk_antho 0.244 0.261 0.141 0.395 0.341 0.181 0.446 0.344 0.238 0.362 0.315 0.187 0.288
dtf 0.489 0.406 0.226 0.55 0.443 0.264 0.555 0.462 0.264 0.531 0.437 0.251 0.407
head_diameter 0.688 0.649 0.497 0.698 0.67 0.514 0.71 0.684 0.529 0.698 0.668 0.513 0.626
head_weight 0.751 0.51 0.75 0.773 0.53 0.762 0.773 0.532 0.77 0.766 0.524 0.761 0.684
height 0.499 0.453 0.44 0.547 0.484 0.478 0.549 0.494 0.499 0.532 0.477 0.473 0.494
leaf_area 0.475 0.565 – 0.5 0.586 – 0.504 0.598 – 0.493 0.583 – 0.538
leaf_sla 0.473 0.217 – 0.49 0.278 – 0.502 0.314 – 0.489 0.27 – 0.379
leaf_weight 0.498 0.569 0.675 0.509 0.606 0.697 0.51 0.61 0.705 0.506 0.595 0.692 0.598
oil 0.739 0.616 0.726 0.763 0.649 0.751 0.768 0.656 0.754 0.757 0.64 0.744 0.714
seed_size 0.803 0.84 0.819 0.825 0.855 0.838 0.833 0.854 0.846 0.82 0.85 0.834 0.835
seed_weight 0.72 0.733 0.637 0.746 0.751 0.666 0.747 0.767 0.689 0.738 0.75 0.664 0.717
stem_diameter 0.484 0.506 0.568 0.494 0.539 0.578 0.506 0.55 0.586 0.495 0.532 0.577 0.535
stem_weight 0.513 0.399 0.501 0.528 0.442 0.518 0.539 0.456 0.529 0.527 0.432 0.516 0.492
stigma_antho 0.335 0.356 0.323 0.416 0.411 0.381 0.432 0.42 0.424 0.394 0.396 0.376 0.389

a Georgia.
b Iowa.
c British Columbia.

Table 3
Proportion of phenotype variation explained by presence absence variation in the genomic prediction model.

phenotype GAa IAb BCc Average

biomass 0.109 0.354 0.348 0.27
branching 0.842 0.86 0.873 0.858
disk_antho 0.408 0.35 0.21 0.323
dtf 0.548 0.451 0.262 0.42
head_diameter 0.702 0.675 0.518 0.632
head_weight 0.77 0.528 0.767 0.688
height 0.542 0.484 0.484 0.503
leaf_area 0.497 0.588 – 0.543
leaf_sla 0.496 0.29 – 0.393
leaf_weight 0.506 0.603 0.699 0.603
oil 0.762 0.647 0.75 0.72
seed_size 0.827 0.852 0.839 0.839
seed_weight 0.743 0.76 0.679 0.727
stem_diameter 0.5 0.544 0.58 0.541
stem_weight 0.531 0.447 0.527 0.502
stigma_antho 0.412 0.409 0.398 0.406

a Georgia.
b Iowa.
c British Columbia.

Joon Seon Lee, M. Jahani, K. Huang et al. Journal of Advanced Research 42 (2022) 83–98
Genes showing PAV and expression complementation were not
significantly enriched in any GO terms, although marginally signif-
icant enrichment was observed for the ‘‘response to heat”
(GO:0034605) category in both the control (FDR = 0.093) and
drought treatment (FDR = 0.058).

Differential expression in response to drought stress

Transcriptome data from the 13HP02 experiment, which con-
sisted of an extreme drought stress treatment (FTSW = 0.1) and a
well-watered control (FTSW = 1.0), resulted in detection of 7,973
differentially expressed genes (FDR < 0.01) responding to drought
stress. Likewise, analyses of transcriptomic responses to the
drought stress gradient in the 12S01 experiment identified 8,402
differentially expressed genes, of which approximately two thirds
(5,621 genes) were also found on the 13HP02 DEG list (Fig. 1B).
The genes in common between the two datasets were used for
downstream analyses.

Of the genes responding to drought stress, 2,523 were up-
regulated, and 3,098 were down-regulated. For the up-regulated
DEGs (Supplementary Table S2A), the most significantly enriched
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GO terms were Response to chemical (GO:0042221, FDR = 4.31E-
21) in biological process, Nuclear lumen (GO:0031981,
FDR = 1.06E-14) in cellular component, and Cation binding
(GO:0043169, FDR = 9.70E-09) in molecular function. These genes
most significantly (FDR = 3.09E-4) mapped to Metabolic pathways
(map01100) and Protein processing in endoplasmic reticulum
(map04141), followed by Spliceosome (map03040, FDR = 3.58E-4).

Down-regulated DEGs (Supplementary Table S2B) were mostly
enriched in GO terms of Photosynthesis (GO:0015979,
FDR = 1.03E-24) in biological process, Chloroplast (GO:0009507,
FDR = 2.44E-82) in cellular component, and Transferase activity
(GO:0016740, FDR = 1.01E-14) in molecular function. Similar to
the up-regulated genes, the most significantly mapped KEGG path-
ways for down-regulated genes included Metabolic pathways
(map01100, FDR = 1.64E-37). In addition, a number of photosyn-
thesis related pathways were significantly mapped for down-
regulated genes.

Overall, our results suggest that major responses of sunflower
to drought stress include up-regulation of genes involved in stim-
ulus responses and down regulation of photosynthetic pathways,
as well as some metabolic processes such as carbon metabolism.
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Differential AS in response to drought stress

Focusing on the 13HP02 data because of its greater replication,
we employed a custom pipeline of Python (v2.7.3) scripts (includ-
ing the filtering; [66]) to discover 33,186 alternative splicing
events in 11,630 genes. The majority of these events were classi-
fied as intron retention (30,615 events), followed by alternative
acceptor (859 events), alternative donor (743 events), alternative
position (213 events), exon skipping (602 events), and other (153
events). The latter represent complex and less easily categorized
AS events.

A total of 3,493 differential splicing events (2,980 up-regulated
and 513 down-regulated) were found as responses to drought
stress in sunflower cultivars. Up-regulated DAS (Supplementary
Table S2C) were most significantly enriched in Photosynthesis
(GO:0015979, FDR = 7.96E-42) in biological process, in Chloroplast
(GO:0009507, FDR = 2.47E-167) in cellular process, and in Protein
domain specific binding (GO:0019904, FDR = 5.23E-16) in molecu-
lar function. The Metabolic pathways category (map01100,
FDR = 4.76E-47) was most significantly mapped from the KEGG
pathway database.

On the other hand, down-regulated DAS (Supplementary
Table S2D) were mostly enriched in Small molecule metabolic pro-
cess (GO:0044281, FDR = 3.24E-07) in biological process, Chloro-
plast (GO:0009507, FDR = 1.07E-14) in cellular process, and
Nucleotide binding (GO:0000166, FDR = 2.49E-4) in molecular
function. These genes also mapped most significantly on Metabolic
pathways (map01100, FDR = 2.94E-08).

Differential splicing appears to negatively correlate with differ-
ential expression, most notably for photosynthesis related genes.
This implies that DAS acts to reinforce differential expression pat-
terns. That is, up-regulation of AS for photosynthesis related genes
increases the frequency of non-functional splice forms, resulting in
fewer functional transcripts overall, consistent with down-
regulation of the same genes seen in the expression data.

Non-additive gene expression in the F1 under control conditions

Analyses of gene expression data from the 13HP02 experiment,
which included a well-watered control treatment (FTSW = 1.0),
resulted in detection of 3,003 genes (FDR < 0.05) in INEDI with sig-
nificant expression differences from its parents. For analyses of
gene expression patterns potentially associated with heterosis,
we focused on the genes exhibiting over-dominant (550 genes)
or under-dominant (89 genes) expression levels.

The GO enrichment and KEGG pathway mapping results for
these genes are listed in Supplementary Table S2E-F. Over-
dominant genes were most significantly enriched in Response to
chemical (GO:0042221, FDR = 1.03E-15) in biological process
(Fig. 6A), Cell periphery (GO:0071944, FDR = 5.58E-3) in cellular
component, and reversible chemical reaction related GO terms
(Oxidoreductase activity, GO:0016491, FDR = 1.21E-09 was most
significant) in molecular function. In terms of pathways, these
genes most significantly mapped to Biosynthesis of secondary
metabolites (map01110, FDR = 1.74E-09).

Under-dominant genes were also enriched in the GO term
Response to acid chemical (GO:0001101, FDR = 1.92E-3) in biologi-
cal process, chloroplast-related GO terms (Chloroplast thylakoid
membrane, GO:0009535, FDR = 5.92E-08, was most significant) in
cellular component, and Ion transmembrane transporter activity
(GO:0015075, FDR = 2.63E-4) in molecular function. These genes
most significantly mapped to Photosynthesis (map00195,
FDR = 4.26E-3) andMetabolic pathways (map01100, FDR = 4.26E-3).

Taken together, both up-regulation and down-regulation of
stimulus-related and metabolism-related genes may indicate that
fine tuning of responses to environmental changes are associated
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with the heterosis. Alternatively, such changesmight reflect neutral
or slightly deleterious consequences of bringing two genomes
together [22]. The down-regulation of photosynthesis activity was
initially puzzling, but possibly relates to the age of the plants
employed in the 13HP02 experiment (seven weeks). By this point,
growth of the hybrid plants likely had begun to slow because of
resource limitations. This possibility is further supportedbyanalysis
of the 12S01 experiment, in which plants were harvested after four
weeks, and no such down-regulation of photosynthesis pathways
was seen.
Non-additive gene expression in the F1 under drought stress

For analyses of gene expression patterns potentially associated
with heterosis, we focused on the genes exhibiting over-dominant
(27 genes) or under-dominant (62 genes) expression levels. The GO
enrichment analysis results and KEGG pathway mapping results
are in Supplementary Table S2G-H.

Genes showing over-dominant expression under drought stress
were enriched in GO terms of Response to water deprivation
(GO:0009414, FDR = 3.90E-2) in biological process (Fig. 6B), Cyto-
sol (GO:0005829, FDR = 1.23E-2) in cellular component, and Chap-
erone binding (GO:0051087, FDR = 5.44E-3) in molecular function.
They did not significantly map to any of the KEGG pathways.

Genes with under-dominant expression under drought stress
were enriched in metabolism and biosynthesis-related GO terms
(thiamine biosynthetic process, GO:0009228, FDR = 1.91E-2, was
most significant) in biological process, but they were not enriched
in any other GO category. The genes were mainly significantly
mapped on metabolism-related KEGG pathways (Thiamine meta-
bolism, map00730, FDR = 2.63E-3, was most significant).

Up-regulating drought responsive processes and down-
regulating unnecessary metabolic processes under drought stress
appears to be associated with the maintenance of heterosis under
drought.
Differential splicing correlates with differential expression in hybrids

Under control conditions, we identified 546 DASU and 35 DASD
in INEDI that were significantly different from its parents. DASU
(Supplementary Table S2I) were mainly enriched in GO terms of
response to stimulus (Response to abiotic stimulus, GO:0009628,
FDR = 4.05E-16 and Photosynthesis, GO:0015979, FDR = 2.34E-15
were most significant) in biological process, and Chloroplast
(GO:0009507, FDR = 1.96E-58) in cellular component, and Protein
domain specific binding (GO:0019904, FDR = 1.38E-3) in molecular
function. They were most significantly mapped on metabolic path-
ways (map01100, FDR = 1.81E-23).

DASD (Supplementary Table S2J) were enriched in nucleotide
biosynthetic process related GO terms (e.g., ATP biosynthetic pro-
cess related GO terms, FDR = 3.91E-2) in biological process, Chloro-
plast (GO:0009507, FDR = 1.40E-06) in cellular component, and
Proton-transporting ATP synthase activity, rotational mechanism
(GO:0046933, FDR = 1.61E-2) in molecular function. The DASD in
the control treatment were not significantly mapped on any KEGG
pathways.

We identified 3,493 DAS (2980 up-regulated AS, 513 down-
regulated AS) that were significant (FDR < 0.01) in the drought
treatment. Of these alternative splicing events, we found 141 DASU
and 46 DASD in INEDI compared to its parents. DASU under
drought (Supplementary Table S2K) were enriched in Response
to abiotic stimulus (GO:0009628, FDR = 6.12E-12) in biological
process, Chloroplast (GO:0009507, FDR = 2.64E-08) in cellular
component, and Water transmembrane transporter activity
(GO:0005372, FDR = 3.77E-3) in molecular function. In the KEGG



Fig. 6. Gene ontology enrichment results using over-dominant genes. Each node represents an enriched GO term. Related GO terms are connected by a line. The thickness of a
line displays percentage of overlapping genes. The size of green circle represents number of genes. (A) Over-dominant genes enriched in biological process GO terms under
control condition. (B) Over-dominant genes enriched in biological process GO terms under drought condition.
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pathway analysis, Metabolic pathways (map01100) was most sig-
nificantly mapped (FDR = 8.44E-08).

DASD under drought (Supplementary Table S2L) were enriched
in Oxylipin metabolic process (GO:0031407, FDR = 2.23E-2) in bio-
logical process, Chloroplast thylakoid (GO:0009534, FDR = 5.80E-
05) in cellular component, and Oxidoreductase activity
(GO:0016491, FDR = 4.63E-3) in molecular function. Among the
KEGG pathway maps, Carbon metabolism (map01200) was most
significantly mapped (FDR = 1.88E-3).

Relationship between levels of gene expression and alternative splicing

We employed sPLS regression to extract correlated information
between the gene expression and AS data sets. Output from sPLS
includes a set of components and loading vectors similar to that pro-
duced by principal components analysis. Using the top 500 DEG and
DAS genes, we found a clear distinction between control and
drought-stressed samples by sPLS components 1 and 2with respect
to expression and AS patterns, but not between genotypes (Supple-
mentary Figure S6). Furthermore, as seen in Fig. 7A, the first compo-
nent from DEG is highly correlated (Pearson’s correlation
coefficient = 0.87) to DAS. When we combine the two datasets, we
see greater discrimination between genotypes within the drought
treatment, particularly for INEDI (orange dots) (Fig. 7A). This sug-
gests that a combination of transcriptional and post-
transcriptional information may provide a better explanation of
how INEDI’s unique responses are established than analyzing each
dataset separately.Wealso tested for correlationsbetweendifferen-
tial expressionunderdrought andAS frequency,whicharedisplayed
by circosPlot in Fig. 7B.WhenwecompareDEG toDASwith the same
genes, themajority (65%) of correlationswerenegative (Fig. 7C). This
indicates that stress responsivegene expression is largelynegatively
correlated with AS frequency, implying that AS often acts to rein-
force expression responses (discussed above).

Discussion

Gene expression complementation in hybrids contributes to heterosis
in sunflower

Despite the importance of heterosis in plant and animal breed-
ing, and the attention given to it by scientists, its mechanistic basis
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remains surprisingly murky. This is partly because there is no sin-
gle, universal cause of heterosis [7,8]. In addition, it can be difficult
to reconcile the results from functional studies of heterotic pheno-
typic traits with classic quantitative genetic models. Lastly, many
studies confound correlates of heterosis with causation. In this
study we combined transcriptomic analyses with a GWA approach
to explore both the underlying cause of heterosis and its conse-
quences at the transcriptome level.

Our results suggest that expression complementation of PAVs is
an important contributor to heterosis, consistent with the domi-
nance model of heterosis. GWA analyses and genomic prediction
models showed that for most PAVs, the ‘‘absence” allele reduced
values of strongly heterotic traits, but the same pattern was not
observed for traits with little or no evidence of heterosis. Further-
more, this pattern was strengthened in the specific PAVs that
showed expression complementation in INEDI. Such PAVs are
specifically in coding sequences, which presumably are more likely
to have phenotypic effects than the rest of the genome.

In contrast, we failed to find strong evidence that stop codons
contribute to inbreeding depression (the flip side of heterosis). This
is partly due to the small number of stop codons segregating in the
SAM population (a few hundred versus > 7 million PAVs). However,
stop codons were also less likely than PAVs to have effects in the
predicted direction.

There are limitations to our approach using reference aligned
read depth as a proxy for PAVs. In this case, we are assaying
absence compared with the HA412HOv2 reference genome, which
means that the HA412HO sample has the highest proportion of
present alleles. It’s important to note that although we find pres-
ence alleles are generally positive for heterotic traits, HA412HO
has average values for heterotic traits despite its higher counts of
presence alleles due to reference bias (Figure S7). This counters a
possible explanation for our pattern that absence alleles represent
divergence from a heterotically ideal reference sample, HA412HO.

The measured effect of PAVs is due to both the direct effect of
PAVs themselves, and also to the underlying effects of linked alle-
les, as in all GWA. The SAM population includes samples with sig-
nificant wild introgression bringing with it changes in gene content
[56,62]. For PAVs resulting from introgression, absence alleles are
likely linked to larger blocks of wild alleles. This is particularly true
for the branching phenotype, which is caused by a large wild intro-
gression on chromosome 10 [63]. Using our PAV GWA, we see a



Fig. 7. Sparse partial least squares (sPLS)-based classification of the different samples corresponding to the PSC8, XRQ, and INEDI genotypes, considering the changes in gene
expression and alternative splicing. (A) A plot displaying the correlation between the DEG and DAS. The lower triangular panel indicates the Pearson’s correlation coefficient,
the upper triangular panel the scatter plot. (B) A circos plot between the top 500 DEG and top 500 DAS under drought stress. 100 randomly selected genes were included as a
control. (C) A pie chart of direct correlations between DEG and DAS.
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large peak over the same region (Figures S1-S3). While the branch-
ing phenotype may, or may not, be caused by PAVs, the large peak
is due to linkage between the causative QTL and PAVs found in the
introgression. Because wild introgressions are enriched for missing
genes [62], the association between PAVs and heterosis may be
partially or primarily driven by linkage drag from wild introgres-
sions. Follow up work should directly test the association between
introgression and heterotic trait values in the SAM population.

Surprisingly, we were unable to find previous studies in the lit-
erature that directly linked expression complementation of PAVs
to heterotic phenotypes. We suspect that there are several reasons
for this. First, the vast majority of PAVs are likely weakly deleteri-
ous, so their impact on heterotic traits will not be detected in stan-
dard GWA experiments. Second, most studies have failed to
distinguish between the predicted effects of the ‘‘absence” versus
‘‘presence” alleles on trait variation. Lastly, few studies have com-
bined both GWA and transcriptome analyses. By employing a
relaxed significance threshold for QTL discovery, and tabulating
the direction of QTL effects, we were able show that numerous
PAVs contribute to deleterious load and were complemented in
an F1 hybrid.

Even in maize, where expression complementation has been
observed, direct evidence that it is the cause of heterosis remains
sparse [17,67,68]. For example, expression complementation in
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F1 hybrids of maize cultivars (B73 and Mo17) was reported by
Paschold et al. [17], but no direct connection was made to heterotic
phenotypic variation. Li et al. [69] conducted a more thorough
analysis of expression complementation involving many inbred
parental lines, their hybrids, and multiple tissue types. They also
explored single parent expression from non-PAVs (differential
expression between the parental alleles) and PAVs and showed
that expression complementation of the latter was more common
in hybrids, but no link was made with heterotic phenotypes. On the
other hand, a large-scale genomic selection analysis, also in maize,
did link putatively deleterious alleles (as identified by SNP varia-
tion in evolutionary constrained regions across the genome) to
phenotypic variation and heterosis [70], but expression variation
and PAVs were not assayed in that study.

We demonstrated that the majority of genes showing PAV and
expression complementation overlap between two different condi-
tions (control vs. drought) in sunflower and that these were
enriched for heat-responsive genes. Marcon et al. [67] also found
specific single parent expression (SPE) complementation in maize
under control and drought conditions, and that the expression pat-
tern of majority of SPE genes was consistent across environments.
The stability of expression complementation under different water
deficit conditions may account for the maintenance of heterosis
under drought.
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Our results imply that crosses designed to maximize comple-
mentation of PAVs should also maximize heterosis. We have previ-
ously shown that PAVs are clustered in introgressions from wild
species [62], so complementing such introgressions should be con-
sidered as well. Lastly, we note that PAVs appear to be more com-
mon in plant than animal pan-genomes [71], perhaps accounting
for the stronger heterosis typical of plant relative to animal hybrids
[72].

General responses to drought stress

Using a large-scale transcriptome data set from three different
genotypes, we found that DEGs up-regulated in response to
drought stress were most strongly enriched for GO categories
related to stimulus response, whereas down-regulated DEGs were
enriched for genes associated with photosynthesis and metabolic
processes. Among the up-regulated genes responding to drought
stress in our study is XERICO, an E3 ubiquitin-protein ligase that
regulates abscisic acid biosynthesis in Arabidopsis via ubiquitin-
mediated protein degradation [73]. The protein is up-regulated
by salt and drought stress in Arabidopsis [73]. The XERICO homolog
in sunflower (HanXRQChr10g0306801) is known to be up-
regulated by drought as well [38], an observation that was con-
firmed in the present study across all three genotypes and both
experiments. In another example, HanXRQChr01g0016781 is
homologous to AT5G22580 (stress responsive A/B barrel domain
family) in Arabidopsis. The A/B barrel domain is found in a group
of stress response proteins in plants (e.g., Oryza and Populus;
[74]) and makes a stable dimer that is localized in the chloroplast.
In the present study, HanXRQChr01g0016781 was up-regulated
significantly in all three genotypes in response to drought. Previ-
ously, some drought responsive genes in sunflower were analyzed
by quantitative reverse transcriptase polymerase chain reaction
(RT-PCR), and they were suggested to be related to response to
osmotic stress including ABA responsive pathways [75]. Liang
et al. [76] also found that water stress responsive genes were sig-
nificantly up-regulated by drought stress. Using a sunflower
microarray, Roche et al. [77] identified 82 organ-specific differen-
tially expressed genes in response to water stress across genotypes,
and notably metabolism related genes were repressed in leaf tis-
sue, also in congruence with our results.

The up-regulation of stimulus/stress responsive genes and
down-regulation of unnecessary metabolic processes and photo-
synthesis were predicted based on results from other crops (i.e.,
rice [35]). In the future, a gene co-expression network analysis
could build on our results to offer additional insights into how sun-
flowers respond to drought stress [78]) through, for example, the
identification of hub genes (i.e., genes with the most connectivity
in a network) that underlie drought responses (e.g., cotton [79]).

Differentially expressed genes in the F1 hybrid relative to its parents

In addition to evidence of gene expression complementation
consistent with the dominance model for heterosis [9], we also
observed transgressive expression patterns (over- and under-
dominance) in the F1 hybrid relative to its parents in both control
and drought conditions. Under control conditions, both under- and
over-dominant DEGs were enriched in stimulus responses and
metabolic processes. Drought responsive processes were up-
regulated in the F1 under drought stress and metabolic processes
were down-regulated. This is the same general pattern seen for
all three genotypes under drought stress, implying that drought
stress responses are strengthened in the hybrid as opposed to
the development of a novel response. Similar patterns have
been reported in other hybrids and have sometimes been inter-
preted as support for the over-dominance model of heterosis (re-
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viewed in [80]). However, we argue that such patterns should be
viewed as a correlate or downstream mediator of heterosis rather
than its source, at least in the absence of stronger evidence of
causation.

Differential splicing negatively correlated with expression variation,
reinforcing hybrid expression responses

Alternative splicing can contribute importantly to stress
responses by influencing the quantity, developmental stage, and
location of transcript and protein variant production [41,42].
Although AS has been studied in multicellular organisms for dec-
ades [81], genome-wide differential splicing patterns have not
been well-studied in the context of heterosis. Zhao et al. [82] iden-
tified DEGs that are related to heat stress tolerance in maize
hybrids, and some of the DEGs had significantly higher levels of
AS, suggesting up-regulating AS plays an important role in
response to heat stress. Wang et al. [83] found that cis-regulated
AS divergence may contribute to environmental stress response
in hybrids of Arabidopsis thaliana ecotypes. More recently, a
large-scale study of AS effects on heterosis was conducted in maize
by Hu et al. [68]. They found numerous DAS events in the hybrid
compared to its parents [68]. Those DAS were involved in
regulating expression of genes associated with both carbon and
nitrogen metabolism, thereby potentially contributing to the
development of maize ear heterosis [68]. We found an inverse rela-
tionship between DAS and DEG in our study, suggesting that DAS
could regulate/reinforce gene expression responses to drought in
all three genotypes, as well as the transgressive expression
patterns we observed in hybrids. However, keep in mind that some
fraction of such changes may be a consequence of transcriptome
shock and be unrelated to heterosis [22]. Future studies will
employ long read sequencing data (i.e., Iso-Seq) and RT-PCR to
confirm the AS events reported here, as well as to provide a more
complete catalog of the AS events produced by abiotic stress and
hybridization.

Caveats and future directions

There are several caveats with the analyses and interpretations
presented above. Most importantly, our study design confounds
the effects of inbreeding depression and heterosis. The SAM popu-
lation includes a mix of inbred and open-pollinated lines [52]. The
latter were advanced via single-seed descent for one or two gener-
ations to reduce heterozygosity, but some residual heterozygosity
remains. As a consequence, the positive effects of the ‘‘presence”
allele likely comes both from minimizing inbreeding depression
in homozygous genotypes and frommasking deleterious ‘‘absence”
alleles in heterozygous genotypes. As mentioned above, this resid-
ual heterozygosity also makes it more difficult to elucidate the
effects of stop codons or other classes of deleterious mutations.

Another issue is that we may be over-estimating the impor-
tance of expression complementation. The majority of PAVs occur
outside of expressed regions and thus are not subject to expression
complementation. However, it has been shown that conserved
non-coding sequences are frequently associated with gene expres-
sion levels and that their absence leads to gene expression loss
[84]. Thus, even when outside of genic regions, PAVs may affect
phenotypes through the loss or gain of expression.

Followup studies should increase the sequencing depth for the
SAM population so that all classes of putatively deleterious muta-
tions can be detected and analyzed. In addition, we recommend
that crosses be made between SAM inbred lines and multiple tester
lines, thereby permitting direct assessment of gene expression
complementation and heterosis in hundreds of F1 combinations
as opposed to the single F1 analyzed here.



Joon Seon Lee, M. Jahani, K. Huang et al. Journal of Advanced Research 42 (2022) 83–98
Conclusions

We studied heterosis and drought responses in cultivated sun-
flower using a combination of GWA and transcriptomic (expres-
sion and alternative splicing) analyses under control and drought
conditions. We showed that ‘‘absence” alleles at PAVs were dispro-
portionately associated with reduced values of heterosis-related
traits, but not other kinds of traits. Furthermore, we identified gene
PAVs differentiating the parental lines that were complemented in
their F1 hybrid, consistent with the dominance model of heterosis.
Many of the PAVs were expressed consistently in both control and
drought conditions, possibly accounting for the maintenance of
heterosis under drought.

We also identified transgressively expressed and differentially
spliced genes in the F1 hybrid compared with its parents. All three
genotypes responded similarly to drought stress by up-regulating
stress response genes and down-regulating metabolic processes.
However, these responses were further strengthened in the F1
hybrid. Alternative splicing changes were negatively correlated
with expression changes, implying that AS acts to reinforce expres-
sion differences.

Our results offer a straightforward mechanism for heterosis in
sunflower and its maintenance under drought stress. Under this
mechanism, heterosis should be greatest in hybrids that comple-
ment the highest proportion of PAVs. This could be determined
bioinformatically, permitting breeders to choose parental lines that
are likely to maximize heterosis. More generally, our approach,
which combines GWA of PAVs and expression analyses, could be
fruitfully applied to other taxa to establish whether expression
complementation is a widespread cause of heterosis.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

Funding was provided by Genome BC and Genome Canada
(LSARP2014-223SUN), the French National Research Agency
(SUNRISE/ANR-11-BTBR-0005), the Midi-Pyrénées Region, the
European Fund for Regional Development, the French Fund for
Competitiveness Clusters (OLEOSOL project), the NSF Division of
Environmental Biology (DEB-1745197), the USDA National Institue
of Food and Agriculture (2008-35300-19263), and the NSF Plant
Genome Research Program (DBI-0820451 and DBI-1444522). We
thank Dan Ebert for assistance with phenotyping.

Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jare.2022.04.008.

References

[1] Tollenaar M, Lee EA. Yield potential, yield stability and stress tolerance in
maize, F. Crop Res 2002;75:161–9. doi: https://doi.org/10.1016/S0378-4290
(02)00024-2.

[2] Blum A. Heterosis, stress, and the environment: A possible road map towards
the general improvement of crop yield. J Exp Bot 2013;64:4829–37. doi:
https://doi.org/10.1093/jxb/ert289.

[3] Koscielny CB, Gardner SW, Duncan RW. Impact of high temperature on
heterosis and general combining ability in spring canola (Brassica napus L.), F.
Crop Res 2018;221:61–70. doi: https://doi.org/10.1016/j.fcr.2018.02.014.

[4] Guan-fu Fu, Cai-xia Z, Yong-jie Y, Jie X, Xue-qin Y, Xiu-fu Z, et al. Male parent
plays more important role in heat tolerance in three-line hybrid rice. Rice Sci
2015;22(3):116–22.
97
[5] Mojayad F, Planchon C. Stomatal and photosynthetic adjustment to water
deficit as the expression of heterosis in sunflower. Crop Sci 1994;34:103–7.
doi: https://doi.org/10.2135/cropsci1994.0011183X003400010018x.

[6] D. Holá, M. Benešová, L. Fischer, D. Haisel, F. Hnilicka, H. Hnilicková, et al. The
disadvantages of being a hybrid during drought: A combined analysis of plant
morphology, physiology and leaf proteome in maize, 2017. https://doi.org/
10.1371/journal.pone.0176121.

[7] Z.J. Chen, Genomic and epigenetic insights into the molecular bases of
heterosis, Nat. Rev. Genet. 14 (2013) 471–482. https://doi.org/10.1038/
nrg3503.

[8] Schnable PS, Springer NM. Progress toward understanding heterosis in crop
plants. Annu Rev Plant Biol 2013;64:71–88. doi: https://doi.org/10.1146/
annurev-arplant-042110-103827.

[9] D.F. Jones, Dominance of linked factors as a means of accounting for heterosis,
Genetics. 2 (1917) 609–609. https://doi.org/10.1093/genetics/2.6.609a.

[10] Wellhausen EJ. Heterosis. Genetics 1952;44(10):547–8.
[11] Crow JF. Alternative hypotheses of hybrid vigor. Genetics 1948;33:477–87.

doi: https://doi.org/10.1093/genetics/33.5.477.
[12] Powers L. An expansion of Jones ’ s theory for the explanation of heterosis. Am

Nat 1944;78(776):275–80.
[13] Wu X, Liu Y, Zhang Y, Gu R. Advances in research on the mechanism of

heterosis in plants. Front Plant Sci 2021;12:1–14. doi: https://doi.org/10.3389/
fpls.2021.745726.

[14] Gemmell NJ, Slate J, Scheffler K. Heterozygote advantage for fecundity. PLoS
ONE 2006;1(1):e125.

[15] Bürger H. R., Bagheri, Dominance and its evolution. In: Jørgensen BD, Fath SE,
editors. Encycl. Elsevier, Oxford: Ecol; 2008. p. 945–52.

[16] Yang M, Wang X, Ren D, Huang H, Xu M, He G, et al. Genomic architecture of
biomass heterosis inArabidopsis. ProcNatl Acad Sci U SA 2017;114(30):8101–6.

[17] Paschold A, Jia Yi, Marcon C, Lund S, Larson NB, Yeh C-T, et al.
Complementation contributes to transcriptome complexity in maize (Zea
mays L.) hybrids relative to their inbred parents. Genome Res 2012;22
(12):2445–54.

[18] Springer NM, Ying K, Fu Y, Ji T, Yeh C-T, Jia Yi, et al. Maize inbreds exhibit high
levels of copy number variation (CNV) and presence/absence variation (PAV)
in genome content. PLoS Genet 2009;5(11):e1000734.

[19] Krieger U, Lippman ZB, Zamir D. The flowering gene SINGLE FLOWER TRUSS
drives heterosis for yield in tomato. Nat Genet 2010;42:459–63. doi: https://
doi.org/10.1038/ng.550.

[20] Yoo MJ, Liu X, Pires JC, Soltis PS, Soltis DE. Nonadditive gene expression in
polyploids. Annu Rev Genet 2014;48:485–517. doi: https://doi.org/10.1146/
annurev-genet-120213-092159.

[21] Miller M, Song Q, Shi X, Juenger TE, Chen ZJ. Natural variation in timing of
stress-responsive gene expression predicts heterosis in intraspecific hybrids of
Arabidopsis. Nat Commun 2015;6. doi: https://doi.org/10.1038/ncomms8453.

[22] Hegarty MJ, Barker GL, Wilson ID, Abbott RJ, Edwards KJ, Hiscock SJ.
Transcriptome shock after interspecific hybridization in senecio is
ameliorated by genome duplication. Curr Biol 2006;16:1652–9. doi: https://
doi.org/10.1016/j.cub.2006.06.071.

[23] Ni Z, Kim E-D, Ha M, Lackey E, Liu J, Sun Q, et al. Altered circadian rhythms
regulate growth vigor in hybrids and alloployploids. Nature 2009;457:327–31.
doi: https://doi.org/10.1038/nature07523.Altered.

[24] Fujimoto R, Uezono K, Ishikura W, Osabe K, Peacock WJ, Dennis ES. Recent
research on the mechanism of heterosis is important for crop and vegetable
breeding systems. Breed Sci 2018;68:145–58. doi: https://doi.org/10.1270/
jsbbs.17155.

[25] Song G-S, Zhai H-L, Peng Y-G, Zhang L, Wei G, Chen X-Y, et al. Comparative
transcriptional profiling and preliminary study on heterosis mechanism of
super-hybrid rice. Mol Plant 2010;3(6):1012–25.

[26] Fujimoto R, Taylor JM, Shirasawa S, Peacock WJ, Dennis ES. Heterosis of
Arabidopsis hybrids between C24 and Col is associated with increased
photosynthesis capacity. Proc Natl Acad Sci U S A 2012;109:7109–14. doi:
https://doi.org/10.1073/pnas.1204464109.

[27] Kooyers NJ. The evolution of drought escape and avoidance in natural
herbaceous populations. Plant Sci 2015;234:155–62. doi: https://doi.org/
10.1016/j.plantsci.2015.02.012.

[28] Des Marais DL, Hernandez KM, Juenger TE. Genotype-by-environment
interaction and plasticity: Exploring genomic responses of plants to the
abiotic environment. Annu Rev Ecol Evol Syst 2013;44:5–29. doi: https://doi.
org/10.1146/annurev-ecolsys-110512-135806.

[29] Berger JD, Ludwig C. Contrasting adaptive strategies to terminal drought-stress
gradients in Mediterranean legumes: Phenology, productivity, and water
relations in wild and domesticated Lupinus luteus L. J Exp Bot
2014;65:6219–29. doi: https://doi.org/10.1093/jxb/eru006.

[30] Pillitteri LJ, Torii KU. Mechanisms of stomatal development. Annu Rev Plant
Biol 2012;63:591–614. doi: https://doi.org/10.1146/annurev-arplant-042811-
105451.

[31] Dhanda SS, Sethi GS, Behl RK. Indices of drought tolerance in wheat genotypes
at early stages of plant growth. J Agron Crop Sci 2004;190:6–12. doi: https://
doi.org/10.1111/j.1439-037X.2004.00592.x.

[32] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought
stress response and tolerance. J Exp Bot 2007;58:221–7. doi: https://doi.org/
10.1093/jxb/erl164.

[33] Blum A. Osmotic adjustment is a prime drought stress adaptive engine in
support of plant production. Plant Cell Environ 2017;40:4–10. doi: https://doi.
org/10.1111/pce.12800.

https://doi.org/10.1016/j.jare.2022.04.008
https://doi.org/10.1016/S0378-4290(02)00024-2
https://doi.org/10.1016/S0378-4290(02)00024-2
https://doi.org/10.1093/jxb/ert289
https://doi.org/10.1016/j.fcr.2018.02.014
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0020
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0020
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0020
https://doi.org/10.2135/cropsci1994.0011183X003400010018x
https://doi.org/10.1146/annurev-arplant-042110-103827
https://doi.org/10.1146/annurev-arplant-042110-103827
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0050
https://doi.org/10.1093/genetics/33.5.477
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0060
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0060
https://doi.org/10.3389/fpls.2021.745726
https://doi.org/10.3389/fpls.2021.745726
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0070
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0070
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0075
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0075
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0075
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0080
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0080
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0085
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0085
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0085
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0085
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0090
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0090
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0090
https://doi.org/10.1038/ng.550
https://doi.org/10.1038/ng.550
https://doi.org/10.1146/annurev-genet-120213-092159
https://doi.org/10.1146/annurev-genet-120213-092159
https://doi.org/10.1038/ncomms8453
https://doi.org/10.1016/j.cub.2006.06.071
https://doi.org/10.1016/j.cub.2006.06.071
https://doi.org/10.1038/nature07523.Altered
https://doi.org/10.1270/jsbbs.17155
https://doi.org/10.1270/jsbbs.17155
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0125
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0125
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0125
https://doi.org/10.1073/pnas.1204464109
https://doi.org/10.1016/j.plantsci.2015.02.012
https://doi.org/10.1016/j.plantsci.2015.02.012
https://doi.org/10.1146/annurev-ecolsys-110512-135806
https://doi.org/10.1146/annurev-ecolsys-110512-135806
https://doi.org/10.1093/jxb/eru006
https://doi.org/10.1146/annurev-arplant-042811-105451
https://doi.org/10.1146/annurev-arplant-042811-105451
https://doi.org/10.1111/j.1439-037X.2004.00592.x
https://doi.org/10.1111/j.1439-037X.2004.00592.x
https://doi.org/10.1093/jxb/erl164
https://doi.org/10.1093/jxb/erl164
https://doi.org/10.1111/pce.12800
https://doi.org/10.1111/pce.12800


Joon Seon Lee, M. Jahani, K. Huang et al. Journal of Advanced Research 42 (2022) 83–98
[34] Zheng J, Fu J, Gou M, Huai J, Liu Y, Jian M, et al. Genome-wide transcriptome
analysis of two maize inbred lines under drought stress. Plant Mol Biol
2010;72(4-5):407–21.

[35] Lenka SK, Katiyar A, Chinnusamy V, Bansal KC. Comparative analysis of
drought-responsive transcriptome in Indica rice genotypes with contrasting
drought tolerance. Plant Biotechnol J 2011;9:315–27. doi: https://doi.org/
10.1111/j.1467-7652.2010.00560.x.

[36] Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, et al.
Transcriptome analyses reveal genotype- and developmental stage-specific
molecular responses to drought and salinity stresses in chickpea. Sci Rep
2016;6(1). doi: https://doi.org/10.1038/srep19228.

[37] Wang P, Yang C, Chen H, Song C, Zhang X, Wang D. Transcriptomic basis for
drought-resistance in Brassica napus L. Sci Rep 2017;7:1–20. doi: https://doi.
org/10.1038/srep40532.

[38] Rengel D, Arribat S, Maury P, Martin-Magniette M-L, Hourlier T, Laporte M,
et al. A gene-phenotype network based on genetic variability for drought
responses reveals key physiological processes in controlled and natural
environments. PLoS ONE 2012;7(10):e45249.

[39] Li J, Li X, Han P, Liu H, Gong J, Zhou W, et al. Genome-wide investigation of
bHLH genes and expression analysis under different biotic and abiotic stresses
in Helianthus annuus L. Int J Biol Macromol 2021;189:72–83.

[40] Xu L, Li J, Najeeb U, Li X, Pan J, Huang Q, et al. Synergistic effects of EDDS and
ALA on phytoextraction of cadmium as revealed by biochemical and
ultrastructural changes in sunflower (Helianthus annuus L.) tissues. J Hazard
Mater 2021;407:124764.

[41] Reddy ASN, Marquez Y, Kalyna M, Barta A. Complexity of the alternative
splicing landscape in plants. Plant Cell 2013;25:3657–83. doi: https://doi.org/
10.1105/tpc.113.117523.

[42] Staiger D, Brown JWS. Alternative splicing at the intersection of biological
timing, development, and stress responses. Plant Cell 2013;25:3640–56. doi:
https://doi.org/10.1105/tpc.113.113803.

[43] Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, et al. Genome-
wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res
2010;20(1):45–58.

[44] S.E. Soergel, D.A.W., Lareau, L.F., and Brenner, Regulation of gene expression by
coupling of alternative splicing and NMD, in: Landes Biosci., 2013.

[45] Remy E, Cabrito TR, Baster P, Batista RA, Teixeira MC, Friml J, et al. A major
facilitator superfamily transporter plays a dual role in polar auxin transport
and drought stress tolerance in Arabidopsis. Plant Cell 2013;25(3):901–26.

[46] Tian L, Zhao X, Liu H, Ku L, Wang S, Han Z, et al. Alternative splicing of ZmCCA1
mediates drought response in tropical maize. PLoS ONE 2019;14(1). doi:
https://doi.org/10.1371/journal.pone.0211623.

[47] Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using
genome-wide dense marker maps. Genetics 2001;157:1819–29. doi: https://
doi.org/10.1093/genetics/157.4.1819.

[48] Seiler GJ, Qi LL, Marek LF. Utilization of sunflower crop wild relatives for
cultivated sunflower improvement. Crop Sci 2017;57:1083–101. doi: https://
doi.org/10.2135/cropsci2016.10.0856.

[49] Hussain M, Farooq S, Hasan W, Ul-Allah S, Tanveer M, Farooq M, et al. Drought
stress in sunflower: Physiological effects and its management through
breeding and agronomic alternatives. Agric Water Manag 2018;201:152–66.

[50] Baack EJ, Sapir Y, Chapman MA, Burke JM, Rieseberg LH. Selection on
domestication traits and quantitative trait loci in crop-wild sunflower
hybrids. Mol Ecol 2008;17:666–77. doi: https://doi.org/10.1111/j.1365-
294X.2007.03596.x.

[51] Mandel JR, Nambeesan S, Bowers JE, Marek LF, Ebert D, Rieseberg LH, et al.
Association mapping and the genomic consequences of selection in sunflower.
PLoS Genet 2013;9(3):e1003378.

[52] Mandel JR, Dechaine JM, Marek LF, Burke JM. Genetic diversity and population
structure in cultivated sunflower and a comparison to its wild progenitor,
Helianthus annuus L. Theor Appl Genet 2011;123:693–704. doi: https://doi.
org/10.1007/s00122-011-1619-3.

[53] Nambeesan SU, Mandel JR, Bowers JE, Marek LF, Ebert D, Corbi J, et al.
Association mapping in sunflower (Helianthus annuus L.) reveals independent
control of apical vs. basal branching. BMC Plant Biol 2015;15(1). doi: https://
doi.org/10.1186/s12870-015-0458-9.

[54] Encheva J, Georgiev G, Penchev E. Heterosis effects for agronomically
important traits in sunflower (Helianthus annuus L.). Bulg J Agric Sci
2015;21:336–41.

[55] Schneiter AA, Miller JF. Description of sunflower growth stages 1. Crop Sci
1981;21:901–3. doi: https://doi.org/10.2135/
cropsci1981.0011183x002100060024x.

[56] Hübner S, Bercovich N, Todesco M, Mandel JR, Odenheimer J, Ziegler E, et al.
Sunflower pan-genome analysis shows that hybridization altered gene content
and disease resistance. Nat Plants 2019;5(1):54–62.

[57] Todesco M, Owens GL, Bercovich N, Légaré J-S, Soudi S, Burge DO, et al. Massive
haplotypes underlie ecotypic differentiation in sunflowers. Nature 2020;584
(7822):602–7.

[58] Marchand G, Mayjonade B, Varès D, Blanchet N, Boniface MC, Maury P, et al. A
biomarker based on gene expression indicates plant water status in controlled
and natural environments. Plant, Cell Environ 2013;36(12):2175–89.

[59] Gosseau F, Blanchet N, Varès D, Burger P, Campergue D, Colombet C, et al.
Heliaphen, an outdoor high-throughput phenotyping platform for genetic
98
studies and crop modeling, Front. Plant Sci 2019;9. doi: https://doi.org/
10.3389/fpls.2018.01908.

[60] Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, et al. The sunflower
genome provides insights into oil metabolism, flowering and Asterid
evolution. Nature 2017;546(7656):148–52.

[61] Lee JS, Adams KL. Global insights into duplicated gene expression and
alternative splicing in polyploid Brassica napus under heat, cold, and drought
stress. Plant Genome 2020;13. doi: https://doi.org/10.1002/tpg2.20057.

[62] Owens GL, Baute GJ, Hubner S, Rieseberg LH. Genomic sequence and copy
number evolution during hybrid crop development in sunflowers. Evol Appl
2019;12:54–65. doi: https://doi.org/10.1111/eva.12603.

[63] Baute GJ, Kane NC, Grassa CJ, Lai Z, Rieseberg LH. Genome scans reveal
candidate domestication and improvement genes in cultivated sunflower, as
well as post-domestication introgression with wild relatives. New Phytol
2015;206:830–8. doi: https://doi.org/10.1111/nph.13255.

[64] Zhang Ao, Wang H, Beyene Y, Semagn K, Liu Y, Cao S, et al. Effect of trait
heritability, training population size and marker density on genomic
prediction accuracy estimation in 22 bi-parental tropical maize populations,
Front. Plant Sci 2017;8. doi: https://doi.org/10.3389/fpls.2017.01916.

[65] Blanchet N, Casadebaig P, Debaeke P, Duruflé H, Gody L, Gosseau F, et al. Data
describing the eco-physiological responses of twenty-four sunflower
genotypes to water deficit. Data Br 2018;21:1296–301.

[66] Lee JS, Gao L, Guzman LM, Rieseberg LH. Genome-wide expression and
alternative splicing in domesticated sunflowers (Helianthus annuus L.) under
flooding stress. Agronomy 2021;11(1):92.

[67] Marcon C, Paschold A, Malik WA, Lithio A, Baldauf JA, Altrogge L, et al. Stability
of single-parent gene expression complementation in Maize Hybrids upon
water deficit stress. Plant Physiol 2017;173(2):1247–57.

[68] Hu X, Wang H, Li K, Liu X, Liu Z, Wu Y, et al. Genome-wide alternative splicing
variation and its potential contribution to maize immature-ear heterosis. Crop
J 2021;9(2):476–86.

[69] Li Z, Zhou P, Della Coletta R, Zhang T, Brohammer AB, O’Connor C, et al. Single-
parent expression drives dynamic gene expression complementation in maize
hybrids. Plant J 2021;105(1):93–107.

[70] Yang J, Mezmouk S, Baumgarten A, Buckler ES, Guill KE, McMullen MD, et al.
Incomplete dominance of deleterious alleles contributes substantially to trait
variation and heterosis in maize. PLoS Genet 2017;13(9):e1007019.

[71] Golicz AA, Bayer PE, Bhalla PL, Batley J, Edwards D. Pangenomics comes of age:
from bacteria to plant and animal applications. Trends Genet 2020;36:132–45.
doi: https://doi.org/10.1016/j.tig.2019.11.006.

[72] Stelkens R, Seehausen O. Genetic distance between species predicts novel trait
expression in their hybrids. Evolution (N Y) 2009;63:884–97. doi: https://doi.
org/10.1111/j.1558-5646.2008.00599.x.

[73] Ko JH, Yang SH, Han KH. Upregulation of an arabidopsis RING-H2 gene,
XERICO, confers drought tolerance through increased abscisic acid
biosynthesis. Plant J 2006;47:343–55. doi: https://doi.org/10.1111/j.1365-
313X.2006.02782.x.

[74] Gu R, Fonseca S, Puskas LG, Hackler L, Zvara A, Dudits D, et al. Transcript
identification and profiling during salt stress and recovery of Populus
euphratica. Tree Physiol 2004;24(3):265–76.

[75] Liu X, Baird WV. Differential expression of genes regulated in response to
drought or salinity stress in sunflower. Crop Sci 2003;43:678–87. doi: https://
doi.org/10.2135/cropsci2003.6780.

[76] Liang C, WangW, Wang J, Ma J, Li C, Zhou F, et al. Identification of differentially
expressed genes in sunflower (Helianthus annuus) leaves and roots under
drought stress by RNA sequencing. Bot Stud 2017;58(1). doi: https://doi.org/
10.1186/s40529-017-0197-3.

[77] Roche J, Hewezi T, Bouniols A, Gentzbittel L. Transcriptional profiles of primary
metabolism and signal transduction-related genes in response to water stress
in field-grown sunflower genotypes using a thematic cDNA microarray. Planta
2007;226:601–17. doi: https://doi.org/10.1007/s00425-007-0508-0.

[78] Langfelder P, Horvath S. WGCNA: An R package for weighted correlation
network analysis. BMC Bioinf 2008;9. doi: https://doi.org/10.1186/1471-2105-
9-559.

[79] Tahmasebi A, Ashrafi-Dehkordi E, Shahriari AG, Mazloomi SM, Ebrahimie E.
Integrative meta-analysis of transcriptomic responses to abiotic stress in
cotton. Prog Biophys Mol Biol 2019;146:112–22. doi: https://doi.org/10.1016/
j.pbiomolbio.2019.02.005.

[80] Botet R, Keurentjes JJB. The role of transcriptional regulation in hybrid vigor.
Front Plant Sci 2020;11:1–9. doi: https://doi.org/10.3389/fpls.2020.00410.

[81] Ast G. How did alternative splicing evolve? Nat Rev Genet 2004;5:773–82. doi:
https://doi.org/10.1038/nrg1451.

[82] Zhao Y, Hu F, Zhang X, Wei Q, Dong J, Bo C, et al. Comparative transcriptome
analysis reveals important roles of nonadditive genes in maize hybrid An’nong
591 under heat stress. BMC Plant Biol 2019;19(1). doi: https://doi.org/
10.1186/s12870-019-1878-8.

[83] Wang X, Yang M, Ren D, Terzaghi W, Deng XW, He G. Cis-regulated alternative
splicing divergence and its potential contribution to environmental responses
in Arabidopsis. Plant J 2019;97:555–70. doi: https://doi.org/10.1111/tpj.14142.

[84] Song B, Buckler ES, Wang H, Wu Y, Rees E, Kellogg EA, et al. Conserved
noncoding sequences provide insights into regulatory sequence and loss of
gene expression in maize. Genome Res 2021;31(7):1245–57.

http://refhub.elsevier.com/S2090-1232(22)00104-7/h0170
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0170
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0170
https://doi.org/10.1111/j.1467-7652.2010.00560.x
https://doi.org/10.1111/j.1467-7652.2010.00560.x
https://doi.org/10.1038/srep19228
https://doi.org/10.1038/srep40532
https://doi.org/10.1038/srep40532
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0190
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0190
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0190
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0190
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0195
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0195
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0195
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0200
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0200
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0200
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0200
https://doi.org/10.1105/tpc.113.117523
https://doi.org/10.1105/tpc.113.117523
https://doi.org/10.1105/tpc.113.113803
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0215
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0215
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0215
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0225
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0225
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0225
https://doi.org/10.1371/journal.pone.0211623
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.2135/cropsci2016.10.0856
https://doi.org/10.2135/cropsci2016.10.0856
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0245
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0245
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0245
https://doi.org/10.1111/j.1365-294X.2007.03596.x
https://doi.org/10.1111/j.1365-294X.2007.03596.x
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0255
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0255
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0255
https://doi.org/10.1007/s00122-011-1619-3
https://doi.org/10.1007/s00122-011-1619-3
https://doi.org/10.1186/s12870-015-0458-9
https://doi.org/10.1186/s12870-015-0458-9
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0270
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0270
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0270
https://doi.org/10.2135/cropsci1981.0011183x002100060024x
https://doi.org/10.2135/cropsci1981.0011183x002100060024x
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0280
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0280
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0280
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0285
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0285
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0285
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0290
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0290
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0290
https://doi.org/10.3389/fpls.2018.01908
https://doi.org/10.3389/fpls.2018.01908
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0300
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0300
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0300
https://doi.org/10.1002/tpg2.20057
https://doi.org/10.1111/eva.12603
https://doi.org/10.1111/nph.13255
https://doi.org/10.3389/fpls.2017.01916
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0325
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0325
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0325
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0330
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0330
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0330
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0335
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0335
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0335
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0340
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0340
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0340
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0345
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0345
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0345
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0350
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0350
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0350
https://doi.org/10.1016/j.tig.2019.11.006
https://doi.org/10.1111/j.1558-5646.2008.00599.x
https://doi.org/10.1111/j.1558-5646.2008.00599.x
https://doi.org/10.1111/j.1365-313X.2006.02782.x
https://doi.org/10.1111/j.1365-313X.2006.02782.x
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0370
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0370
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0370
https://doi.org/10.2135/cropsci2003.6780
https://doi.org/10.2135/cropsci2003.6780
https://doi.org/10.1186/s40529-017-0197-3
https://doi.org/10.1186/s40529-017-0197-3
https://doi.org/10.1007/s00425-007-0508-0
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1016/j.pbiomolbio.2019.02.005
https://doi.org/10.1016/j.pbiomolbio.2019.02.005
https://doi.org/10.3389/fpls.2020.00410
https://doi.org/10.1038/nrg1451
https://doi.org/10.1186/s12870-019-1878-8
https://doi.org/10.1186/s12870-019-1878-8
https://doi.org/10.1111/tpj.14142
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0420
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0420
http://refhub.elsevier.com/S2090-1232(22)00104-7/h0420

	Expression complementation of gene presence/absence polymorphisms in hybrids contributes importantly to heterosis in sunflower
	Introduction
	Mechanisms of heterosis
	Mechanisms of drought tolerance
	Regulation of heterotic responses to drought by alternative splicing
	Approach taken by present study

	Materials and Methods
	Phenotyping and genotyping of the SAM population
	GWA analyses
	Genomic prediction
	Plant material preparation for transcriptomic analyses
	Illumina RNA-Seq library preparation
	Analyses of gene expression and alternative splicing
	Detection of genes exhibiting expression complementation due to PAV
	Classification of inheritance patterns in the F1 hybrids from the parents
	Predicting potential functions of differentially expressed and/or spliced genes

	Results
	GWA analyses in SAM population
	Genomic prediction
	RNA-Seq data
	Heterosis for morpho-physiological traits in INEDI
	Expression complementation of PAVs
	Differential expression in response to drought stress
	Differential AS in response to drought stress
	Non-additive gene expression in the F1 under control conditions
	Non-additive gene expression in the F1 under drought stress
	Differential splicing correlates with differential expression in hybrids
	Relationship between levels of gene expression and alternative splicing

	Discussion
	Gene expression complementation in hybrids contributes to heterosis in sunflower
	General responses to drought stress
	Differentially expressed genes in the F1 hybrid relative to its parents
	Differential splicing negatively correlated with expression variation, reinforcing hybrid expression responses
	Caveats and future directions

	Conclusions
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary material
	References


